Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Method
2.1. Study Design and Sample Collection
2.2. Whole Blood Samples Collection
2.3. Library Preparation and RNA-Seq Analysis
2.4. Enriched Pathway Analysis
2.5. Cholesterol Determination in Egg Yolks
2.6. Statistics
3. Results
3.1. Influence of Olive Pomace-Supplemented Diet on Whole Blood Transcriptome
3.2. Olive Pomace-Supplemented Diet Reduced Cholesterol Egg Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- International Olive Council. World Olive Oil Figures and World Table Olive Figures; International Olive Council: Madrid, Spain, 2004. [Google Scholar]
- Castellani, F.; Vitali, A.; Bernardi, N.; Marone, E.; Palazzo, F.; Grotta, L.; Martino, G. Dietary supplementation with dried olive pomace in dairy cows modifies the composition of fatty acids and the aromatic profile in milk and related cheese. J. Dairy Sci. 2017, 100, 8658–8669. [Google Scholar] [CrossRef] [PubMed]
- Moral, P.S.; Méndez, M.V.R. Production of pomace olive oil. Grasas y Aceites 2006, 57, 47–55. [Google Scholar]
- Romero-García, J.; Niño, L.; Martínez-Patiño, C.; Alvarez, C.; Castro, E.; Negro, M.J. Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 2014, 159, 421–432. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Di Maio, G.; Pittia, P.; Grotta, L.; Perpetuini, G.; Tofalo, R.; Cichelli, A.; Martino, G. Chemical–nutritional quality and oxidative stability of milk and dairy products obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Sci. Food Agric. 2019, 99, 3635–3643. [Google Scholar] [CrossRef] [PubMed]
- Ianni, A.; Innosa, D.; Martino, C.; Bennato, F.; Martino, G. Short communication: Compositional characteristics and aromatic profile of caciotta cheese obtained from Friesian cows fed with a dietary supplementation of dried grape pomace. J. Dairy Sci. 2019, 102, 1025–1032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilio, D.M.; Bartocci, S.; Di Giovanni, S.; Servili, M.; Chiariotti, A.; Terramoccia, S. Evaluation of dried stoned olive pomace as supplementation for lactating Holstein cattle: Effect on milk production and quality. Anim. Prod. Sci. 2014, 55, 185–188. [Google Scholar] [CrossRef]
- Mele, M.; Serra, A.; Pauselli, M.; Luciano, G.; Lanza, M.; Pennisi, P.; Conte, G.; Taticchi, A.; Esposto, S.; Morbidini, L. The use of stoned olive cake and rolled linseed in the diet of intensively reared lambs: Effect on the intramuscular fatty-acid composition. Animal 2014, 8, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Vera, R.; Aguilar, C.; Lira, R.; Peña, I.; Fernández, J. Feeding olive cake to ewes improves fatty acid profile of milk and cheese. Anim. Feed. Sci. Technol. 2013, 184, 94–99. [Google Scholar] [CrossRef]
- Branciari, R.; Galarini, R.; Giusepponi, D.; Trabalza-Marinucci, M.; Forte, C.; Roila, R.; Miraglia, D.; Servili, M.; Acuti, G.; Valiani, A. Oxidative Status and Presence of Bioactive Compounds in Meat from Chickens Fed Polyphenols Extracted from Olive Oil Industry Waste. Sustainability 2017, 9, 1566. [Google Scholar] [CrossRef]
- Papadopoulou, A.; Petrotos, K.; Stagos, D.; Gerasopoulos, K.; Maimaris, A.; Makris, H.; Kafantaris, I.; Makri, S.; Kerasioti, E.; Halabalaki, M.; et al. Enhancement of Antioxidant Mechanisms and Reduction of Oxidative Stress in Chickens after the Administration of Drinking Water Enriched with Polyphenolic Powder from Olive Mill Waste Waters. Oxid. Med. Cell. Longev. 2017, 2017, 10. [Google Scholar] [CrossRef]
