Constraints on Martian Chronology from Meteorites
Abstract
:1. Introduction
2. Overview of Martian Meteorites
3. Crystallization and Ejection Ages
4. Differentiation
5. Core Formation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chambers, J.E. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 2004, 223, 241–252. [Google Scholar] [CrossRef]
- Raymond, S.N.; O’Brien, D.P.; Morbidelli, A.; Kaib, N.A. Building the terrestrial planets: Constrained accretion in the inner Solar System. Icarus 2009, 203, 644–662. [Google Scholar] [CrossRef] [Green Version]
- Dauphas, N.; Chaussidon, M. A Perspective from Extinct Radionuclides on a Young Stellar Object: The Sun and Its Accretion Disk. Annu. Rev. Earth Planet. Sci. 2011, 39, 351–386. [Google Scholar] [CrossRef] [Green Version]
- Crozaz, G.; Floss, C.; Wadhwa, M. Chemical alteration and REE mobilization in meteorites from hot and cold deserts. Geochim. Cosmochim. Acta 2003, 67, 4727–4741. [Google Scholar] [CrossRef]
- Treiman, A.H.; Gleason, J.D.; Bogard, D.D. The SNC meteorites are from Mars. Planet. Space Sci. 2000, 48, 1213–1230. [Google Scholar] [CrossRef]
- Clayton, R.N.; Mayeda, T.K. Oxygen isotope studies of achondrites. Geochim. Cosmochim. Acta 1996, 60, 1999–2017. [Google Scholar] [CrossRef]
- Udry, A.; Howarth, G.H.; Herd, C.; Day, J.; Lapen, T.J.; Filiberto, J. What martian meteorites reveal about the interior and surface of Mars. Earth Sp. Sci. Open Arch. 2020, 55. [Google Scholar] [CrossRef]
- McSween, H.Y. SNC meteorites: Clues to martain petrogenic evolution? Rev. Geophys. 1985, 23, 391–416. [Google Scholar] [CrossRef]
- Lapen, T.J.; Righter, M.; Brandon, A.D.; Debaille, V.; Beard, B.L.; Shafer, J.T.; Peslier, A.H. A younger age for ALH84001 and Its geochemical link to shergottite sources in mars. Science 2010, 328, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Agee, C.B.; Wilson, N.V.; McCubbin, F.M.; Ziegler, K.; Polyak, V.J.; Sharp, Z.D.; Asmerom, Y.; Nunn, M.H.; Shaheen, R.; Thiemens, M.H.; et al. Unique meteorite from early Amazonian Mars: Water-rich basaltic breccia Northwest Africa 7034. Science 2013, 339, 780–785. [Google Scholar] [CrossRef]
- Herd, C.D.K.; Walton, E.L.; Agee, C.B.; Muttik, N.; Ziegler, K.; Shearer, C.K.; Bell, A.S.; Santos, A.R.; Burger, P.V.; Simon, J.I.; et al. The Northwest Africa 8159 martian meteorite: Expanding the martian sample suite to the early Amazonian. Geochim. Cosmochim. Acta 2017, 218, 1–26. [Google Scholar] [CrossRef]
- Lapen, T.J.; Righter, M.; Andreasen, R.; Irving, A.J.; Satkoski, A.M.; Beard, B.L.; Nishiizumi, K.; Jull, A.J.T.; Caffee, M.W. Two billion years of magmatism recorded from a single Mars meteorite ejection site. Sci. Adv. 2017, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Papike, J.J.; Karner, J.M.; Shearer, C.K.; Burger, P.V. Silicate mineralogy of martian meteorites. Geochim. Cosmochim. Acta 2009, 73, 7443–7485. [Google Scholar] [CrossRef]
- Borg, L.E.; Draper, D.S. A petrogenetic model for the origin and compositional variation of the martian basaltic meteorites. Meteorit. Planet. Sci. 2003, 38, 1713–1731. [Google Scholar] [CrossRef]
