Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sample Preparation
2.3. Analysis of the Blood Immune Index
2.4. Total RNA Extraction and miRNA High-Throughput Sequencing
2.5. Analysis of miRNA High-Throughput Sequencing Data
2.6. Protein Extraction, iTRAQ Labeling, and Strong Cation Exchange (SCX) Chromatography
2.7. LC-MS/MS Analysis for Protein Identification and Quantitation
2.8. Validation of miRNA and iTRAQ Data
2.9. Bioinformatics Analysis
2.10. Statistical Analysis
3. Results
3.1. Serum Cytokines Levels
3.2. Differentially Expressed miRNAs and Protein Profiles
3.3. Gene Ontology, Function, and Pathway Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Julian, C.G.; Wilson, M.J.; Moore, L.G. Evolutionary adaptation to high altitude: A view from in utero. Am. J. Hum. Biol. 2009, 21, 614–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, K.P.; Ganju, L. Influence of high altitude exposure on the immune system: A review. Immunol. Investig. 2010, 39, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Mishra, K.P.; Ganju, L.; Bala Singh, S. Hypoxia modulates innate immune factors: A review. Int. Immunopharmacol. 2015, 28, 425–428. [Google Scholar] [CrossRef] [PubMed]
- Araldi, E.; Schipani, E. Hypoxia, HIFs and bone development. Bone 2010, 47, 190–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katz, A. Modulation of glucose transport in skeletal muscle by reactive oxygen species. J. Appl. Physiol. 2007, 102, 1671–1676. [Google Scholar] [CrossRef]
- Piguet, A.C.; Stroka, D.; Zimmermannn, A.; Dufour, J.F. Hypoxia aggravates non-alcoholic steatohepatitis in mice lacking hepatocellular PTEN. Clin. Sci. 2010, 118, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Zhou, C.; Li, B.; Jiao, J.; Chen, L.; Ren, A.; Jie, H.; Tan, Z. Integrative plasma proteomic and microRNA analysis of Jersey cattle in response to high-altitude hypoxia. J. Dairy Sci. 2019, 102, 4606–4618. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.K.; Liu, F.J.; Ye, S.L.; Jiang, P.; Yu, X.C.; Xu, J.; Du, X.; Ma, L.; Cao, H.J.; Yuan, C.; et al. Plasma proteome profiling of high-altitude polycythemia using TMT-based quantitative proteomics approach. J. Proteomics. 2019, 194, 60–69. [Google Scholar] [CrossRef]
- Cui, C.; Zhou, T.; Li, J.Y.; Wang, H.; Li, X.R.; Xiong, J.; Xu, P.X.; Xue, M. Proteomic analysis of the mouse brain after repetitive exposure to hypoxia. Chem. Biol. Interact. 2015, 236, 57–66. [Google Scholar] [CrossRef]
- Sun, S.M.; Xuan, F.J.; Fu, H.L.; Ge, X.P.; Hu, J.; Qiao, H.; Jin, S.B.; Zhang, Y.W. Comparative proteomic study of the response to hypoxia in the muscle of oriental river prawn (Macrobrachium nipponense). J. Proteomics. 2016, 138, 115–123. [Google Scholar] [CrossRef]
- Coffey, E.L.; Horan, B.; Evans, R.D.; Berry, D.P. Milk production and fertility performance of Holstein, Friesian, and Jersey purebred cows and their respective crosses in seasonal-calving commercial farms. J. Dairy Sci. 2016, 99, 5681–5689. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.J.; Wang, M.; Xu, W.Z.; Yang, L.H.; Gao, F. Statistical analysis of the production performance and reproductive performance of Chinese Holstein cows with different flowers. Chin. Dairy. Cattl. 1997, 1, 35–36. [Google Scholar]
- Wang, M.Q.; Ni, W.; Tang, C.; Guo, J.H.; Zhang, H.M.; Li, M.X.; Ji, D.J.; Yang, Z.P.; Mao, Y.J. Comparative analysis of lactation characteristics of Jersey cattle and Holstein cows. Acta. Ecologiae. Animalis. Domashci. 2008, 39, 37–41. [Google Scholar]
