Clinical and Immunological Response in Dogs Naturally Infected by L. infantum Treated with a Nutritional Supplement
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Composition of the Nutraceutical
2.3. Dog Enrolment and Study Design
2.4. Clinical Evaluation of Dogs
2.5. Blood Sample Collection
2.6. Serological and Molecular Assays
2.7. Diagnostic Procedure
2.8. Monoclonal Antibodies, Immunofluorescence, Flow Cytometry and Cell Culture
2.9. Statistical Analysis
3. Results
3.1. Clinical and Laboratory Evaluation
3.2. Immune Phenotype Analysis
4. Discussion
5. Conclusions
6. Limitations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rosypal, A.C.; Troy, G.C.; Zajac, A.M.; Frank, G.; Lindsay, D.S. Transplacental Transmission of a North American Isolate of Leishmania infantum in an Experimentally Infected Beagle. J. Parasitol. 2005, 91, 970–972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Freitas, E.; Melo, M.N.; Da Costa-Val, A.P.; Michalick, M.S.M. Transmission of Leishmania infantum via blood transfusion in dogs: Potential for infection and importance of clinical factors. Veter-Parasitol. 2006, 137, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.L.; Oliveira, R.G.; Silva, T.M.; Xavier, M.N.; Nascimento, E.F.; Santos, R.L.; Byndloss, M. Venereal transmission of canine visceral leishmaniasis. Veter-Parasitol. 2009, 160, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Baneth, G.; Koutinas, A.F.; Solano-Gallego, L.; Bourdeau, P.; Ferrer, L. Canine leishmaniosis—New concepts and insights on an expanding zoonosis: Part one. Trends Parasitol. 2008, 24, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Maia, C.; Campino, L. Cytokine and Phenotypic Cell Profiles of Leishmania infantum Infection in the Dog. J. Trop. Med. 2012, 2012, 541–571. [Google Scholar] [CrossRef] [PubMed]
- Alvar, J.; Canavate, C.; Molina, R.; Moreno, J.; Nieto, J. Canine leishmaniasis. Adv. Parasitol. 2004, 57, 1–88. [Google Scholar]
- Lombardo, G.; Pennisi, M.G.; Lupo, T.; Chicharro, C.; Solano-Gallego, L. Papular dermatitis due to Leishmania infantum infection in seventeen dogs: Diagnostic features, extent of the infection and treatment outcome. Parasites Vectors 2014, 7, 120. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, P.; Oliva, G.; De Luna, R.; Ambrosio, R.; Cortese, L.; Persechino, A.; Gradoni, L.; Scalone, A. A retrospective clinical study of canine leishmaniasis in 150 dogs naturally infected by Leishmania infantum. Veter-Rec. 1997, 141, 539–543. [Google Scholar] [CrossRef]
- Baneth, G. Leishmaniosis. In Infectious Diseases of the Dog and Cat, 3rd ed.; Green, C.E., Ed.; W.B. Saunders: St. Louis, MO, USA, 2006; pp. 685–698. [Google Scholar]
- Zafra, R.; Jaber, J.; Pérez-Écija, R.; Barragan, A.; Martinez-Moreno, A.; Pérez, J. High iNOS expression in macrophages in canine leishmaniasis is associated with low intracellular parasite burden. Veter-Immunol. Immunopathol. 2008, 123, 353–359. [Google Scholar] [CrossRef]
- Carrillo, E.; Moreno, J. Cytokine profiles in canine visceral leishmaniasis. Veter-Immunol. Immunopathol. 2009, 128, 67–70. [Google Scholar] [CrossRef]