- Debaille, V.; Brandon, A.D.; Yin, Q.Z.; Jacobsen, B. Coupled 142Nd-143Nd evidence for a protracted magma ocean in Mars. Nature 2007, 450, 525–528. [Google Scholar] [CrossRef]
- Kruijer, T.S.; Kleine, T.; Borg, L.E.; Brennecka, G.A.; Irving, A.J.; Bischoff, A.; Agee, C.B. The early differentiation of Mars inferred from Hf–W chronometry. Earth Planet. Sci. Lett. 2017, 474, 345–354. [Google Scholar] [CrossRef]
- McCubbin, F.M.; Elardo, S.M.; Shearer, C.K.; Smirnov, A.; Hauri, E.H.; Draper, D.S. A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry. Meteorit. Planet. Sci. 2013, 48, 819–853. [Google Scholar] [CrossRef] [Green Version]
- Shearer, C.K.; Messenger, S.; Sharp, Z.D.; Burger, P.V.; Nguyen, A.N.; McCubbin, F.M. Distinct chlorine isotopic reservoirs on Mars. Implications for character, extent and relative timing of crustal interactions with mantle-derived magmas, evolution of the martian atmosphere, and the building blocks of an early Mars. Geochim. Cosmochim. Acta 2018, 234, 24–36. [Google Scholar] [CrossRef]
- Udry, A.; Day, J.M.D. 1.34 billion-year-old magmatism on Mars evaluated from the co-genetic nakhlite and chassignite meteorites. Geochim. Cosmochim. Acta 2018, 238, 292–315. [Google Scholar] [CrossRef]
- Cohen, B.E.; Mark, D.F.; Cassata, W.S.; Lee, M.R.; Tomkinson, T.; Smith, C.L. Taking the pulse of Mars via dating of a plume-fed volcano. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Borg, L.E.; Connelly, J.N.; Nyquist, L.E.; Shih, C.Y.; Wiesmann, H.; Reese, Y. The age of the carbonates in martian meteorite ALH84001. Science 1999, 286, 90–94. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, L.C.; Costa, M.M.; Connelly, J.N.; Jensen, N.K.; Wielandt, D.; Storey, M.; Nemchin, A.A.; Whitehouse, M.J.; Snape, J.F.; Bellucci, J.J.; et al. Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature 2018, 558, 586–589. [Google Scholar] [CrossRef] [Green Version]
- Taylor, G.J.; Martel, L.M.V.; Karunatillake, S.; Gasnault, O.; Boynton, W.V. Mapping Mars geochemically. Geology 2010, 38, 183–186. [Google Scholar] [CrossRef]
- Filiberto, J. Geochemistry of Martian basalts with constraints on magma genesis. Chem. Geol. 2017, 466, 1–14. [Google Scholar] [CrossRef]
- McSween, H.Y.; Ruff, S.W.; Morris, R.V.; Bell, J.F.; Herkenhoff, K.; Gellert, R.; Stockstill, K.R.; Tornabene, L.L.; Squyres, S.W.; Crisp, J.A.; et al. Alkaline volcanic rocks from the Columbia Hills, Gusev crater, Mars. J. Geophys. Res. E Planets 2006, 111, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Cousin, A.; Sautter, V.; Payré, V.; Forni, O.; Mangold, N.; Gasnault, O.; Le Deit, L.; Johnson, J.; Maurice, S.; Salvatore, M.; et al. Classification of igneous rocks analyzed by ChemCam at Gale crater, Mars. Icarus 2017, 288, 265–283. [Google Scholar] [CrossRef]
- Borg, L.; Drake, M.J. A review of meteorite evidence for the timing of magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res. E Planets 2005, 110, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Cassata, W.S.; Cohen, B.E.; Mark, D.F.; Trappitsch, R.; Crow, C.A.; Wimpenny, J.; Lee, M.R.; Smith, C.L. Chronology of martian breccia NWA 7034 and the formation of the martian crustal dichotomy. Sci. Adv. 2018, 4, eaap8306. [Google Scholar] [CrossRef] [Green Version]