- Cayan, H.; Erener, G. Effect of Olive Leaf (Olea europaea) Powder on Laying Hens Performance, Egg Quality and Egg Yolk Cholesterol Levels. Asian-Australas. J. Anim. Sci. 2015, 28, 538–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011, 17, 10. [Google Scholar] [CrossRef]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Boil. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Innosa, D.; Ianni, A.; Palazzo, F.; Martino, F.; Bennato, F.; Grotta, L.; Martino, G. High temperature and heating effect on the oxidative stability of dietary cholesterol in different real food systems arising from eggs. Eur. Food Res. Technol. 2019, 245, 1–6. [Google Scholar] [CrossRef]
- Beigh, Y.A.; Ganai, A.M.; Ahmad, H.A. Utilization of apple pomace as livestock feed: A review. Ind. J. Small Rum. 2015, 21, 165–179. [Google Scholar] [CrossRef]
- Čolović, D.; Rakita, S.; Banjac, V.; Đuragić, O.; Čabarkapa, I. Plant food by-products as feed: Characteristics, possibilities, environmental benefits, and negative sides. Food Rev. Inter. 2019, 35, 363–389. [Google Scholar] [CrossRef]
- Fernandez-Bolanos, J.; Rodriguez, G.; Rodriguez, R.; Heredia, A.; Guillen, R.; Jimenez, A. Productionin Large Quantities of Highly Purified Hydroxytyrosol from Liquid−Solid Waste ofTwo-Phase Olive Oil Processing or “Alperujo”. J. Agric. Food Chem. 2002, 50, 6804–6811. [Google Scholar] [CrossRef]
- Lesage-Meessen, L.; Navarro, D.; Maunier, S.; Sigoillot, J.-C.; Lorquin, J.; Delattre, M.; Simon, J.-L.; Asther, M.; Labat, M. Simple phenolic content in olive oil residues as a function of extraction systems. Food Chem. 2001, 75, 501–507. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Florou-Pan, P. Effect of Dietary Supplementation of Olive Leaves and/or α-Tocopheryl Acetate on Performance and Egg Quality of Laying Japanese Quail (Coturnix japonica). Asian J. Anim. Veter Adv. 2011, 6, 1241–1248. [Google Scholar] [CrossRef]
- Elgendy, R.; Giantin, M.; Castellani, F.; Grotta, L.; Palazzo, F.; Dacasto, M.; Martino, G. Transcriptomic signature of high dietary organic selenium supplementation in sheep: A nutrigenomic insight using a custom microarray platform and gene set enrichment analysis1, 2. J. Anim. Sci. 2016, 94, 3169–3184. [Google Scholar] [CrossRef] [PubMed]
- Elgendy, R.; Palazzo, F.; Castellani, F.; Giantin, M.; Grotta, L.; Cerretani, L.; Dacasto, M.; Martino, G. Transcriptome profiling and functional analysis of sheep fed with high zinc-supplemented diet: A nutrigenomic approach. Anim. Feed. Sci. Technol. 2017, 234, 195–204. [Google Scholar] [CrossRef]
- Iannaccone, M.; Elgendy, R.; Giantin, M.; Martino, C.; Giansante, D.; Ianni, A.; Dacasto, M.; Martino, G. RNA Sequencing-Based Whole-Transcriptome Analysis of Friesian Cattle Fed with Grape Pomace-Supplemented Diet. Animals 2018, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Liew, C.-C.; Ma, J.; Tang, H.-C.; Zheng, R.; Dempsey, A.A. The peripheral blood transcriptome dynamically reflects system wide biology: A potential diagnostic tool. J. Lab. Clin. Med. 2006, 147, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Mohr, S.; Liew, C.-C. The peripheral-blood transcriptome: New insights into disease and risk assessment. Trends Mol. Med. 2007, 13, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Boss, A.; Kao, C.H.-J.; Murray, P.M.; Marlow, G.; Barnett, M.P.G.; Ferguson, L.R. Human Intervention Study to Assess the Effects of Supplementation with Olive Leaf Extract on Peripheral Blood Mononuclear Cell Gene Expression. Int. J. Mol. Sci. 2016, 17, 2019. [Google Scholar] [CrossRef] [PubMed]
- Bellosta, S.; Fed, N.; Bernini, F.; Paoletti, R.; Corsini, A. Non-lipid-related effects of statins. Ann. Med. 2000, 32, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Do, R.; Kiss, R.; Gaudet, D.; Engert, J. Squalene synthase: A critical enzyme in the cholesterol biosynthesis pathway. Clin. Genet. 2009, 75, 19–29. [Google Scholar] [CrossRef]
- Trapani, L.; Segatto, M.; Ascenzi, P.; Pallottini, V. Potential role of nonstatin cholesterol lowering agents. IUBMB Life 2011, 63, 964–971. [Google Scholar] [CrossRef]