- Abbehusen, M.M.C.; Almeida, V.D.A.; Solcà, M.D.S.; Pereira, L.D.S.; Costa, D.J.; Gil-Santana, L.; Bozza, P.T.; Fraga, D.B.M.; Veras, P.S.T.; Dos-Santos, W.L.C.; et al. Clinical and immunopathological findings during long term follow-up in Leishmania infantum experimentally infected dogs. Sci. Rep. 2017, 7, 15914. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.; Brombacher, F. T Helper1/T Helper2 Cells and Resistance/Susceptibility to Leishmania Infection: Is This Paradigm Still Relevant? Front. Immunol. 2012, 3, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortese, L.; Annunziatella, M.; Palatucci, A.T.; Rubino, V.; Piantedosi, D.; Di Loria, A.; Ruggiero, G.; Ciaramella, P.; Terrazzano, G. Regulatory T cells, Cytotoxic T lymphocytes and a TH1 cytokine profile in dogs naturally infected by Leishmania infantum. Res. Veter-Sci. 2013, 95, 942–949. [Google Scholar] [CrossRef] [PubMed]
- Cortese, L.; Annunziatella, M.; Palatucci, A.T.; Lanzilli, S.; Rubino, V.; Di Cerbo, A.; Centenaro, S.; Guidetti, G.; Canello, S.; Terrazzano, G. An immune-modulating diet increases the regulatory T cells and reduces T helper 1 inflammatory response in Leishmaniosis affected dogs treated with standard therapy. BMC Veter-Res. 2015, 11, 324. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, S. The origin of FOXP3-expressing CD4+ regulatory T cells: Thymus or periphery. J. Clin. Investig. 2003, 112, 1310–1312. [Google Scholar] [CrossRef]
- Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 2005, 6, 345–352. [Google Scholar] [CrossRef]
- Kharazmi, A.; Rezai, H.; Fani, M.; Behforouz, N. Evidence for the presence of circulating immune complexes in serum and C3b and C3d on red cells of kala-azar patients. Trans. R. Soc. Trop. Med. Hyg. 1982, 76, 793–796. [Google Scholar] [CrossRef]
- Ferrer, L. Leishmaniosis. In XI Current Veterinary Therapy; Kirk, R.W., Bonagura, J.D., Eds.; W.B. Saunders: Philadelphia, PA, USA, 1992; p. 266. [Google Scholar]
- Pelagalli, A.; Ciaramella, P.; Lombardi, P.; Pero, M.E.; Cortese, L.; Corona, M.; Oliva, G.; Avallone, L. Evaluation of Adenosine 5’-diphosphate (ADP)- and Collagen-induced Platelet Aggregation in Canine Leishmaniasis. J. Comp. Pathol. 2004, 130, 124–129. [Google Scholar] [CrossRef]
- Terrazzano, G.; Cortese, L.; Piantedosi, D.; Zappacosta, S.; Di Loria, A.; Santoro, D.; Ruggiero, G.; Ciaramella, P. Presence of anti-platelet IgM and IgG antibodies in dogs naturally infected by Leishmania infantum. Veter-Immunol. Immunopathol. 2006, 110, 331–337. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Koutinas, A.; Miró, G.; Cardoso, L.; Pennisi, M.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Veter-Parasitol. 2009, 165, 1–18. [Google Scholar] [CrossRef]
- Cortese, L.; Piantedosi, D.; Ciaramella, P.; Pero, M.E.; Sica, M.; Ruggiero, G.; Terrazzano, G.; Mastellone, V. Secondary immune-mediated thrombocytopenia in dogs naturally infected by Leishmania infantum. Veter-Rec. 2009, 164, 778–782. [Google Scholar] [CrossRef] [PubMed]
- Cortese, L.; Pelagalli, A.; Piantedosi, D.; Cestaro, A.; Di Loria, A.; Lombardi, P.; Avallone, L.; Ciaramella, P. Effects of therapy on haemostasis in dogs infected with Leishmania infantum, Ehrlichia canis, or both combined. Veter-Rec. 2009, 164, 433–434. [Google Scholar] [CrossRef] [PubMed]