- Head, J.N.; Melosh, H.J.; Ivanov, B.A. Martian meteorite launch: High-speed ejecta from small craters. Science 2002, 298, 1752–1756. [Google Scholar] [CrossRef] [Green Version]
- Artemieva, N.; Ivanov, B. Launch of martian meteorites in oblique impacts. Icarus 2004, 171, 84–101. [Google Scholar] [CrossRef]
- Fritz, J.; Artemieva, N.; Greshake, A. Ejection of Martian meteorites. Meteorit. Planet. Sci. 2005, 40, 1393–1411. [Google Scholar] [CrossRef]
- Kunz, J.; Falter, M.; Jessberger, E.K. Shocked meteorites: Argon-40-argon-39 evidence for multiple impacts. Meteorit. Planet. Sci. 1997, 32, 647–670. [Google Scholar] [CrossRef]
- Crozaz, G.; Wadhwa, M. The terrestrial alteration of saharan shergottites dar al ganid 476 and 489: A case study of weathering in a hot desert environment. Geochim. Cosmochim. Acta 2001, 65, 971–978. [Google Scholar] [CrossRef]
- Marks, N.E.; Borg, L.E.; Gaffney, A.M.; DePaolo, D. The Relationship of Northwest Africa 4468 to the Other Incompatible Element-enriched Shergottites Inferred from its Rb-Sr and Sm-Nd Isotopic Systematics. In Proceedings of the 41st Lunar and Planetary Science Conference, Woodlands, TX, USA, 1–5 March 2010. [Google Scholar]
- Shafer, J.T.; Brandon, A.D.; Lapen, T.J.; Righter, M.; Peslier, A.H.; Beard, B.L. Trace element systematics and 147Sm-143Nd and 176Lu-176Hf ages of Larkman Nunatak 06319: Closed-system fractional crystallization of an enriched shergottite magma. Geochim. Cosmochim. Acta 2010, 74, 7307–7328. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Nyquist, L.E.; Reese, Y. Rb-Sr and Sm-Nd Studies of Olivine-Phyric Shergottites RBT 04262 and LAR 06319: Isotopic Evidence for Relationship to Enriched Basaltic Shergottites. Lunar Planet. Inst. Sci. Conf. Abstr. 2009, 40, 1360. [Google Scholar]
- Shih, C.-Y.; Nyquist, L.E.; Wiesmann, H.; Barrat, J.A. Age and Petrogenesis of Picritic Shergottite NWA1068: Sm-Nd and Rb-Sr Isotopic Studies. In Proceedings of the 34th Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 21 August 2003; p. 1439. [Google Scholar]
- Ferdous, J.; Brandon, A.D.; Peslier, A.H.; Pirotte, Z. Evaluating crustal contributions to enriched shergottites from the petrology, trace elements, and Rb-Sr and Sm-Nd isotope systematics of Northwest Africa 856. Geochim. Cosmochim. Acta 2017, 211, 280–306. [Google Scholar] [CrossRef]
- Shih, C.Y.; Nyquist, L.E.; Bogard, D.D.; McKay, G.A.; Wooden, J.L.; Bansal, B.M.; Wiesmann, H. Chronology and petrogenesis of young achondrites, Shergotty, Zagami, and ALHA77005: Late magmatism on a geologically active planet. Geochim. Cosmochim. Acta 1982, 46, 2323–2344. [Google Scholar] [CrossRef]
- Borg, L.E.; Edmunson, J.E.; Asmerom, Y. Constraints on the U-Pb isotopic systematics of Mars inferred from a combined U-Pb, Rb-Sr, and Sm-Nd isotopic study of the Martian meteorite Zagami. Geochim. Cosmochim. Acta 2005, 69, 5819–5830. [Google Scholar] [CrossRef]