- Ji, S.J.; Han, L.; Qi, Y.X.; Huang, Y.Q. Effect analysis of hybrid improvement of small cattle in qinghai-tibet plateau. Anim. Husb. Vet. Med. 2005, 37, 27–28. [Google Scholar]
- Finch, M.L.; Marquardt, J.U.; Yeoh, G.C.; Callus, B.A. Regulation of microRNAs and their role in liver development, regeneration and disease. Int. J. Biochem. Cell Biol. 2014, 54, 288–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kochan-Jamrozy, K.; Króliczewski, J.; Moszyńska, A.; Collawn, J.F.; Bartoszewski, R. miRNA networks modulate human endothelial cell adaptation to cyclic hypoxia. Cell. Signal. 2019, 54, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhang, J.; Wang, Y.; Long, K.; Wang, X.; Jin, L.; Tang, Q.; Zhu, L.; Tang, G.; Li, X.; et al. MiR-532-5p alleviates hypoxia-induced cardiomyocyte apoptosis by targeting PDCD4. Gene 2018, 675, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ren, W.; Wang, X.; Yu, X.; Cui, L.; Li, X.; Zhang, X.; Shi, B. MicroRNA-150 relieves vascular remodeling and fibrosis in hypoxia-induced pulmonary hypertension. Biomed. Pharmacother. 2019, 109, 1740–1749. [Google Scholar] [CrossRef]
- Grosshans, H.; Filipowicz, W. Proteomics joins the search for microRNA targets. Cell 2008, 134, 560–562. [Google Scholar] [CrossRef]
- Ou, M.; Zhang, X.; Dai, Y.; Gao, J.; Zhu, M.; Yang, X.; Li, Y.; Yang, T.; Ding, M. Identification of potential microRNA–target pairs associated with osteopetrosis by deep sequencing, iTRAQ proteomics and bioinformatics. Eur. J. Hum. Genet. 2014, 22, 625–632. [Google Scholar] [CrossRef]
- MOA. Feeding Standard of Dairy Cattle (NY/T 34-2004); Ministry of Agriculture of China: Beijing, China, 2004.
- Lu, Z.N.; Feng, Y.L. Nutritional Needs and Feed Components of Dairy Cows, 3rd ed.; Review; China Agricultural University Press: Beijing, China, 2007. [Google Scholar]
- Lopez, J.P.; Diallo, A.; Cruceanu, C.; Fiori, L.M.; Laboissiere, S.; Guillet, I.; Fontaine, J.; Ragoussis, J.; Benes, V.; Turecki, G.; et al. Biomarker discovery: Quantification of microRNAs and other small non-coding RNAs using next generation sequencing. BMC Med. Genet. 2015, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, N.H.; Ong, W.D.; Redwan, R.M.; Latip, M.A.; Kumar, S.V. Discovery of precursor and mature microRNAs and their putative gene targets using high-throughput sequencing in pineapple (Ananas comosus var. comosus). Gene 2015, 571, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Cong, L.; Zhu, Z.; Wang, C.; Zou, J.; Tao, C.; Shi, Z.; Lu, X. Identification of differentially expressed microRNA in the stems and leaves during sugar accumulation in sweet sorghum. Gene 2015, 571, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Faulkner, S.; Elia, G.; Hillard, M.; O’Boyle, P.; Dunn, M.; Morris, D. Immunodepletion of albumin and immunoglobulin G from bovine plasma. Proteomics 2011, 11, 2329–2335. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.F.; Chang, C.F.; Zang, X.Y.; Sun, J.Y.; Li, P.F.; Guo, J.L.; Xu, C.S. Integrative proteomic and microRNA analysis of the priming phase during rat liver regeneration. Gene 2016, 575, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Hanada, S.; Kakehashi, A.; Nishiyama, N.; Wei, M.; Yamano, S.; Chung, K.; Komatsu, H.; Inoue, H.; Suehiro, S.; Wanibuchi, H. Myristoylated alanine-rich C-kinase substrate as a prognostic biomarker in human primary lung squamous cell carcinoma. Cancer Biomark. 2013, 13, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Geng, X.; Wang, G.; Qin, Y.; Zang, X.; Li, P.; Geng, Z.; Xue, D.; Dong, Z.; Ma, K.; Chen, G.; et al. iTRAQ-based quantitative proteomic analysis of the initiation of head regeneration in planarians. PLoS ONE 2015, 10, e0132045. [Google Scholar] [CrossRef]