- Shimano, H. Sterol regulatory element-binding proteins (SREBPs): Transcriptional regulators of lipid synthetic genes. Prog. Lipid Res. 2001, 40, 439–452. [Google Scholar] [CrossRef]
- Visioli, F.; Poli, A.; Gall, C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2001, 22, 65–75. [Google Scholar] [CrossRef] [PubMed]
Chemical Composition | DOP |
---|---|
Dry matter | 67.24 ± 3.82 |
Crude protein 1 | 7.81 ± 0.66 |
Ether extract 1 | 15.53 ± 1.08 |
Neutral detergent fiber | 58.13 ± 3.11 |
Item | Diet | |
---|---|---|
CTR | DOP | |
Ingredients (%) | ||
Feed for laying hens in production | 78.01 | 83.46 |
Alfalfa pellet | 17.56 | 0 |
Soybean meal | 2.11 | 5.51 |
Granular calcium | 1.16 | 1.12 |
Soybean oil | 1.16 | 0 |
DOP | 0 | 9.91 |
Chemical composition | ||
Crude protein (%, DM) | 15.25 | 15.33 |
Ether extract (%, DM) | 4.28 | 4.23 |
Raw cellulose (%, DM) | 6.42 | 6.36 |
Ash (%, DM) | 12.67 | 12.81 |
Starch (%, DM) | 33.78 | 35.31 |
Lysine (%, DM) | 0.81 | 0.83 |
Methionine (%, DM) | 0.32 | 0.29 |
Calcium (%, DM) | 3.94 | 3.89 |
Phosphorus (%, DM) | 0.49 | 0.52 |
Sodium (%, DM) | 0.13 | 0.13 |
Vitamin A (U.I.) | 6450 | 6515 |
Vitamin E (%, DM) | 19.31 | 19.47 |
Pathways | Fold Enrichment | FDR | Genes |
---|---|---|---|
Cholesterol biosynthesis | 55.51 | 2.30 × 10−7 | FDFT1, FDPS, MVD, HMGCR, HMGCS1 |
Interferon-gamma signaling pathway | 29.15 | 7.34 × 10−8 | PTPN11, CISH, SOCS3, MAPK1, STAT1, JAK1 STAT2, CDKN1B, PDPK1, IL15, MKNK2 |
Interleukin signaling pathway | 20.29 | 9.46 × 10−12 | IL10RA, CXCR1, PIK3CA, MAPK1, STAT1, SRF, SHC1, MAPK6 |
JAK/STAT signaling pathway | 20.04 | 6.64 × 10−3 | STAT2, STAT1, JAK1 |
Ras pathway | 16.70 | 5.70 × 10−8 | ATF2, PDPK1, RHOC, PIK3CA, MAPK1, STAT1, SHC1, SRF |
Oxidative stress response | 14.77 | 2.20 × 10−5 | DDIT3, ATF2, MKNK2, STAT1, MAX |
Insulin/IGF pathway/protein kinase B signaling cascade | 10.93 | 7.06 × 10−3 | PDPK1, PIK3CA |
PDGF signaling pathway | 10.56 | 6.72 × 10−8 | STAT1, STAT2, PDPK1, MKNK2, PIK3CA, MAPK1, SRF, JAK1, SHC1, MAPK6 |
PI3 kinase pathway | 10.19 | 2.49 × 10−3 | PDPK1, PIK3CA |
p53 pathway feedback loops 2 | 9.86 | 2.66 × 10−3 | PIK3CA, PDPK1, STAT1 |
VEGF signaling pathway | 8.59 | 4.49 × 10−3 | SPHK1, PIK3CA, MAPK1, MAPK6 |
Apoptosis signaling pathway | 8.72 | 7.35 × 10−4 | ATF2, RELA, MCM5, PIK3CA, MAPK1 |
Inflammation mediated by chemokine and cytokine signaling pathway | 6.81 | 3.13 × 10−7 | RELA, PDPK1, JUND, IL15, RHOC, CISH, CXCR1, PIK3CA, ARPC1B, MAPK1, STAT1, SHC1 |
Angiogenesis | 6.01 | 1.60 × 10−4 | PTPN11, RHOC, SPHK1, PIK3CA, MAPK1, STAT1, JAK1, SHC1, MAPK6 |
CCKR signaling map | 5.12 | 1.10 × 10−4 | ATF2, PDPK1, MAPK1, SRF, SHC1 |
FGF signaling pathway | 5.02 | 3.50 × 10−2 | PTPN11, PIK3CA, MAPK1, FGFR4 |
TGF-beta signaling pathway | 4.70 | 4.44 × 10−2 | ATF2, JUND, MAPK1 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iannaccone, M.; Ianni, A.; Ramazzotti, S.; Grotta, L.; Marone, E.; Cichelli, A.; Martino, G. Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens. Animals 2019, 9, 427. https://doi.org/10.3390/ani9070427
Iannaccone M, Ianni A, Ramazzotti S, Grotta L, Marone E, Cichelli A, Martino G. Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens. Animals. 2019; 9(7):427. https://doi.org/10.3390/ani9070427
Chicago/Turabian StyleIannaccone, Marco, Andrea Ianni, Solange Ramazzotti, Lisa Grotta, Elettra Marone, Angelo Cichelli, and Giuseppe Martino. 2019. "Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens" Animals 9, no. 7: 427. https://doi.org/10.3390/ani9070427
APA StyleIannaccone, M., Ianni, A., Ramazzotti, S., Grotta, L., Marone, E., Cichelli, A., & Martino, G. (2019). Whole Blood Transcriptome Analysis Reveals Positive Effects of Dried Olive Pomace-Supplemented Diet on Inflammation and Cholesterol in Laying Hens. Animals, 9(7), 427. https://doi.org/10.3390/ani9070427