- Combs, L.M.; Udry, A.; Howarth, G.H.; Righter, M.; Lapen, T.J.; Gross, J.; Ross, D.K.; Rahib, R.R.; Day, J.M.D. Petrology of the enriched poikilitic shergottite Northwest Africa 10169: Insight into the martian interior. Geochim. Cosmochim. Acta 2019, 266, 435–462. [Google Scholar] [CrossRef]
- Moser, D.E.; Chamberlain, K.R.; Tait, K.T.; Schmitt, A.K.; Darling, J.R.; Barker, I.R.; Hyde, B.C. Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 2013, 499, 454–457. [Google Scholar] [CrossRef]
- Borg, L.E.; Nyquist, L.E.; Wiesmann, H.; Reese, Y. Constraints on the petrogenesis of Martian meteorites from the Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottites ALH77005 and LEW88516. Geochim. Cosmochim. Acta 2002, 66, 2037–2053. [Google Scholar] [CrossRef]
- Nyquist, L.E.; Bogard, D.D.; Shih, C.Y.; Greshake, A.; Stöffler, D.; Eugster, O. Ages and geologic histories of martian meteorites. Space Sci. Rev. 2001, 96, 105–164. [Google Scholar] [CrossRef]
- Liu, T.; Li, C.; Lin, Y. Rb-Sr and Sm-Nd isotopic systematics of the lherzolitic shergottite GRV 99027. Meteorit. Planet. Sci. 2011, 46, 681–689. [Google Scholar] [CrossRef]
- Nyquist, L.E.; Bogard, D.D.; Shih, C.Y.; Park, J.; Reese, Y.D.; Irving, A.J. Concordant Rb-Sr, Sm-Nd, and Ar-Ar ages for Northwest Africa 1460: A 346 Ma old basaltic shergottite related to “lherzolitic” shergottites. Geochim. Cosmochim. Acta 2009, 73, 4288–4309. [Google Scholar] [CrossRef] [Green Version]
- Misawa, K.; Park, J.; Shih, C.Y.; Reese, Y.; Bogard, D.D.; Nyquist, L.E. Rb-Sr, Sm-Nd, and Ar-Ar isotopic systematics of lherzolitic shergottite Yamato 000097. Polar Sci. 2008, 2, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Morikawa, N.; Misawa, K.; Kondorosi, G.; Premo, W.R.; Tatsumoto, M.; Nakamura, N. Rb-Sr isotopic systematics of lherzolitic shergottite. Antarct. Meteor. Res. 2001, 14, 47–60. [Google Scholar]
- Shih, C.Y.; Nyquist, L.E.; Reese, Y.; Misawa, K. Sm-Nd and Rb-Sr studies of lherzolitic shergottite Yamato 984028. Polar Sci. 2011, 4, 515–529. [Google Scholar] [CrossRef] [Green Version]
- Borg, L.E.; Nyquist, L.E.; Wiesmann, H.; Shih, C.Y.; Reese, Y. The age of Dar al Gani 476 and the differentation history of the martian meteorites inferred from their radiogenic isotopic systematics. Geochim. Cosmochim. Acta 2003, 67, 3519–3536. [Google Scholar] [CrossRef]
- Symes, S.J.; Borg, L.E.; Shearer, C.K.; Asmerom, Y.; Irving, A.J. Geochronology of NWA 1195 based on Rb-Sr and Sm-Nd Isotopic Systematics. In Proceedings of the 36th Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 14–18 March 2005; p. 1435. [Google Scholar]
- Borg, L.E.; Nyquist, L.E.; Taylor, L.A.; Wiesmann, H.; Shih, C.Y. Constraints on Martian differentiation processes from Rb-Sr and Sm-Nd isotopic analyses of the basaltic shergottite QUE 94201. Geochim. Cosmochim. Acta 1997, 61, 4915–4931. [Google Scholar] [CrossRef]
- Shih, Y.; Nyquist, L.E.; Reese, Y. Rb-Sr and Sm-Nd Isotopic Studies of Martian Depleted Shergottites SaU 094/005. In Proceedings of the 38th Annual Lunar and Planetary Science Conference, Woodlands, TX, USA, 1 January 2007. Abstract 1745. [Google Scholar]