- Cortese, L.; Terrazzano, G.; Piantedosi, D.; Sica, M.; Prisco, M.; Ruggiero, G.; Ciaramella, P. Prevalence of anti-platelet antibodies in dogs naturally co-infected by Leishmania infantum and Ehrlichia canis. Veter-J. 2011, 188, 118–121. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Cardoso, L.; Pennisi, M.G.; Oliva, G.; Baneth, G. Canine leishmaniosis – new concepts and insights on an expanding zoonosis: Part two. Trends Parasitol. 2008, 24, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Oliva, G.; Cruz, I.; Cañavate, C.; Mortarino, M.; Vischer, C.; Bianciardi, P. Multicentric, controlled clinical study to evaluate effectiveness and safety of miltefosine and allopurinol for canine leishmaniosis. Veter-Dermatol. 2009, 20, 397–404. [Google Scholar] [CrossRef] [PubMed]
- Torres, M.; Bardagí, M.; Roura, X.; Zanna, G.; Ravera, I.; Ferrer, L. Long term follow-up of dogs diagnosed with leishmaniosis (clinical stage II) and treated with meglumine antimoniate and allopurinol. Veter-J. 2011, 188, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Paradies, P.; Sasanelli, M.; Amato, M.E.; Greco, B.; De Palo, P.; Lubas, G. Monitoring the reverse to normal of clinico-pathological findings and the disease free interval time using four different treatment protocols for canine leishmaniosis in an endemic area. Res. Veter-Sci. 2012, 93, 843–847. [Google Scholar] [CrossRef]
- Noli, C.; Auxilia, S.T. Treatment of canine Old World visceral leishmaniasis: A systematic review. Veter-Dermatol. 2005, 16, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, R.R.; Moura, E.P.; Pimentel, V.M.; Sampaio, W.M.; Silva, S.M.; Schettini, D.A.; Alves, C.F.; Melo, F.A.; Tafuri, W.L.; Demicheli, C.; et al. Reduced Tissue Parasitic Load and Infectivity to Sand Flies in Dogs Naturally Infected by Leishmania (Leishmania) chagasi following Treatment with a Liposome Formulation of Meglumine Antimoniate. Antimicrob. Agents Chemother. 2008, 52, 2564–2572. [Google Scholar] [CrossRef]
- Miró, G.; Gálvez, R.; Fraile, C.; A Descalzo, M.; Molina, R. Infectivity to Phlebotomus perniciosus of dogs naturally parasitized with Leishmania infantum after different treatments. Parasites Vectors 2011, 4, 52. [Google Scholar] [CrossRef]
- Pennisi, M.G.; De Majo, M.; Masucci, M.; Britti, D.; Vitale, F.; Del Maso, R. Efficacy of the treatment of dogs with leishmaniosis with a combination of metronidazole and spiramycin. Veter-Rec. 2005, 156, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Gramiccia, M.; Gradoni, L.; Orsini, S. Decreased sensitivity to meglumine antimoniate (Glucantime) of Leishmania infantum isolated from dogs after several courses of drug treatment. Ann. Trop. Med. Parasitol. 1992, 86, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.; Khalid, S.; Romanha, A.; Alves, T.; Biavatti, M.; Brun, R.; Da Costa, F.; De Castro, S.; Ferreira, V.; De Lacerda, M.; et al. The Potential of Secondary Metabolites from Plants as Drugs or Leads Against Protozoan Neglected Diseases—Part I. Curr. Med. Chem. 2012, 19, 2128–2175. [Google Scholar] [CrossRef] [PubMed]
- Ambrus, J.L., Sr.; Ambrus, J.L., Jr. Nutrition and infectious diseases in developing countries and problems of acquired immunodeficiency syndrome. Exp. Biol. Med. 2004, 229, 464–472. [Google Scholar] [CrossRef] [PubMed]