- Hsieh, H.C.; Chen, Y.T.; Li, J.M.; Chou, T.Y.; Chang, M.F.; Huang, S.C.; Tseng, T.L.; Liu, C.C.; Chen, S.F. Protein profilings in mouse liver regeneration after partial hepatectomy using iTRAQ technology. J. Proteome. Res. 2009, 8, 1004–1013. [Google Scholar] [CrossRef]
- Unwin, R.D.; Griffiths, J.R.; Whetton, A.D. Simultaneous analysis of relative protein expression levels across multiple samples using iTRAQ isobaric tags with 2D nano LC-MS/MS. Nat. Protoc. 2010, 5, 1574–1582. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Lin, X.Q.; Liang, S.L.; Han, S.Y.; Zheng, S.P.; Ye, Y.R.; Lin, Y. Quantitative iTRAQ LC-MS/MS proteomics reveals the cellular response to heterologous protein overexpression and the regulation of HAC1 in Pichia pastoris. J. Proteomics. 2013, 91, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Liu, X.; Peng, Y.; Zhan, R.; Xu, H.; Ge, X. Comparative analysis of methicillin-sensitive and resistant Staphylococcus aureus exposed to emodin based on proteomic profiling. Biochem. Biophys. Res. Commun. 2017, 494, 318–324. [Google Scholar] [CrossRef]
- Geng, X.; Xu, T.; Niu, Z.; Zhou, X.; Zhao, L.; Xie, Z.; Xue, D.; Zhang, F.; Xu, C. Differential proteome analysis of the cell differentiation regulated by BCC, CRH, CXCR4, GnRH, GPCR, IL1 signaling pathways in Chinese fire-bellied newt limb regeneration. Differentiation 2014, 88, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Yang, Y.; Allister, E.M.; Wijesekara, N.; Wheeler, M.B. The identification of potential factors associated with the development of type 2 diabetes: A quantitative proteomics approach. Mol. Cell. Proteomics 2008, 7, 1434–1451. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lin, L.X.; Wang, J.; Zhang, Z.L.; Yuan, E.W. Changes of Humoral Immunity in New born Infants with Hypoxic-Ischemic Encephalopathy and Its Correlative Factors. J. Appl. Clin. Pediatr. 2009, 2, 119–121. [Google Scholar]
- Roush, S.; Slack, F.J. The let-7 family of microRNAs. Trends. Cell. Biol. 2008, 18, 505–516. [Google Scholar] [CrossRef]
- Hu, G.Z.; Liu, F.F.; Fang, W.; Fan, J. Knock-down of let-7a attenuates neuroinflammation and nerve injury after cerebral ischemia-reperfusion injury. J. Apoplexy Nerv. Dis. 2017, 34, 528–531. [Google Scholar]
- Chen, X.M.; Splinter, P.L.; O’Hara, S.P.; LaRusso, N.F. A cellular micro-RNA, let-7i, regulates toll-like receptor 4 expression and contributes to cholangiocyte immune responses against Cryptosporidium parvum infection. J. Biol. Chem. 2007, 282, 28929–28938. [Google Scholar] [CrossRef]
- Wu, C.; Gong, Y.; Yuan, J.; Zhang, W.; Zhao, G.; Li, H.; Sun, A.; Hu, K.; Zou, Y.; Ge, J. MicroRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-Fos. J. Lipid. Res. 2012, 53, 2355–2363. [Google Scholar] [CrossRef]
- Zhao, J.; Gong, A.Y.; Zhou, R.; Liu, J.; Eischeid, A.N.; Chen, X.M. Down-regulation of PCAF by miR-181a/b provides feedback regulation to TNF-a-induced transcription of pro-inflammatory genes in liver epithelial cells. J. Immunol. 2012, 188, 1266–1274. [Google Scholar] [CrossRef]