- Brennecka, G.A.; Borg, L.E.; Wadhwa, M. Insights into the Martian mantle: The age and isotopics of the meteorite fall Tissint. Meteorit. Planet. Sci. 2014, 49, 412–418. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Nyquist, L.E.; Wiesmann, H.; Misawa, K. Rb-Sr and Sm-Nd Isotopic Studies of Shergottite Y980459 and a Petrogenetic Link Between Depleted Shergottites and Nakhlites. In Proceedings of the 35th Lunar and Planetary Science Conference, Woodlands, TX, USA, 15–19 March 2004; pp. 8–9. [Google Scholar]
- Herzog, G.F.; Caffee, M.W. Cosmic-Ray Exposure Ages of Meteorites. In Treatise on Geochemistry; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 1–9, pp. 419–453. [Google Scholar]
- Wieler, R.; Huber, L.; Busemann, H.; Seiler, S.; Leya, I.; Maden, C.; Masarik, J.; Meier, M.M.M.; Nagao, K.; Trappitsch, R.; et al. Noble gases in 18 Martian meteorites and angrite Northwest Africa 7812-Exposure ages, trapped gases, and a re-evaluation of the evidence for solar cosmic ray-produced neon in shergottites and other achondrites. Meteorit. Planet. Sci. 2016, 51, 407–428. [Google Scholar] [CrossRef] [Green Version]
- Bouvier, A.; Blichert-Toft, J.; Vervoort, J.D.; Albarède, F. The age of SNC meteorites and the antiquity of the Martian surface. Earth Planet. Sci. Lett. 2005, 240, 221–233. [Google Scholar] [CrossRef]
- Bouvier, A.; Blichert-Toft, J.; Vervoort, J.D.; Gillet, P.; Albarède, F. The case for old basaltic shergottites. Earth Planet. Sci. Lett. 2008, 266, 105–124. [Google Scholar] [CrossRef]
- Bouvier, A.; Blichert-Toft, J.; Albarède, F. Martian meteorite chronology and the evolution of the interior of Mars. Earth Planet. Sci. Lett. 2009, 280, 285–295. [Google Scholar] [CrossRef]
- Hartmann, W.K.; Neukum, G. Cratering chronology and the evolution of Mars. Space Sci. Rev. 2001, 96, 165–194. [Google Scholar] [CrossRef]
- Bellucci, J.J.; Nemchin, A.A.; Whitehouse, M.J.; Snape, J.F.; Bland, P.; Benedix, G.K. The Pb isotopic evolution of the Martian mantle constrained by initial Pb in Martian meteorites. J. Geophys. Res. Planets 2015, 120, 2224–2240. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, J.J.; Nemchin, A.A.; Whitehouse, M.J.; Snape, J.F.; Kielman, R.B.; Bland, P.A.; Benedix, G.K. A Pb isotopic resolution to the Martian meteorite age paradox. Earth Planet. Sci. Lett. 2016, 433, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, J.J.; Nemchin, A.A.; Whitehouse, M.J.; Humayun, M.; Hewins, R.; Zanda, B. Pb-isotopic evidence for an early, enriched crust on Mars. Earth Planet. Sci. Lett. 2015, 410, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, N.; Unruh, D.M.; Tatsumoto, M.; Hutchison, R. Origin and evolution of the Nakhla meteorite inferred from the Sm-Nd and U-Pb systematics and REE, Ba, Sr, Rb and K abundances. Geochim. Cosmochim. Acta 1982, 46, 1555–1573. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Nyquist, L.E.; Reese, Y.; Wiesmann, H. The Chronology of the Nakhlite, Lafayette: Rb-Sr and Sm-Nd Isotopic Ages. In Proceedings of the 29th Lunar and Planetary Science Conference, Woodlands, TX, USA, 16–20 March 1998; Volume 1, pp. 14–15. [Google Scholar]
