Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Climatic Chamber
2.3. Physiological Parameters under Thermal Neutral and Heat Stress
2.4. Blood Parameters under Thermal Neutral and Heat Stress
2.5. Statistical Analysis
3. Results
3.1. Growth Performance under Thermal Neutral (TN) and Heat Stress (HS)
3.2. Physiological Parameters under Thermal Neutral and Heat Stress
3.3. Changes in Fecal Microbes under Thermal Neutral and Heat Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Uyeno, Y.; Shigemori, S.; Shimosato, T. Effect of probiotics/prebiotics on cattle health and productivity. Microbes Environ. 2015, 30, 126–132. [Google Scholar] [CrossRef] [PubMed]
- Brickell, J.S.; McGowan, M.M.; Pfeiffer, D.U.; Wathes, D.C. Mortality in Holstein-Friesian calves and replacement heifers, in relation to body weight and IGF-1 concentration, on 19 farms in England. Animal 2009, 3, 1175–1182. [Google Scholar] [CrossRef]
- Ammar, S.S.; Mokhtaria, K.; Tahar, B.B.; Amar, A.A.; Redha, B.A.; Yuva, B.; Mohamed, H.S.; Abdellatif, N.; Laid, B. Prevalence of rotavirus (GARV) and coronavirus (BCoV) associated with neonatal diarrhea in calves in western Algeria. Asian Pac. J. Trop. Biomed. 2014, 4, S318–S322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meganck, V.; Hoflack, G.; Piepers, S.; Opsomer, G. Evaluation of a protocol to reduce the incidence of neonatal calf diarrhoea on dairy herds. Prev. Vet. Med. 2015, 118, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Broucek, J.; Kisac, P.; Uhrincat, M. Effect of hot temperature on the hematological parameters, health and performance of calves. Int. J. Biometeorol. 2009, 53, 201–208. [Google Scholar] [CrossRef]
- Chaudhary, S.S.; Singh, V.K.; Upadhyay, R.C.; Puri, G.; Odedara, A.B.; Patel, P.A. Evaluation of physiological and biochemical responses in different seasons in Surti buffaloes. Vet. World 2015, 8, 727–731. [Google Scholar] [CrossRef]
- Mohr, E.; Langbein, J.; Nurnberg, G. Heart rate variability: A non-invasive approach to measure stress in calves and cows. Physiol. Behav. 2002, 75, 251–259. [Google Scholar] [CrossRef]
- Haque, N.; Ludri, A.; Hossain, S.A.; Ashutosh, M. Impact on hematological parameters in young and adult Murrah buffaloes exposed to acute heat stress. Buffalo Bull. 2013, 32, 321–326. [Google Scholar]
- Galvão, K.N.; Santos, J.E.; Coscioni, A.; Villaseñor, M.; Sischo, W.M.; Berge, A.C.B. Effect of feeding live yeast products to calves with failure of passive transfer on performance and patterns of antibiotic resistance in fecal Escherichia coli. Reprod. Nutr. Dev. 2005, 45, 427–440. [Google Scholar] [CrossRef] [PubMed]
- Pinos-Rodríguez, J.; Robinson, P.; Ortega, M.; Berry, S.; Mendoza, G.; Barcena, R. Performance and rumen fermentation of dairy calves supplemented with Saccharomyces cerevisiae 1077 or Saccharomyces boulardii 1079. Anim. Feed Sci. Technol. 2008, 140, 223–232. [Google Scholar] [CrossRef]
- Neuwirth, J.; Norton, J.; Rawlings, C.; Thompson, F.; Ware, G. Physiologic responses of dairy calves to environmental heat stress. Int. J. Biometeorol. 1979, 23, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Magdub, A.; Johnson, H.; Belyea, R. Effect of environmental heat and dietary fiber on thyroid physiology of lactating cows. J. Dairy Sci. 1982, 65, 2323–2331. [Google Scholar] [CrossRef]
- Lemerle, C.; Goddard, M. Assessment of heat stress in dairy cattle in Papua New Guinea. Trop. Anim. Health Prod. 1986, 18, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Doyle, M.P.; Harmon, B.G.; Brown, C.A.; Mueller, P.E.; Parks, A.H. Reduction of carriage of enterohemorrhagic Escherichia coli O157: H7 in cattle by inoculation with probiotic bacteria. J. Clin. Microbiol. 1998, 36, 641–647. [Google Scholar] [PubMed]