- Xie, W.; Li, Z.; Li, M.; Xu, N.; Zhang, Y. MiR-181a and inflammation: Mi RNA homeostasis response to inflammatory stimuli in vivo. Biochem. Biophys. Res. Commun. 2013, 430, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Gantier, M.P.; Stunden, H.J.; McCoy, C.E.; Behlke, M.A.; Wang, D.; Kaparakis-Liaskos, M.; Sarvestani, S.T.; Yang, Y.H.; Xu, D.; Corr, S.C.; et al. A miR-19 regulon that controls NF-kB signaling. Nucleic Acids Res. 2012, 40, 8048–8058. [Google Scholar] [CrossRef]
- Jordan, S.D.; Kruger, M.; Willmes, D.M.; Redemann, N.; Thomas Wunderlich, F.; Brönneke, H.S.; Merkwirth, C.; Kashkar, H.; Olkkonen, V.M.; Böttger, T.; et al. Obesity-induced overexpression of miRNA-143 inhibit AKT activation and impairs glucose metabolism. Nat. Cell. Biol. 2011, 13, 434–446. [Google Scholar] [CrossRef] [PubMed]
- Fang, R.; Xiao, T.; Fang, Z.; Sun, Y.; Li, F.; Gao, Y.; Feng, Y.; Li, L.; Wang, Y.; Liu, X.; et al. MiR-143 regulates cancer glycolysis via targeting hexokinase 2. J. Biol. Chem. 2012, 287, 23227–23235. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; Zhou, T.; Fu, Y.; Wang, R.; Zhang, H.; Li, M.; Lin, Y.; Li, Z.; Xu, C.; Yang, B.; et al. MicroRNA-17 impairs glucose metabolism in insulin-resistant skeletal muscle via repressing glucose transporter 4 expression. Eur. J. Pharmacol. 2018, 838, 170–176. [Google Scholar] [CrossRef]
- Wang, G.; Wang, J.J.; Zhao, H.F.; Wang, J.; Tony To, S.S. The role of Myc and let-7a in glioblastoma, glucose metabolism and response to therapy. Arch. Biochem. Biophys. 2015, 580, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Don Giovanni, P.; Valenti, L.; Fracanzani, A.L.; Gatti, S.; Cairo, G.; Fargion, S. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am. J. Pathol. 2008, 172, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Lian, S.; Guo, J.R.; Nan, X.M.; Ma, L.; Loor, J.J.; Bu, D.P. MicroRNA Bta-miR-181a regulates the biosynthesis of bovine milk fat by targeting ACSL1. J. Dairy Sci. 2016, 99, 3916–3924. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Dodson, M.V.; Moore, S.S.; Basarab, J.A.; Guan, L.L. Characterization of microRNA expression in bovine adipose tissues: A potential regulatory mechanism of subcutaneous adipose tissue development. BMC Mol. Biol. 2010, 11, 29. [Google Scholar] [CrossRef] [PubMed]
- Ceciliani, F.; Giordano, A.; Spagnolo, V. The systemic reaction during inflammation: The acute-phase proteins. Protein Pept. Lett. 2002, 9, 221–223. [Google Scholar] [CrossRef]
- Ramírez-Tejero, J.A.; Martínez-Lara, E.; Rus, A.; Camacho, M.V.; Del Moral, M.L.; Siles, E. Insight into the biological pathways underlying fibromyalgia by a proteomic approach. J. Proteomics. 2018, 186, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Lakota, K.; Zigon, P.; Mrak-Poljsak, K.; Rozman, B.; Shoenfeld, Y.; Sodin-Semrl, S. Antibodies against acute phase proteins and their functions in the pathogenesis of disease: A collective profile of 25 different antibodies. Autoimmun. Rev. 2011, 10, 779–789. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.P.; Asleh, R.; Blum, S.; Levy, N.S.; Miller-Lotan, R.; Kalet-Litman, S.; Anbinder, Y.; Lache, O.; Nakhoul, F.M.; Asaf, R.; et al. Haptoglobin: Basic and clinical aspects. Antioxid. Redox. Signal. 2010, 12, 293–304. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.; Linden, T.; Katschinski, D.M.; Oehme, F.; Flamme, I.; Mukhopadhyay, C.K.; Eckhardt, K.; Troger, J.; Barth, S.; Camenisch, G.; et al. Copper-dependent activation of hypoxia-inducible factor (HIF)-1: Implications for ceruloplasmin regulation. Blood 2005, 105, 4613–4619. [Google Scholar] [CrossRef] [PubMed]