- Shih, C.Y.; Nyquist, L.E.; Wiesmann, H. Samarium-neodymium and rubidium-strontium systematics of nakhlite Governador Valadares. Meteorit. Planet. Sci. 1999, 34, 647–655. [Google Scholar] [CrossRef]
- Misawa, K.; Shih, C.Y.; Reese, Y.; Bogard, D.D.; Nyquist, L.E. Rb-Sr, Sm-Nd and Ar-Ar isotopic systematics of Martian dunite Chassigny. Earth Planet. Sci. Lett. 2006, 246, 90–101. [Google Scholar] [CrossRef]
- Treiman, A.H. The nakhlite meteorites: Augite-rich igneous rocks from Mars. Geochemistry 2005, 65, 203–270. [Google Scholar] [CrossRef]
- Humayun, M.; Nemchin, A.; Zanda, B.; Hewins, R.H.; Grange, M.; Kennedy, A.; Lorand, J.P.; Göpel, C.; Fieni, C.; Pont, S.; et al. Origin and age of the earliest Martian crust from meteorite NWA 7533. Nature 2013, 503, 513–516. [Google Scholar] [CrossRef] [PubMed]
- Nyquist, L.E.; Shih, C.Y.; Mccubbin, F.M.; Santos, A.R.; Shearer, C.K.; Peng, Z.X.; Burger, P.V.; Agee, C.B. Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of Martian breccia Northwest Africa 7034. Meteorit. Planet. Sci. 2016, 51, 483–498. [Google Scholar] [CrossRef]
- McCubbin, F.M.; Boyce, J.W.; Novák-Szabó, T.; Santos, A.R.; Tartèse, R.; Muttik, N.; Domokos, G.; Vazquez, J.; Keller, L.P.; Moser, D.E.; et al. Geologic history of Martian regolith breccia Northwest Africa 7034: Evidence for hydrothermal activity and lithologic diversity in the Martian crust. J. Geophys. Res. Planets 2016, 121, 2120–2149. [Google Scholar] [CrossRef]
- Moser, D.E.; Arcuri, G.A.; Reinhard, D.A.; White, L.F.; Darling, J.R.; Barker, I.R.; Larson, D.J.; Irving, A.J.; McCubbin, F.M.; Tait, K.T.; et al. Decline of giant impacts on Mars by 4.48 billion years ago and an early opportunity for habitability. Nat. Geosci. 2019, 12, 522–527. [Google Scholar] [CrossRef]
- Abramov, O.; Kring, D.A. Impact-induced hydrothermal activity on early Mars. J. Geophys. Res. E Planets 2005, 110, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, J.A.; Ott, U.; Herrmann, S.; Agee, C.B. Modern atmospheric signatures in 4.4 Ga Martian meteorite NWA 7034. Earth Planet. Sci. Lett. 2014, 400, 77–87. [Google Scholar] [CrossRef] [Green Version]
- Borg, L.E.; Gaffney, A.M.; DePaolo, D. Preliminary Age of Martian Meteorite Northwest Africa 4468 and Its Relationship to the Other Incompatible-Element-enriched Shergottites. In Proceedings of the 39th Lunar and Planetary Science Conference, Woodlands, TX, USA, 10–14 March 2008; p. 1851. [Google Scholar]
- Carlson, R.W.; Irving, A.J. Pb-Hf-Sr-Nd isotopic systematics and age of nakhlite NWA 998. In Proceedings of the 35th Lunar and Planetary Science Conference, Woodlands, TX, USA, 15–19 March 2004; p. A1442. [Google Scholar]
- Herd, C.D.K.; Borg, L.E.; Jones, J.H.; Papike, J.J. Oxygen fugacity and geochemical variations in the martian basalts: Implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars. Geochim. Cosmochim. Acta 2002, 66, 2025–2036. [Google Scholar] [CrossRef]
- Papanastassiou, D.A.; Wasserburg, G.J. Initial strontium isotopic abundances and the resolution of small time differences in the formation of planetary objects. Earth Planet. Sci. Lett. 1968, 5, 361–376. [Google Scholar] [CrossRef]
