Effect of Different Tannin Sources on Nutrient Intake, Digestibility, Performance, Nitrogen Utilization, and Blood Parameters in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cows, Experimental Design, and Treatments
2.2. Sampling, Data Collection, and Chemical Analyses
2.3. Statistical Analysis
3. Results
3.1. Nutrient Intake and Digestibility
3.2. Animal Performance
3.3. Nitrogen Utilization
3.4. Blood Metabolites
4. Discussion
4.1. Nutrient Intake and Digestibility
4.2. Animal Performance and Nitrogen Efficiency
4.3. Blood Metabolites
4.4. Limitations of This Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arriola Apelo, S.I.; Knapp, J.R.; Hanigan, M.D. Invited review: Current representation and future trends of predicting amino acid utilization in the lactating dairy cow. J. Dairy Sci. 2014, 97, 4000–4017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dschaak, C.M.; Williams, C.M.; Holt, M.S.; Eun, J.S.; Young, A.J.; Min, B.R. Effects of supplementing condensed tannin extract on intake, digestion, ruminal fermentation, and milk production of lactating dairy cows. J. Dairy Sci. 2011, 94, 2508–2519. [Google Scholar] [CrossRef] [PubMed]
- Place, S.E.; Mitloehner, F.M. Invited review: Contemporary environmental issues: A review of the dairy industry’s role in climate change and air quality and the potential of mitigation through improved production efficiency. J. Dairy Sci. 2010, 93, 3407–3416. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, K.D.; Garnsworthy, P.C.; Mann, G.E.; Sinclair, L.A. Reducing dietary protein in dairy cow diets: Implications for nitrogen utilization, milk production, welfare and fertility. Animal 2014, 8, 262–274. [Google Scholar] [CrossRef] [PubMed]
- Benchaar, C.; McAllister, T.A.; Chouinard, P.Y. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef] [PubMed]
- Teferedegne, B. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 2007, 59, 209–214. [Google Scholar] [CrossRef]
- Henke, A.; Westreicher-Kristen, E.; Molkentin, J.; Dickhoefer, U.; Knappstein, K.; Hasler, M.; Susenbeth, A. Effect of dietary quebracho tannin extract on milk fatty acid composition in cows. J. Dairy Sci. 2017, 100, 6229–6238. [Google Scholar] [CrossRef]
- Bhatta, R.; Krishnamoorthy, U.; Mohammed, F. Effect of feeding tamarind (Tamarindus indica) seed husk as a source of tannin on dry matter intake, digestibility of nutrients and production performance of crossbred dairy cows in mid-lactation. Anim. Feed Sci. Technol. 2000, 83, 67–74. [Google Scholar] [CrossRef]
- Broderick, G.A.; Grabber, J.H.; Muck, R.E.; Hymes-Fecht, U.C. Replacing alfalfa silage with tannin-containing birdsfoot trefoil silage in total mixed rations for lactating dairy cows. J. Dairy Sci. 2017, 100, 3548–3562. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K.; Kamra, D.N.; Agarwal, N. Effect of plant extracts on in vitro methanogenesis, enzyme activities and fermentation of feed in rumen liquor of buffalo. Anim. Feed Sci. Technol. 2006, 128, 276–291. [Google Scholar] [CrossRef]
- Waghorn, G.C.; McNabb, W.C. Consequences of plant phenolic compounds for productivity and health of ruminants. Proc. Nutr. Soc. 2008, 62, 383–392. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- McMahon, L.R.; McAllister, T.A.; Berg, B.P.; Majak, W.; Acharya, S.N.; Popp, J.D.; Coulman, B.E.; Wang, Y.; Cheng, K.J. A review of the effects of forage condensed tannins on ruminal fermentation and bloat in grazing cattle. Can. J. Plant Sci. 2000, 80, 469–485. [Google Scholar] [CrossRef] [Green Version]
- Aboagye, I.A.; Oba, M.; Castillo, A.R.; Koenig, K.M.; Iwaasa, A.D.; Beauchemin, K.A. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 2018, 96, 5276–5286. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Méndez, C.; Plascencia, A.; Torrentera, N.; Zinn, R.A. Effect of level and source of supplemental tannin on growth performance of steers during the late finishing phase. J. Appl. Anim. Res. 2016, 45, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Getachew, G.; Pittroff, W.; Putnam, D.H.; Dandekar, A.; Goyal, S.; DePeters, E.J. The influence of addition of gallic acid, tannic acid, or quebracho tannins to alfalfa hay on in vitro rumen fermentation and microbial protein synthesis. Anim. Feed Sci. Technol. 2008, 140, 444–461. [Google Scholar] [CrossRef]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001.