- Katona, P.; Katona-Apte, J. The Interaction between Nutrition and Infection. Clin. Infect. Dis. 2008, 46, 1582–1588. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikov, R.S.; Farhadi, S. The relationship between nutrition and infectious diseases: A review. Biomed. Biotechnol. Res. J. (BBRJ) 2018, 2, 168. [Google Scholar] [CrossRef]
- Hennig, B.; Petriello, M.C.; Gamble, M.V.; Surh, Y.J.; Kresty, L.A.; Frank, N.; Rangkadilok, N.; Ruchirawat, M.; Suk, W.A. The role of nutrition in influencing mechanisms involved in environmentally mediated diseases. Rev. Environ. Heal. 2018, 33, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Anstead, G.M.; Chandrasekar, B.; Zhao, W.; Yang, J.; Perez, L.E.; Melby, P.C. Malnutrition Alters the Innate Immune Response and Increases Early Visceralization following Leishmania donovani Infection. Infect. Immun. 2001, 69, 4709–4718. [Google Scholar] [CrossRef] [PubMed]
- Malafaia, G. Protein-energy malnutrition as a risk factor for visceral leishmaniasis: A review. Parasite Immunol. 2009, 31, 587–596. [Google Scholar] [CrossRef]
- Carrillo, E.; Jiménez, M.Á.; Sánchez, C.; Cunha, J.M.; Martins, C.M.; Sevá, A.D.P.; Moreno, J. Protein Malnutrition Impairs the Immune Response and Influences the Severity of Infection in a Hamster Model of Chronic Visceral Leishmaniasis. PLoS ONE 2014, 9, e89412. [Google Scholar] [CrossRef]
- Mengesha, B.; Endris, M.; Takele, Y.; Mekonnen, K.; Tadesse, T.; Feleke, A.; Diro, E. Prevalence of malnutrition and associated risk factors among adult visceral leishmaniasis patients in Northwest Ethiopia: A cross sectional study. BMC Res. Notes 2014, 7, 75. [Google Scholar] [CrossRef] [PubMed]
- Matarese, G.; Moschos, S.; Mantzoros, C.S. Leptin in immunology. J. Immunol. 2005, 174, 3137–3142. [Google Scholar] [CrossRef] [PubMed]
- Gerriets, V.A.; Rathmell, J.C. Metabolic Pathways in T Cell Fate and Function. Trends Immunol. 2012, 33, 168–173. [Google Scholar] [CrossRef] [PubMed]
- Andlauer, W.; Fürst, P. Nutraceuticals: A piece of history, present status and outlook. Food Res. Int. 2002, 35, 171–176. [Google Scholar] [CrossRef]
- Khoo, C.; Cunnick, J.; Friesen, K.; Gross, K.L.; Wedekind, K.; Jewell, D.E. The role of supplementary dietary antioxidants on immune response in puppies. Veter-Ther. Res. Appl. Veter-Med. 2005, 6, 43–56. [Google Scholar]
- Chew, B.P.; Mathison, B.D.; Hayek, M.G.; Massimino, S.; Reinhart, G.A.; Park, J.S. Dietary astaxanthin enhances immune response in dogs. Veter-Immunol. Immunopathol. 2011, 140, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Marsella, R.; Santoro, D.; Ahrens, K. Early exposure to probiotics in a canine model of atopic dermatitis has long-term clinical and immunological effects. Veter-Immunol. Immunopathol. 2012, 146, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Colitti, M.; Gaspardo, B.; Della Pria, A.; Scaini, C.; Stefanon, B. Transcriptome modification of white blood cells after dietary administration of curcumin and non-steroidal anti-inflammatory drug in osteoarthritic affected dogs. Veter-Immunol. Immunopathol. 2012, 147, 136–146. [Google Scholar] [CrossRef]
- Segarra, S.; Miró, G.; Montoya, A.; Pardo-Marin, L.; Boqué, N.; Ferrer, L.; Cerón, J. Randomized, allopurinol-controlled trial of the effects of dietary nucleotides and active hexose correlated compound in the treatment of canine leishmaniosis. Veter-Parasitol. 2017, 239, 50–56. [Google Scholar] [CrossRef]