- Collier, C.T.; Carroll, J.A.; Ballou, M.A.; Starkey, J.D.; Sparks, J.C. Oral administration of Saccharomyces cerevisiae boulardii reduces mortality associated with immune and cortisol responses to Escherichia coli endotoxin in pigs. J. Anim. Sci. 2011, 89, 52–58. [Google Scholar] [CrossRef]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- AOAC (Association of Official Analytical Chemist). Official Methods of Analyses, 15th ed.; AOAC: Washington, DC, USA, 1997. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Thom, E.C. The discomfort index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Larson, L.; Owen, F.; Albright, J.; Appleman, R.; Lamb, R.; Muller, L. Guidelines toward more uniformity in measuring and reporting calf experimental data. J. Dairy Sci. 1977, 60, 989–991. [Google Scholar] [CrossRef]
- Seo, K.; Valentin-Bon, I.; Brackett, R.; Holt, P. Rapid, specific detection of Salmonella Enteritidis in pooled eggs by real-time PCR. J. Food Prot. 2004, 67, 864–869. [Google Scholar] [CrossRef]
- Kim, D.H.; Chon, J.W.; Kim, H.; Kim, H.S.; Choi, D.; Kim, Y.J.; Yim, J.H.; Moon, J.S.; Seo, K.H. Comparison of culture, conventional and real-time PCR methods for Listeria monocytogenes in foods. Korean J. Food Sci. Anim. Resour. 2014, 34, 665–673. [Google Scholar] [CrossRef]
- Chon, J.W.; Hyeon, J.Y.; Song, K.Y.; Hwang, I.G.; Seo, K.H. Development of real-time PCR for the detection of Clostridium perfringens in meats and vegetables. J. Microbiol. Biotechnol. 2012, 22, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Institute SAS (statistical analysis system). User’s guide: statistics; SAS Institute Inc.: Cary, NC, USA, 2005. [Google Scholar]
- Lesmeister, K.E.; Heinrichs, A.J.; Gabler, M.T. Effects of supplemental yeast (Saccharomyces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal calves. J. Dairy Sci. 2004, 87, 1832–1839. [Google Scholar] [CrossRef]
- Vizzotto, E.F.; Fischer, V.; Thaler Neto, A.; Abreu, A.S.; Stumpf, M.T.; Werncke, D.; Schmidt, F.A.; McManus, C.M. Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics. Animal 2015, 9, 1559–1566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yates, D.; Ross, T.; Hallford, D.; Hill, L.; Wesley, R. Comparison of Salivary and Serum Cortisol Concentration in Response to ACTH Challenge in Sheep. In Proceedings of the American Society of Animal Science, Indianapolis, IN, USA, 7–11 July 2008; Volume 59, pp. 261–264. [Google Scholar]
- Borderas, T.F.; de Passille, A.M.; Rushen, J. Behavior of dairy calves after a low dose of bacterial endotoxin. J. Anim. Sci. 2008, 86, 2920–2927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Li, H.; Jiang, C.; Tu, Y.; Diao, Q. Effects of lipopolysaccaride on the growth performance, nintrogen metabolism and immunity in preruminant calves. Indian J. Anim. Res. 2017, 51, 717–721. [Google Scholar]
Basal Diets | |||
---|---|---|---|
Milk Replacer | Calf Starter | Rice Straw | |
[% of dry matter basis] | |||
Crude protein | 17.7 | 23.1 | 10.3 |
Ether extract | 13.0 | 9.1 | 2.9 |
Crude fiber | 7.9 | 0.0 | 27.6 |
Acid detergent fiber (ADFom) | 11.0 | 0.0 | 46.9 |
Neutral detergent fiber (aNDFom) | 26.6 | 0.0 | 78.4 |
Calcium | 1.0 | 0.6 | 0.2 |
Phosphorus | 0.6 | 0.6 | 0.2 |
Treatments | SEM | L 1 | Q | ||||
---|---|---|---|---|---|---|---|
Period | Control | LSB | MSB | HSB | |||
DMI, kg/d | |||||||
TN | 1.13 b | 1.14 b | 1.34 a | 1.13 b | 0.051 | 0.793 | 0.002 |
milk replacer 2 | 0.5 | 0.5 | 0.5 | 0.5 | - | - | - |
calf starter | 0.59 b | 0.61 b | 0.81 a | 0.60 b | 0.043 | 0.648 | 0.003 |
rice straw | 0.04 | 0.04 | 0.03 | 0.03 | 0.002 | 0.891 | 0.068 |
HS | 1.68 b | 1.55 b | 1.91 a | 1.64 ab | 0.071 | 0.861 | 0.002 |
milk replacer | 0.5 | 0.5 | 0.5 | 0.5 | - | - | - |