- Laurell, C.B.; Kullander, S.; Thorell, J. Effect of administration of a combined estrogen-progestin contraceptive on the level of individual plasma proteins. Scand. J. Clin. Lab Investig. 1968, 21, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Higai, K.; Azuma, Y.; Aoki, Y.; Matsumoto, K. Altered glycosylation of a1-acid glycoprotein in patients with inflammation and diabetes mellitus. Clin. Chim. Acta 2003, 329, 117–125. [Google Scholar] [CrossRef]
- Artigas, A.; Wernerman, J.; Arroyo, V.; Vincent, J.L.; Levy, M. Role of albumin in diseases associated with severe systemic inflammation: Pathophysiologic and clinical evidence in sepsis and in decompensated cirrhosis. J. Crit. Care 2016, 33, 62–70. [Google Scholar] [CrossRef]
- Yin, J.; Gao, Z.G.; He, Q.; Zhou, D.; Guo, Z.K.; Ye, J. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. Am. J. Physiol. Endocrinol. Metab. 2009, 296, 333–342. [Google Scholar] [CrossRef]
- Lu, H.; Wang, R.; Li, W.; Xie, H.; Wang, C.; Hao, Y.; Sun, Y.; Jia, Z. Plasma proteomic study of acute mountain sickness susceptible and resistant individuals. Sci Rep. 2018, 8, 1265. [Google Scholar] [CrossRef]
- Mylonis, I.; Simos, G.; Paraskeva, E. Hypoxia-Inducible Factors and the Regulation of Lipid Metabolism. Cells 2019, 8, 214. [Google Scholar] [CrossRef] [PubMed]
- Bugge, T.H.; Pohl, J.; Ionnoy, O.; Stunnenberg, H.G. RXR alpha: A promiscuous partner of retinoic acid and thyroid hormone receptors. EMBO J. 1992, 11, 1406–1418. [Google Scholar] [CrossRef]
- Van diepen, J.A.; Berbée, J.F.; Havekes, L.M.; Rensen, P.C. Interactions between inflammation and lipid metabolism: Relevance for efficacy of anti-inflammatory drugs in the treatment of atherosclerosis. Atherosclerosis 2013, 228, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, T.; Shimano, H.; Amemiya-Kudo, M.; Yahagi, N.; Hasty, A.H.; Matsuzaka, T.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; et al. Identification of liver X receptor-retinoid X receptor as an activator of the sterol regulatory element-binding protein 1 c promoter. Mol. Cell. Biol. 2001, 21, 2991–3000. [Google Scholar] [CrossRef] [PubMed]
- Mark, P.A.; Laffitte, B.A.; Desrumaux, C.; Joseph, S.B.; Curtiss, L.K.; Mangelsdorf, D.J.; Tontonoz, P.; Edwards, P.A. Regulated expression of the apolipoprotein E/C-I/C-IV/C-II gene cluster in murine and human macrophages. A critical role for nuclear liver X receptors alpha and beta. J. Biol. Chem. 2002, 277, 31900–31908. [Google Scholar] [CrossRef]
- Jakobsson, T.; Treuter, E.; Gustafsson, J.A.; Steffensen, K.R. Liver X receptor biology and pharmacology: New pathways, challenges and opportunities. Trends. Pharmacol. Sci. 2012, 33, 394–404. [Google Scholar] [CrossRef] [PubMed]
Item | Temperature | Humidity | Oxygen Content (%) |
---|---|---|---|
HA | 10.6 ± 1.6 | 42.4 ± 3.6 | 13.86 ± 1.22 |
SL | 11.8 ± 1.2 | 48.5 ± 2.7 | 21 ± 0.87 |
Items | Contents (%) |
---|---|
Diet compositions | |
Chinese leymus | 37.5 |
Corn silage | 22.5 |
Corn | 15.2 |
Wheat bran | 5.3 |
Soybean meal | 9.2 |
DDGS) | 8.4 |
Calcium hydrophosphate | 1.4 |
Premix 1 | 0.5 |
Nutrient compositions | |
CP | 13.1 |
NDF | 39.6 |
Ca | 0.6 |
P | 0.4 |
NEL 2, MJ/kg DM | 5.4 |
Items 1 | Group 2 | p-Value | |
---|---|---|---|
SL | HA | ||
IL-2 (ng/L) | 0.32 ± 0.028 | 0.18 ± 0.021 | 0.002 |
IL-6 (ng/L) | 0.17 ± 0.009 | 0.11 ± 0.013 | 0.001 |
TNF-α (ng/L) | 1.54 ± 0.095 | 1.12 ± 0.049 | 0.001 |