- Corpas-López, V.; Merino-Espinosa, G.; Acedo-Sánchez, C.; Díaz-Sáez, V.; Navarro-Moll, M.C.; Morillas-Márquez, F.; Martín-Sánchez, J. Effectiveness of the sesquiterpene (-)-α-bisabolol in dogs with naturally acquired canine leishmaniosis: An exploratory clinical trial. Vet. Res. Commun. 2018, 42, 121–130. [Google Scholar] [CrossRef]
- Zhu, J.S.; Halpern, G.M.; Jones, K. The Scientific Rediscovery of an Ancient Chinese Herbal Medicine: Cordyceps sinensis Part I. J. Altern. Complement. Med. 1998, 4, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.Y.; Chen, A.; Kuo, Y.C.; Lin, C.Y. Efficacy of a pure compound H1-A extracted from Cordyceps sinensis on autoimmune disease of MRL lpr/lpr mice. J. Lab. Clin. Med. 1999, 134, 492–500. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Tsai, W.J.; Wang, J.Y.; Chang, S.C.; Lin, C.Y.; Shiao, M.S. Regulation of bronchoalveolar lavage fluids cell function by the immunomodulatory agents from Cordyceps sinensis. Life Sci. 2001, 68, 1067–1082. [Google Scholar] [CrossRef]
- Kuo, Y.C.; Lin, C.Y.; Tsai, W.J.; Wu, C.L.; Chen, C.F.; Shiao, M.S. Growth Inhibitors Against Tumor Cells in Cordyceps sinensis Other than Cordycepin and Polysaccharides. Cancer Investig. 1994, 12, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Manabe, N.; Azuma, Y.; Sugimoto, M.; Uchio, K.; Miyamoto, M.; Taketomo, N.; Tsuchita, H.; Miyamoto, H. Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. Br. J. Nutr. 2000, 83, 197–204. [Google Scholar] [CrossRef] [Green Version]
- Koh, J.H.; Kim, J.M.; Chang, U.J.; Suh, H.J. Hypocholesterolemic Effect of Hot-Water Extract from Mycelia of Cordyceps sinensis. Boil. Pharm. Bull. 2003, 26, 84–87. [Google Scholar] [CrossRef]
- Chiou, W.F.; Chang, P.C.; Chou, C.J.; Chen, C.F. Protein constituent contributes to the hypotensive and vasorelaxant activities of Cordyceps sinensis. Life Sci. 2000, 66, 1369–1376. [Google Scholar] [CrossRef]
- Winther, B.; Hoem, N.; Berge, K.; Reubsaet, L. Elucidation of phosphatidylcholine composition in krill oil extracted from Euphausia superba. Lipids 2011, 46, 25–36. [Google Scholar] [CrossRef]
- Dawczynski, J.S.; Jentsch, D.; Schweitzer, M.; Hammer, G.; Strobel, L. Long term effects of lutein, zeaxanthin and omega-3-LCPUFAs supplementation on optical density of macular pigment in AMD patients: The LUTEGA study. Graefes Arch. Clin. Exp. Ophthalmol. 2013, 251, 2711–2723. [Google Scholar] [CrossRef]
- Nestel, P.; Clifton, P.; Colquhoun, D.; Noakes, M.; Mori, T.; Sullivan, T.; Thomas, B. Indications for Omega-3 Long Chain 3 Polyunsaturated Fatty Acid in the Prevention and Treatment of Cardiovascular Disease. Heart Lung Circ. 2015, 24, 769–779. [Google Scholar] [CrossRef]
- Sudheendran, S.; Chang, C.C.; Deckelbaum, R. N-3 vs. Saturated fatty acids: Effects on the arterial wall. Prostaglandins, Leukot. Essent. Fat. Acids 2010, 82, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Kusšar, A.; Zupančič, A.; Šentjurc, M.; Baričevicč, D. Free radical scavenging activities of yellow gentian (Gentiana lutea L.) measured by electron spin resonance. Hum. Exp. Toxicol. 2006, 25, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, A.M.; Caprioli, G.; Ricciutelli, M.; Maggi, F.; Marín, R.; Vittori, S.; Sagratini, G. Comparative HPLC/ESI-MS and HPLC/DAD study of different populations of cultivated, wild and commercial Gentiana lutea L. Food Chem. 2015, 174, 426–433. [Google Scholar] [CrossRef] [PubMed]
