A Missense Mutation of the HSPB7 Gene Associated with Heat Tolerance in Chinese Indicine Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Data Collection, DNA Extraction, and PCR Reaction
2.3. Statistical Analysis
3. Result
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- West, J.W. Effects of Heat Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Hansen, P.J. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology 2007, 68, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Elvinger, F.; Natzke, R.P.; Hansen, P.J. Interactions of heat stress and bovine somatotropin affecting physiology and immunology of lactating cows. J. Dairy Sci. 1992, 75, 449–462. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Sullivan, M.L.; Hahn, G.L. Assessing the heat tolerance of 17 beef cattle genotypes. Int. J. Biometeorol. 2010, 54, 617–627. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Han, J.; Du, F.; Ju, Z.; Huang, J.; Wang, J.; Li, R.; Wang, C.; Zhong, J. Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Mol. Biol. Rep. 2011, 38, 2657. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, D.; Li, H.; Zhou, X.; Wang, G. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol. Biol. Rep. 2011, 38, 83. [Google Scholar] [CrossRef] [PubMed]
- Djabali, K.; Piron, G.; De, N.B.; Portier, M.M. alphaB-crystallin interacts with cytoplasmic intermediate filament bundles during, mitosis. Exp. Cell Res. 1999, 253, 649–662. [Google Scholar] [CrossRef]
- Lutsch, G.; Vetter, R.; Offhauss, U.; Wieske, M.; Klemenz, R.; Schimke, I.; Stahl, J.; Benndorf, R. Abundance and location of the small heat shock proteins HSP25 and alphaB-crystallin in rat and human heart. Circulation 1997, 96, 3466–3476. [Google Scholar] [CrossRef]
- Mounier, N.; Arrigo, A. Actin cytoskeleton and small heat shock proteins: How do they interact? Cell Stress Chaperones. 2002, 7, 167–176. [Google Scholar] [CrossRef]
- Schneider, G.B.; Hamano, H.; Cooper, L.F. In vivo evaluation of hsp27 as an inhibitor of actin polymerization: hsp27 limits actin stress fiber and focal adhesion formation after heat shock. J. Physiol. Biochem. 1998, 177, 575–584. [Google Scholar] [CrossRef]
- Verschuure, P.; Croes, Y.; Pr, V.D.I. Translocation of small heat shock proteins to the actin cytoskeleton upon proteasomal inhibition. J. Mol. Cell. Cardiol. 2002, 34, 117–128. [Google Scholar] [CrossRef]
- Kregel, K.C. Heat shock proteins: Modifying factors in physiological stress responses and acquired thermotolerance. J. Appl. Physiol. 2002, 192, 2177–2186. [Google Scholar] [CrossRef]
- Powers, E.T.; Morimoto, R.I.; Dillin, A.; Kelly, J.W.; Balch, W.E. Biological and Chemical Approaches to Diseases of Proteostasis Deficiency. Annu. Rev. Biochem. 2009, 78, 959–991. [Google Scholar] [CrossRef] [Green Version]
- Cappola, T.P.; Li, M.; He, J.; Ky, B.; Gilmore, J.; Qu, L.; Keating, B.; Reilly, M.; Kim, C.; Glessner, J.; et al. Common Variants in HSPB7 and FRMD4B Associated With Advanced Heart Failure. Circ. Cardiovasc. Genet. 2010, 3, 147–154. [Google Scholar] [CrossRef]
- Elicker, K.S.; Hutson, L.D. Genome-wide analysis and expression profiling of the small heat shock proteins in zebrafish. Gene 2007, 403, 60. [Google Scholar] [CrossRef]
- Krief, S.; Faivre, J.F.; Robert, P. Identification and Characterization of cvHsp a novel human small stress selectively expressed in cardiovascular and insulinsedsitive tissues. J. Biol. Chem. 1999, 274, 36592–36600. [Google Scholar] [CrossRef]
- Islam, A.; Abraham, P.; Hapner, C.D. Heat exposure induces tissue stress in heat-intolerant, but not heat-tolerant, mice. Int. J. Biol. Stress 2013, 16, 244–253. [Google Scholar] [CrossRef]
- Islam, A.; Deuster, P.A.; Devaney, J.M.; Ghimbovschi, S.; Chen, Y. An exploration of heat tolerance in mice utilizing mRNA and microRNA expression analysis. PLoS ONE 2013, 8, e72258. [Google Scholar] [CrossRef]
- Chen, N.; Cai, Y.; Chen, Q.; Li, R.; Wang, K.; Huang, Y.; Hu, S.; Huang, S.; Zhang, H.; Zheng, Z. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat. Commun. 2018, 9, 2337. [Google Scholar] [CrossRef]
- Sambrock, J.; Russel, D.W. Molecular Cloning: A Laboratory Manual, 3rd ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2001; Volume 49, pp. 895–909. [Google Scholar]
- Hayakawa, M.; Yamauchi, H.; Ohtani, N.; Ohta, M.; Tosa, S.; Asano, T.; Schekotov, A.; Izutsu, J.; Potirakis, S.M.; Eftaxias, K. National Oceanic and Atmospheric Administration Livestock Hot Weather Stress; Operations Manual Letter C–31–76; US Government Printing Office: Washington, DC, USA, 1976.