- Zhang, J.; Shi, H.; Wang, Y.; Li, S.; Zhang, H.; Cao, Z.; Yang, K. Effects of limit-feeding diets with different forage-to-concentrate ratios on nutrient intake, rumination, ruminal fermentation, digestibility, blood parameters and growth in Holstein heifers. Anim. Sci. J. 2018, 89, 527–536. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists, 17th ed.; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Shi, H.T.; Li, S.L.; Cao, Z.J.; Wang, Y.J.; Alugongo, G.M.; Doane, P.H. Effects of replacing wild rye, corn silage, or corn grain with CaO-treated corn stover and dried distillers grains with solubles in lactating cow diets on performance, digestibility, and profitability. J. Dairy. Sci. 2015, 98, 7183–7193. [Google Scholar] [CrossRef] [Green Version]
- Ekinci, C.; Broderick, G.A. Effect of processing high moisture ear corn on ruminal fermentation and milk yield. J. Dairy Sci. 1997, 80, 3298–3307. [Google Scholar] [CrossRef]
- Cao, Z.J.; Ma, M.; Yan, X.Y.; Li, S.L.; Zhang, X.M. A simple urine-collecting apparatus and method for cows and heifers. J. Dairy Sci. 2009, 92, 5224–5228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives—An Overview of Technical Details; International Feed Resources Unit, Occasional Publication; Rowett Research Institute: Aberdeen, UK, 1992. [Google Scholar]
- Zhou, X.Q.; Zhang, Y.D.; Zhao, M.; Zhang, T.; Zhu, D.; Bu, D.P.; Wang, J.Q. Effect of dietary energy source and level on nutrient digestibility, rumen microbial protein synthesis, and milk performance in lactating dairy cows. J. Dairy Sci. 2015, 98, 7209–7217. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.I.; Wassie, S.E.; Korir, D.; Merbold, L.; Goopy, J.P.; Butterbach-Bahl, K.; Dickhoefer, U.; Schlecht, E. Supplementing Tropical Cattle for Improved Nutrient Utilization and Reduced Enteric Methane Emissions. Animals 2019, 9, 210. [Google Scholar] [CrossRef] [PubMed]
- Broderick, G.A.; Stevenson, M.J.; Patton, R.A. Effect of dietary protein concentration and degradability on response to rumen-protected methionine in lactating dairy cows. J. Dairy Sci. 2009, 92, 2719–2728. [Google Scholar] [CrossRef]
- McNabb, W.C.; Waghorn, G.C.; Peters, J.S.; Barry, T.N. The effect of condensed tannins in Lotus pedunculatus on the solubilization and degradation of ribulose-1, 5-bisphosphate carboxylase (EC 4.1.1.39; Rubisco) protein in the rumen and the sites of Rubisco digestion. Br. J. Nutr. 1996, 76, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Barry, T.N.; McNabb, W.C. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. Br. J. Nutr. 1999, 81, 263–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, S.M.; Owen-Smith, N. Condensed tannins deter feeding by browsing ruminants in a South African savanna. Oecologia 1985, 67, 142–146. [Google Scholar] [CrossRef]
- Landau, S.; Perevolotsky, A.; Bonfil, D.; Barkai, D.; Silanikove, N. Utilization of low quality resources by small ruminants in Mediterranean agro-pastoral systems: The case of browse and aftermath cereal stubble. Livest. Prod. Sci. 2000, 64, 39–49. [Google Scholar] [CrossRef]