- Davydov, M.; Krikorian, A.D. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: A close look. J. Ethnopharmacol. 2000, 72, 345–393. [Google Scholar] [PubMed]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, K.R.; De Mendonça, V.R.R.; Silva, K.M.; Nascimento, L.F.M.D.; Mendes-Sousa, A.F.; De Pinho, F.A.; Barral-Netto, M.; Barral, A.M.P.; E Cruz, M.D.S.P. Scoring clinical signs can help diagnose canine visceral leishmaniasis in a highly endemic area in Brazil. Memórias Instituto Oswaldo Cruz 2017, 112, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maroli, M.; Rossi, L.; Baldelli, R.; Capelli, G.; Ferroglio, E.; Genchi, C.; Gramiccia, M.; Mortarino, M.; Pietrobelli, M.; Gradoni, L. The northward spread of leishmaniasis in Italy: Evidence from retrospective and ongoing studies on the canine reservoir and phlebotomine vectors. Trop. Med. Int. Heal. 2008, 13, 256–264. [Google Scholar] [CrossRef] [PubMed]
- An Eys Guillaume, J.J.M.; Schoone, G.J.; Kroon, N.C.; Ebeling, S.B. Sequence analysis of small subunit ribosomal RNA genes and its use for detection and identification of Leishmania parasites. Mol. Biochem. Parasitol. 1992, 51, 133–142. [Google Scholar] [CrossRef]
- Inokuma, H.; Ohno, K.; Onishi, T.; Raoult, D.; Brouqui, P. Detection of Ehrlichial Infection by PCR in Dogs from Yamaguchi and Okinawa Prefectures, Japan. J. Veter-Med Sci. 2001, 63, 815–817. [Google Scholar] [CrossRef]
- Biller, B.; Elmslie, R.; Burnett, R.; Avery, A.; Dow, S. Use of FoxP3 expression to identify regulatory T cells in healthy dogs and dogs with cancer. Veter-Immunol. Immunopathol. 2007, 116, 69–78. [Google Scholar] [CrossRef]
- Alfinito, F.; Ruggiero, G.; Sica, M.; Udhayachandran, A.; Rubino, V.; Della Pepa, R.; Palatucci, A.T.; Annunziatella, M.; Notaro, R.; Risitano, A.M.; et al. Eculizumab treatment modifies the immune profile of PNH patients. Immunobiol. 2012, 217, 698–703. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I.; Sollid, L.M. Pitfalls in determining the cytokine profile of human T cells. J. Immunol. Methods 2013, 390, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Ferrer, L.; Aisa, M.; Roura, X.; Portús, M. Serological diagnosis and treatment of canine leishmaniasis. Veter-Rec. 1995, 136, 514–516. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Riera, C.; Roura, X.; Iniesta, L.; Gallego, M.; Valladares, J.E.; Fisa, R.; Castillejo, S.; Alberola, J.; Ferrer, L.; et al. Leishmania infantum-specific IgG, IgG1 and IgG2 antibody responses in healthy and ill dogs from endemic areas. Veter-Parasitol. 2001, 96, 265–276. [Google Scholar] [CrossRef]
- Rodríguez, A.; Solano-Gallego, L.; Ojeda, A.; Quintana, J.; Riera, C.; Gállego, M.; Portús, M.; Alberola, J.; Riera, M.C. Dynamics ofLeishmania-Specific Immunoglobulin Isotypes in Dogs with Clinical Leishmaniasis before and after Treatment. J. Veter-Intern. Med. 2006, 20, 495–498. [Google Scholar] [CrossRef]