- Zeng, L.; Chen, N.; Ning, Q. PRLH and SOD1 gene variations associated with heat tolerance in Chinese cattle. Anim. Genet. 2018, 49, 447–451. [Google Scholar] [CrossRef]
- Hancock, A.M.; Benjamin, B.; Nathalie, F.; Horton, M.W.; Jarymowycz, L.B.; Gianluca, S.F.; Chris, T.; Fabrice, R.; Joy, B. Adaptation to climate across the Arabidopsis thaliana genome. Science 2011, 334, 83–86. [Google Scholar] [CrossRef]
- Westengen, O.T.; Berg, P.R.; Kent, M.P.; Brysting, A.K. Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels. PLoS ONE 2012, 7, e4783. [Google Scholar] [CrossRef]
- Eckert, A.J.; Joost, V.H.; Wegrzyn, J.L.; Dana, C.N.; Jeffrey, R.I.; González-Martínez, S.C.; Neale, D.B. Patterns of population structure and environmental associations to aridity across the range of loblolly pine (Pinus taeda L., Pinaceae). Genetics 2010, 185, 969. [Google Scholar] [CrossRef]
- Hansen, P.J. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim. Reprod. Sci. 2004, 349, 82–83. [Google Scholar]
- Lanner, J.T.; Georgiou, D.K.; Dagnino-Acosta, A. AICAR Prevents Heat Induced Sudden Death in RyR1 Mutant Mice Independent of AMPK Activation. Nat. Med. 2012, 18, 244–251. [Google Scholar] [CrossRef]
- Depasquale, N.P.; Burch, G.E. The seasonal incidence of myocardial infarction in New Orleans. Am. J. Med. Sci. 1961, 242, 468. [Google Scholar] [CrossRef]
- Aronow, W.S.; Ahn, C. Elderly Nursing Home Patients With Congestive Heart Failure After Myocardial Infarction Living in New York City Have a Higher Prevalence of Mortality in Cold Weather and Warm Weather Months. J. Gerontol. A Biol. Sci. Med. Sci. 2004, 59, 146–147. [Google Scholar] [CrossRef]
- Semenza, J.C.; Rubin, C.H.; Falter, K.H. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 1996, 335, 84–90. [Google Scholar] [CrossRef]
- Stark, K.; Esslinger, U.B.; Reinhard, W. Genetic Association Study Identifies HSPB7 as a Risk Gene for Idiopathic Dilated Cardiomyopathy. PLoS Genet. 2010, 6, e1001167. [Google Scholar] [CrossRef]
- Villard, E.; Perret, C.; Gary, F. A genome-wide association study identifies two loci associated with heart failure due to dilated cardiomyopathy. Eur. Heart J. 2011, 32, 1065. [Google Scholar] [CrossRef]
- Hong, C. Studies on Sex Chromosome Polymorphism of Four Local Cattle (Bos taurus) Breeds in China. Hereditas 1993, 52, 1015–1023. [Google Scholar]
- Li, R.; Zhang, X.; Campana, M. Paternal origins of Chinese cattle. Anim. Genet. 2013, 44, 446–449. [Google Scholar] [CrossRef]
- Lei, C.; Chen, H.; Zhang, H. Origin and phylogeographical structure of Chinese cattle. Anim. Genet. 2006, 37, 579–582. [Google Scholar] [CrossRef]
- Lai, S.; Liu, Y.; Liu, Y.; Li, X.; Yao, Y. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Mol. Phylogenet. Evol. 2006, 38, 146–154. [Google Scholar] [CrossRef]
- Gao, Y.; Gautier, M.; Ding, X. Species composition and environmental adaptation of indigenous Chinese cattle. Sci. Rep. 2017, 7, 16196. [Google Scholar] [CrossRef]
Polymorphism | Genotypes (Number) | Temperature (°C) (LSM ± SE) | Relative Humidity (%) (LSM ± SE) | Temperature–Humidity Index (LSM ± SE) |
---|---|---|---|---|
HSPB7 | CC (328) | 9.980 C ± 0.267 | 62.332 C ± 0.585 | 51.961 C ± 0.369 |
NC_037329.1: | CG (243) | 14.870 B ± 0.310 | 72.181 B ± 0.680 | 58.367 B ± 0.428 |
g.136054902 C > G | GG (203) | 17.367 A ± 0.339 | 76.744 A ± 0.744 | 62.072 A ± 0.469 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, L.; Cao, Y.; Wu, Z.; Huang, M.; Zhang, G.; Lei, C.; Zhao, Y. A Missense Mutation of the HSPB7 Gene Associated with Heat Tolerance in Chinese Indicine Cattle. Animals 2019, 9, 554. https://doi.org/10.3390/ani9080554
Zeng L, Cao Y, Wu Z, Huang M, Zhang G, Lei C, Zhao Y. A Missense Mutation of the HSPB7 Gene Associated with Heat Tolerance in Chinese Indicine Cattle. Animals. 2019; 9(8):554. https://doi.org/10.3390/ani9080554
Chicago/Turabian StyleZeng, Lulan, Yanhong Cao, Zhuyue Wu, Mingguang Huang, Guoliang Zhang, Chuzhao Lei, and Yumin Zhao. 2019. "A Missense Mutation of the HSPB7 Gene Associated with Heat Tolerance in Chinese Indicine Cattle" Animals 9, no. 8: 554. https://doi.org/10.3390/ani9080554