- Carulla, J.E.; Kreuzer, M.; Machmüller, A.; Hess, H.D. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agric. Res. 2005, 56, 961–970. [Google Scholar] [CrossRef]
- Śliwiński, B.; Kreuzer, M.; Sutter, F.; Machmüller, A.; Wettstein, H.R. Performance, body nitrogen conversion and nitrogen emission from manure of dairy cows fed diets supplemented with different plant extracts. J. Anim. Feed Sci. 2004, 13, 73–91. [Google Scholar] [CrossRef]
- Liu, H.W.; Zhou, D.W.; Li, K. Effects of chestnut tannins on performance and antioxidative status of transition dairy cows. J. Dairy Sci. 2013, 96, 5901–5907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–201. [Google Scholar] [CrossRef]
- Lee, J.H.; Vanguru, M.; Kannan, G.; Moore, D.A.; Terrill, T.H.; Kouakou, B. Influence of dietary condensed tannins from sericea lespedeza on bacterial loads in gastrointestinal tracts of meat goats. Livest. Sci. 2009, 126, 314–317. [Google Scholar] [CrossRef]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar] [CrossRef]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar] [CrossRef]
- O’Donovan, L.; Brooker, J.D. Effect of hydrolysable and condensed tannins on growth, morphology and metabolism of Streptococcus gallolyticus (S. caprinus) and Streptococcus bovis. Microbiology 2001, 147, 1025–1033. [Google Scholar] [CrossRef]
- Hagerman, A.E.; Robbins, C.T.; Weerasuriya, Y.; Wilson, T.C.; McArthur, C. Tannin Chemistry in Relation to Digestion. J. Range Manag. 1992, 45, 57. [Google Scholar] [CrossRef]
- Deaville, E.R.; Givens, D.I.; Mueller-Harvey, I. Chestnut and mimosa tannin silages: Effects in sheep differ for apparent digestibility, nitrogen utilisation and losses. Anim. Feed Sci. Technol. 2010, 157, 129–138. [Google Scholar] [CrossRef]
- Wang, Y.; Waghorn, G.C.; Barry, T.N.; Shelton, I.D. The effect of condensed tannins in Lotus corniculatus on plasma metabolism of methionine, cystine and inorganic sulphate by sheep. Br. J. Nutr. 1994, 72, 923–935. [Google Scholar] [CrossRef]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Milk urea nitrogen target concentrations for lactating dairy cows fed according to National Research Council recommendations. J. Dairy Sci. 1999, 82, 1261–1273. [Google Scholar] [CrossRef]
- Hof, G.; Vervoorn, M.D.; Lenaers, P.J.; Tamminga, S. Milk Urea Nitrogen as a Tool to Monitor the Protein Nutrition of Dairy Cows. J. Dairy Sci. 1997, 80, 3333–3340. [Google Scholar] [CrossRef]
- Jonker, J.S.; Kohn, R.A.; Erdman, R.A. Using Milk Urea Nitrogen to Predict Nitrogen Excretion and Utilization Efficiency in Lactating Dairy Cows. J. Dairy Sci. 1998, 81, 2681–2692. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Clayton, M.K. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J. Dairy Sci. 1997, 80, 2964–2971. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Seo, S.; Fox, D.G.; Ruiz, R. Accounting for energy and protein reserve changes in predicting diet-allowable milk production in cattle. J. Dairy Sci. 2006, 89, 4795–4807. [Google Scholar] [CrossRef]