Functional Classification | Names of Proteins | HA/SL: Ratio 1 | p-Value | NCBInr Accession 2 |
---|---|---|---|---|
Acute Phase Response | ceruloplasmin precursor (CP) | 1.72 | 0.001 | gi|375065868 |
Serpin A3-6 (SERPINA3) | 4.32 | 0.009 | gi|296475221 | |
von Willebrand factor (VWF) | 1.40 | 0.008 | gi|328887902 | |
Hemopexin (HPX) | 7.34 | 0.001 | gi|77736171 | |
Alpha-2-HS-glycoprotein (AHSG) | 4.03 | 0.017 | gi|27806751 | |
Alpha-2-antiplasmin (SERPINF2) | 1.95 | 0.001 | gi|27807209 | |
Serotransferrin (TF) | 4.22 | 0.016 | gi|2501351 | |
Pigment epithelium-derived factor (SERPINF1) | 5.01 | 0.011 | gi|27806487 | |
Interleukin 1 receptor protein (IL1RAP) | 3.66 | 0.028 | gi|115495597 | |
Alpha -trypsin inhibitor heavy chain H3 (ITIH3) | 1.5 | 0.035 | gi|156120445 | |
Haptoglobin (HP) | 1.77 | 0.006 | gi|94966763 | |
Alpha-1-acid glycoprotein (ORM1) | 9.05 | 0.014 | gi|122697593 | |
Alpha -trypsin inhibitor heavy chain H2 (ITIH2) | 2.73 | 0.039 | gi|296481520 | |
Alpha -2-macroglobulin variant 23 (A2M) | 6.12 | 0.001 | gi|408689609 | |
Transthyretin (TTR) | 5.75 | 0.021 | gi|27806789 | |
Serum albumin (ALB) | 8.97 | 0.001 | gi|30794280 | |
Apolipoprotein A-I preproprotein (APOA1) | 0.32 | 0.002 | gi|75832056 | |
Serum amyloid A-4 protein (SAA4) | 0.39 | 0.005 | gi|94966809 | |
Apolipoprotein A-II (APOA2) | 0.65 | 0.003 | gi|114052298 | |
Histidine-rich glycoprotein (HRG) | 0.61 | 0.001 | gi|27806875 | |
LXR/RXR Activation | Paraoxonase 1 (PON1) | 1.50 | 0.004 | gi|114053183 |
Vitamin D-binding protein (GC) | 4.73 | 0.004 | gi|296486435 | |
Lipopolysaccharide-binding protein (LBP) | 0.23 | 0.013 | gi|296481091 | |
Apolipoprotein D (APOD) | 0.38 | 0.001 | gi|115494984 | |
Lecithin-cholesterol acyltransferase (LCAT) | 0.41 | 0.043 | gi|114051546 | |
Apolipoprotein A-IV (APOA4) | 0.23 | 0.008 | gi|296480272 | |
Apolipoprotein C-IV (APOC4) | 0.36 | 0.005 | gi|77736596 | |
Monocyte differentiation antigen CD14 (CD14) | 0.62 | 0.022 | gi|157703516 | |
Apolipoprotein C-II (APOC2) | 0.37 | 0.001 | gi|156139070 | |
vitronectin precursor (VTN) | 0.66 | 0.002 | gi|78045497 | |
FXR/RXR Activation | Alpha-1-antiproteinase (SERPINA1) | 7.21 | 0.023 | gi|27806941 |
Alpha-1B-glycoprotein (A1BG) | 9.05 | 0.003 | gi|114053019 | |
Retinol-binding protein 4 (RBP4) | 7.02 | 0.045 | gi|164420709 | |
Fetuin-B (FETUB) | 8.89 | 0.002 | gi|77735387 | |
Apolipoprotein C-III (APOC3) | 0.45 | 0.001 | gi|47564119 | |
Apolipoprotein E (APOE) | 0.33 | 0.041 | gi|27806739 | |
Clusterin (CLU) | 0.41 | 0.006 | gi|47522770 | |
Serum amyloid A protein (SAA1) | 0.59 | 0.005 | gi|296471870 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Z.; Zhou, C.; Chen, L.; Ren, A.; Zhang, D.; Basang, Z.; Tan, Z.; Kang, J.; Li, B. Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia. Animals 2019, 9, 406. https://doi.org/10.3390/ani9070406
Kong Z, Zhou C, Chen L, Ren A, Zhang D, Basang Z, Tan Z, Kang J, Li B. Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia. Animals. 2019; 9(7):406. https://doi.org/10.3390/ani9070406
Chicago/Turabian StyleKong, Zhiwei, Chuanshe Zhou, Liang Chen, Ao Ren, Dongjie Zhang, Zhuzha Basang, Zhiliang Tan, Jinhe Kang, and Bin Li. 2019. "Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia" Animals 9, no. 7: 406. https://doi.org/10.3390/ani9070406
APA StyleKong, Z., Zhou, C., Chen, L., Ren, A., Zhang, D., Basang, Z., Tan, Z., Kang, J., & Li, B. (2019). Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia. Animals, 9(7), 406. https://doi.org/10.3390/ani9070406