- Nathwani, R.A.; Pais, S.; Reynolds, T.B.; Kaplowitz, N. Serum alanine aminotransferase in skeletal muscle diseases. Hepatology 2005, 41, 380–382. [Google Scholar] [CrossRef]
- Clementi, A.; Battaglia, G.; Floris, M.; Castellino, P.; Ronco, C.; Cruz, D.N. Renal involvement in leishmaniasis: A review of the literature. NDT Plus 2011, 4, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Gowda, S.; Desai, P.B.; Kulkarni, S.S.; Hull, V.V.; Math, A.A.; Vernekar, S.N. Markers of renal function tests. N. Am. J. Med. Sci. 2010, 2, 170–173. [Google Scholar]
- Jordan, J.; Sullivan, A.; Lee, T. Immune Activation by a Sterile Aqueous Extract of Cordyceps Sinensis: Mechanism of Action. Immunopharmacol. Immunotoxicol. 2008, 30, 53–70. [Google Scholar] [CrossRef]
- Shi, B.; Wang, Z.; Jin, H.; Chen, Y.W.; Wang, Q.; Qian, Y. Immunoregulatory Cordyceps sinensis increases regulatory T cells to Th17 cell ratio and delays diabetes in NOD mice. Int. Immunopharmacol. 2009, 9, 582–586. [Google Scholar] [CrossRef]
- Chen, J.L.; Chen, Y.C.; Yang, S.H.; Ko, Y.F.; Chen, S.Y. Immunological alterations in lupus-prone autoimmune (NZB/NZW) F1 mice by mycelia Chinese medicinal fungus Cordyceps sinensis-induced redistributions of peripheral mononuclear T lymphocytes. Clin. Exp. Med. 2009, 9, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Nastasijevic, B.; Lazarević-Pašti, T.; Dimitrijević-Branković, S.; Pašti, I.; Vujačić, A.; Joksić, G.; Vasic, V. Inhibition of myeloperoxidase and antioxidative activity of Gentiana lutea extracts. J. Pharm. Biomed. Anal. 2012, 66, 191–196. [Google Scholar] [CrossRef] [PubMed]
NS Group Dogs | T0 | T30 | T90 |
---|---|---|---|
1 CS | 3 | 1 | 1 |
IFAT | 1:1280 | 1:1280 | 1:320 |
2 CS | 9 | 8 | 6 |
IFAT | 1:640 | 1:640 | 1:80 |
3 CS | 7 | 6 | 2 |
IFAT | 1:640 | 1:640 | 1:320 |
4 CS | 7 | 6 | 5 |
IFAT | 1:1280 | 1:640 | 1:160 |
5 CS | 6 | 6 | 4 |
IFAT | 1:640 | 1:320 | 1:160 |
6 CS | 7 | 6 | 4 |
IFAT | 1:320 | 1:320 | 1:40 |
7 CS | 5 | 5 | 3 |
IFAT | 1:1280 | 1:640 | 1:1280 |
8 CS | 9 | 6 | 2 |
IFAT | 1:640 | 1:640 | 1:320 |
9 CS | 7 | 3 | 3 |
IFAT | 1:320 | 1:160 | 1:320 |
10 CS | 6 | 3 | 3 |
IFAT | 1:320 | 1:160 | 1:160 |
11 CS | 5 | 2 | 2 |
IFAT | 1:160 | 1:160 | 1:80 |
12 CS | 3 | 3 | 2 |
IFAT | 1:640 | 1:640 | 1:160 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lombardi, P.; Palatucci, A.T.; Giovazzino, A.; Mastellone, V.; Ruggiero, G.; Rubino, V.; Musco, N.; Crupi, R.; Cutrignelli, M.I.; Britti, D.; et al. Clinical and Immunological Response in Dogs Naturally Infected by L. infantum Treated with a Nutritional Supplement. Animals 2019, 9, 501. https://doi.org/10.3390/ani9080501
Lombardi P, Palatucci AT, Giovazzino A, Mastellone V, Ruggiero G, Rubino V, Musco N, Crupi R, Cutrignelli MI, Britti D, et al. Clinical and Immunological Response in Dogs Naturally Infected by L. infantum Treated with a Nutritional Supplement. Animals. 2019; 9(8):501. https://doi.org/10.3390/ani9080501
Chicago/Turabian StyleLombardi, Pietro, Anna Teresa Palatucci, Angela Giovazzino, Vincenzo Mastellone, Giuseppina Ruggiero, Valentina Rubino, Nadia Musco, Rosalia Crupi, Monica Isabella Cutrignelli, Domenico Britti, and et al. 2019. "Clinical and Immunological Response in Dogs Naturally Infected by L. infantum Treated with a Nutritional Supplement" Animals 9, no. 8: 501. https://doi.org/10.3390/ani9080501