- McNeill, D.M.; Komolong, M.K.; Gobius, N.; Barber, D. Influence of Dietary Condensed Tannin on Microbial Crude Protein Supply in Sheep. In Tannins in Livestock and Human Nutrition; Brooker, J., Ed.; Australian Centre for International Agricultural Research: Canberra, Australia, 2000; Volume 92, pp. 57–61. [Google Scholar]
- Reynolds, C.K.; Kristensen, N.B. Nitrogen recycling through the gut and the nitrogen economy of ruminants: An asynchronous symbiosis. J. Anim. Sci. 2008, 86, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, S.L.; Edwards, G.R.; Harrison, R. Short communication: Supplementing grape marc to cows fed a pasture-based diet as a method to alter nitrogen partitioning and excretion. J. Dairy Sci. 2012, 95, 755–758. [Google Scholar] [CrossRef]
- Eckard, R.J.; Grainger, C.; De Klein, C. Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livest. Sci. 2010, 130, 47–56. [Google Scholar] [CrossRef]
- Powell, J.M.; Broderick, G.A.; Grabber, J.H.; Hymes-Fecht, U.C. Technical note: Effects of forage protein-binding polyphenols on chemistry of dairy excreta. J. Dairy Sci. 2009, 92, 1765–1769. [Google Scholar] [CrossRef]
- De Klein, C.A.M.; Eckard, R.J. Targeted technologies for nitrous oxide abatement from animal agriculture. Aust. J. Exp. Agric. 2008, 48, 14–20. [Google Scholar] [CrossRef]
- Mlambo, V.; Smith, T.; Owen, E.; Mould, F.L.; Sikosana, J.L.N.; Mueller-Harvey, I. Tanniniferous Dichrostachys cinerea fruits do not require detoxification for goat nutrition: In sacco and in vivo evaluations. Livest. Prod. Sci. 2004, 90, 135–144. [Google Scholar] [CrossRef]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [PubMed]
- Batistel, F.; Arroyo, J.M.; Garces, C.; Trevisi, E.; Parys, C.; Ballou, M.A.; Cardoso, F.C.; Loor, J.J. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2018, 101, 480–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberghina, D.; Giannetto, C.; Vazzana, I.; Ferrantelli, V.; Piccione, G. Reference intervals for total protein concentration, serum protein fractions, and albumin/globulin ratios in clinically healthy dairy cows. J. Vet. Diagn. Investig. 2011, 23, 111–114. [Google Scholar] [CrossRef] [PubMed]
Item 1 | % DM |
---|---|
Ingredients | |
Alfalfa hay | 22.0 |
Chinese wildrye | 33.0 |
Corn | 28.0 |
Soybean meal | 10.0 |
Wheat bran | 1.5 |
Whole cottonseed | 2.6 |
Premix 2 | 0.5 |
Calcium hydrophosphate | 0.4 |
Limestone | 0.7 |
Sodium bicarbonate | 0.6 |
Magnesium oxide | 0.2 |
Sodium chloride | 0.5 |
Chemical compositions | |
NDF | 38.6 |
ADF | 22.5 |
CP | 15.6 |
NEL (MJ/Kg) | 6.1 |
Ca | 0.8 |
P | 0.4 |
Item (kg/d) | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BCT | ACT | VHT | |||
DM | 19.48 | 20.92 | 19.45 | 19.39 | 2.77 | 0.33 |
NDF | 7.52 | 8.21 | 7.51 | 7.40 | 0.33 | 0.17 |
ADF | 4.37 | 4.76 | 4.36 | 4.31 | 0.23 | 0.25 |
CP | 3.05 | 3.12 | 3.04 | 3.03 | 0.44 | 0.94 |
Item (%) | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BCT | ACT | VHT | |||
DM | 69.76 a | 68.96 a | 61.71 b | 64.96 ab | 3.61 | 0.03 |
NDF | 58.54 a | 55.53 ab | 50.96 b | 54.16 ab | 1.38 | 0.02 |
ADF | 53.17 a | 52.17 a | 47.56 b | 51.32 a | 1.83 | 0.03 |
CP | 69.78 a | 71.82 a | 55.86 c | 61.47 b | 1.42 | <0.01 |
Items | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BCT | ACT | VHT | |||