calf starter | 1.15 b | 1.01 b | 1.37 a | 1.11 b | 0.024 | 0.764 | 0.003 |
rice straw | 0.03 | 0.04 | 0.04 | 0.03 | 0.001 | 0.871 | 0.064 |
Water consumption, kg/d | |||||||
TN | 3.23 c | 3.71 a | 3.68 b | 2.48 d | 0.094 | 0.766 | 0.007 |
HS | 5.19 | 4.68 | 5.66 | 3.97 | 0.213 | 0.572 | 0.023 |
ADG, kg/d | |||||||
TN | 0.45 | 0.41 | 0.62 | 0.38 | 0.047 | 0.962 | 0.057 |
HS | 0.59 | 0.52 | 0.63 | 0.57 | 0.949 | 0.807 | 0.054 |
Feed efficiency 3 | |||||||
TN | 2.51 | 2.72 | 2.16 | 2.97 | 0.034 | 0.457 | 0.060 |
HS | 2.85 | 2.98 | 3.03 | 2.88 | 0.045 | 0.562 | 0.058 |
Treatments | SEM | L 1 | Q | ||||
---|---|---|---|---|---|---|---|
Period | Control | LSB | MSB | HSB | |||
Occurrence of diarrhea | |||||||
TN | 1.5 a | 1.1 b | 1.1 b | 1.4 ab | 0.03 | 0.776 | 0.008 |
HS | 2.0 a | 1.2 b | 1.2 b | 1.1 b | 0.06 | 0.046 | 0.299 |
Rectal temperature, °C | |||||||
TN | 39.0 a | 38.5 b | 38.8 b | 38.9 b | 0.02 | 1.000 | <0.001 |
HS | 39.5 a | 39.2 b | 39.1 b | 39.2 b | 0.08 | 0.026 | 0.306 |
Heart rate, beats per min | |||||||
TN | 96.7 a | 91.7 b | 91.4 b | 87.6 b | 0.45 | <0.001 | 0.615 |
HS | 108.5 a | 106.4 ab | 103.3 bc | 99.8 c | 0.87 | 0.067 | 0.219 |
Cortisol, ng per mL | |||||||
d 21 | 14.5 b | 22.7 b | 24.2 b | 44.6 a | 3.70 | 0.033 | 0.378 |
d 28 | 39.8 a | 28.2 ab | 28.2 b | 30.6 ab | 4.30 | 0.713 | 0.014 |
Treatments | SEM | L 1 | Q | ||||
---|---|---|---|---|---|---|---|
Period | Control | LSB | MSB | HSB | |||
E. coli, Log CFU per 100 mg of faeces (unless otherwise noted) | |||||||
d 0 | 3.9 | 4.0 | 3.2 | 3.7 | 0.19 | 0.461 | 0.055 |
d 21 | 3.9 a | 2.8 ab | 3.5 a | 2.4 b | 0.22 | 0.025 | 0.378 |
d 28 | 3.5 | 2.5 | 2.6 | 2.4 | 0.21 | 0.069 | 0.233 |
Enterobacteriaceae | |||||||
d 0 | 5.6 | 5.4 | 4.9 | 5.2 | 0.22 | 0.447 | 0.243 |
d 21 | 5.5 a | 3.6 b | 5.0 a | 3.8 b | 0.27 | 0.105 | 0.041 |
d 28 | 4.9 | 3.5 | 4.0 | 3.7 | 0.23 | 0.090 | 0.239 |
S. enteritidis | |||||||
d 0 | ND 2 | ND | ND | ND | - | - | - |
d 21 | ND | ND | ND | ND | - | - | - |
d 28 | ND | ND | ND | ND | - | - | - |
C. perfringens | |||||||
d 0 | ND | ND | ND | ND | - | - | - |
d 21 | ND | ND | ND | ND | - | - | - |
d 28 | ND | ND | ND | ND | - | - | - |
Lactobacillus | |||||||
d 0 | 5.3 | 5.7 | 4.6 | 5.9 | 0.23 | 0.872 | 0.052 |
d 21 | 5.3 | 5.9 | 4.8 | 4.7 | 0.28 | 0.313 | 0.092 |
d 28 | 4.6 | 5.3 | 4.8 | 4.3 | 0.27 | 0.658 | 0.058 |
Prevotella | |||||||
d 0 | 6.6 | 5.9 | 6.3 | 6.3 | 0.31 | 0.857 | 0.203 |
d 21 | 7.5 | 8.0 | 7.7 | 7.5 | 0.17 | 0.895 | 0.102 |
d 28 | 7.3 | 7.4 | 7.7 | 7.1 | 0.28 | 0.970 | 0.061 |
Saccharomyces spp. | |||||||
d 0 | 4.0 | 3.8 | 4.4 | 4.3 | 0.19 | 0.381 | 0.059 |
d 21 | 4.0 b | 5.3 a | 4.9 a | 5.4 a | 0.19 | 0.013 | 0.388 |
d 28 | 3.8 b | 5.3 a | 5.4 a | 5.0 a | 0.22 | 0.032 | 0.330 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.-S.; Kacem, N.; Kim, W.-S.; Peng, D.Q.; Kim, Y.-J.; Joung, Y.-G.; Lee, C.; Lee, H.-G. Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals 2019, 9, 510. https://doi.org/10.3390/ani9080510
Lee J-S, Kacem N, Kim W-S, Peng DQ, Kim Y-J, Joung Y-G, Lee C, Lee H-G. Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals. 2019; 9(8):510. https://doi.org/10.3390/ani9080510
Chicago/Turabian StyleLee, Jae-Sung, Nouali Kacem, Won-Seob Kim, Dong Qiao Peng, Young-Jun Kim, Youn-Geun Joung, Chanhee Lee, and Hong-Gu Lee. 2019. "Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions" Animals 9, no. 8: 510. https://doi.org/10.3390/ani9080510
APA StyleLee, J.-S., Kacem, N., Kim, W.-S., Peng, D. Q., Kim, Y.-J., Joung, Y.-G., Lee, C., & Lee, H.-G. (2019). Effect of Saccharomyces boulardii Supplementation on Performance and Physiological Traits of Holstein Calves under Heat Stress Conditions. Animals, 9(8), 510. https://doi.org/10.3390/ani9080510