Production, kg/d | ||||||
Milk | 22.88 | 23.43 | 23.62 | 23.47 | 1.06 | 0.97 |
FCM 2 | 20.34 | 21.29 | 21.24 | 21.43 | 0.55 | 0.14 |
ECM 3 | 22.33 | 23.19 | 23.23 | 23.16 | 1.12 | 0.93 |
Compositions, % | ||||||
Fat | 3.26 | 3.39 | 3.33 | 3.42 | 0.26 | 0.94 |
Protein | 3.15 | 3.11 | 3.13 | 3.01 | 0.10 | 0.73 |
Lactose | 4.79 | 4.81 | 4.80 | 4.74 | 0.09 | 0.89 |
MUN, mg/dL | 12.42 a | 10.36 b | 10.64 b | 10.17 b | 0.78 | <0.01 |
Items | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BCT | ACT | VHT | |||
Intake of nitrogen, g/d | 488.0 | 499.2 | 486.4 | 484.8 | 2.75 | 0.96 |
Nitrogen digestibility, % | 69.31 a | 71.82 a | 55.17 c | 61.14 b | 1.42 | <0.01 |
MPS, mg/d | 1114.8 | 1057.2 | 916.4 | 1041.8 | 127.68 | 0.92 |
Milk nitrogen yield, g/d | 103.8 | 103.2 | 106.1 | 105.3 | 2.98 | 0.13 |
Fecal nitrogen excretion (FN), g/d | 149.2 c | 140.4 bc | 213.3 a | 188.6 ab | 21.85 | <0.01 |
Urinary nitrogen excretion (UN), g/d | 198.1 a | 153.6 b | 174.2 ab | 189.3 a | 16.55 | 0.04 |
FN:UN | 0.85 b | 0.91 ab | 1.07 a | 0.99 a | 0.04 | 0.04 |
Total nitrogen excretion in feces and urine, g/d | 347.3 ab | 294.0 b | 387.5 a | 377.9 a | 23.80 | <0.01 |
Nitrogen retention, g/d | 36.9 b | 64.8 a | −7.8 c | 1.6 d | 0.68 | <0.01 |
NR:ND | 10.9 b | 18.1 a | −2.9 c | 0.51 d | 0.08 | <0.01 |
Nitrogen utilization efficiency 2 | 0.23 | 0.23 | 0.24 | 0.23 | 0.01 | 0.99 |
Items | Treatment | SEM | p-Value | |||
---|---|---|---|---|---|---|
CON | BCT | ACT | VHT | |||
Glucose, mmol/L | 3.58 | 3.64 | 3.43 | 3.69 | 0.07 | 0.11 |
NEFA, uEq/L | 91.50 | 105.75 | 104.00 | 109.88 | 8.66 | 0.51 |
BHBA, mmol/L | 0.99 | 0.93 | 1.01 | 0.92 | 0.07 | 0.77 |
PUN, mmol/L | 4.9 a | 4.3 b | 4.5 ab | 4.2 b | 0.09 | 0.02 |
Total protein, g/L | 83.11 | 81.63 | 81.98 | 78.85 | 1.90 | 0.48 |
Albumin, g/L | 36.04 ab | 35.79 ab | 36.65 a | 34.53 b | 0.42 | 0.03 |
Globulin, g/L | 47.08 | 45.84 | 45.33 | 44.33 | 1.83 | 0.76 |
A:G | 0.78 | 0.79 | 0.82 | 0.79 | 0.03 | 0.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Xu, X.; Cao, Z.; Wang, Y.; Yang, H.; Azarfar, A.; Li, S. Effect of Different Tannin Sources on Nutrient Intake, Digestibility, Performance, Nitrogen Utilization, and Blood Parameters in Dairy Cows. Animals 2019, 9, 507. https://doi.org/10.3390/ani9080507
Zhang J, Xu X, Cao Z, Wang Y, Yang H, Azarfar A, Li S. Effect of Different Tannin Sources on Nutrient Intake, Digestibility, Performance, Nitrogen Utilization, and Blood Parameters in Dairy Cows. Animals. 2019; 9(8):507. https://doi.org/10.3390/ani9080507
Chicago/Turabian StyleZhang, Jun, Xiaofeng Xu, Zhijun Cao, Yajing Wang, Hongjian Yang, Arash Azarfar, and Shengli Li. 2019. "Effect of Different Tannin Sources on Nutrient Intake, Digestibility, Performance, Nitrogen Utilization, and Blood Parameters in Dairy Cows" Animals 9, no. 8: 507. https://doi.org/10.3390/ani9080507
APA StyleZhang, J., Xu, X., Cao, Z., Wang, Y., Yang, H., Azarfar, A., & Li, S. (2019). Effect of Different Tannin Sources on Nutrient Intake, Digestibility, Performance, Nitrogen Utilization, and Blood Parameters in Dairy Cows. Animals, 9(8), 507. https://doi.org/10.3390/ani9080507