- Armytage, R.M.G.; Debaille, V.; Brandon, A.D.; Agee, C.B. A complex history of silicate differentiation of Mars from Nd and Hf isotopes in crustal breccia NWA 7034. Earth Planet. Sci. Lett. 2018, 502, 274–283. [Google Scholar] [CrossRef] [Green Version]
- Dreibus, G.; Wanke, H. Mars, a volatile-rich planet. Meteoritics 1985, 20, 367–381. [Google Scholar] [CrossRef]
- Lodders, K.; Fegley, B. An oxygen isotope model for the composition of Mars. Icarus 1997, 126, 373–394. [Google Scholar] [CrossRef]
- Draper, D.S.; Xirouchakis, D.; Agee, C.B. Trace element partitioning between garnet and chondritic melt from 5 to 9 GPa: Implications for the onset of the majorite transition in the martian mantle. Phys. Earth Planet. Inter. 2003, 139, 149–169. [Google Scholar] [CrossRef]
- McSween, H.Y.J.; Lundberg, L.; Crozaz, G. Crystallization of the ALHA77005 Shergottite: How is a Closed System. In Proceedings of the 19th Lunar and Planetary Science Conference, Woodlands, TX, USA, 14–18 March 1988. [Google Scholar] [CrossRef]
- Kinoshita, N.; Paul, M.; Kashiv, Y.; Collon, P.; Deibel, C.M.; DiGiovine, B.; Greene, J.P.; Henderson, D.J.; Jiang, C.L.; Marley, S.T.; et al. A shorter 146Sm half-life measured and implications for 146Sm-142Nd chronology in the solar system. Science 2012, 335, 1614–1617. [Google Scholar] [CrossRef] [Green Version]
- Villa, I.M.; Holden, N.E.; Possolo, A.; Ickert, R.B.; Hibbert, D.B.; Renne, P.R. IUPAC-IUGS recommendation on the half-lives of 147Sm and 146Sm. Geochim. Cosmochim. Acta 2020, 285, 70–77. [Google Scholar] [CrossRef]
- Borg, L.E.; Brennecka, G.A.; Symes, S.J.K. Accretion timescale and impact history of Mars deduced from the isotopic systematics of martian meteorites. Geochim. Cosmochim. Acta 2016, 175, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Caro, G.; Bourdon, B.; Halliday, A.N.; Quitté, G. Super-chondritic Sm/Nd ratios in Mars, the Earth and the Moon. Nature 2008, 452, 336–339. [Google Scholar] [CrossRef]
- Debaille, V.; Brandon, A.D.; Oneill, C.; Yin, Q.Z.; Jacobsen, B. Early martian mantle overturn inferred from isotopic composition of nakhlite meteorites. Nat. Geosci. 2009, 2, 548–552. [Google Scholar] [CrossRef]
- Andrews-Hanna, J.C.; Zuber, M.T.; Banerdt, W.B. The Borealis basin and the origin of the martian crustal dichotomy. Nature 2008, 453, 1212–1215. [Google Scholar] [CrossRef]
- Elkins-Tanton, L.T.; Hess, P.C.; Parmentier, E.M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. E Planets 2005, 110, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Scheinberg, A.; Elkins-Tanton, L.T.; Zhong, S.J. Timescale and morphology of Martian mantle overturn immediately following magma ocean solidification. J. Geophys. Res. E Planets 2014, 119, 454–467. [Google Scholar] [CrossRef]
- Barnes, J.J.; McCubbin, F.M.; Santos, A.R.; Day, J.M.D.; Boyce, J.W.; Schwenzer, S.P.; Ott, U.; Franchi, I.A.; Messenger, S.; Anand, M.; et al. Multiple early-formed water reservoirs in the interior of Mars. Nat. Geosci. 2020, 13, 260–264. [Google Scholar] [CrossRef]
- Foley, C.N.; Wadhwa, M.; Borg, L.E.; Janney, P.E.; Hines, R.; Grove, T.L. The early differentiation history of Mars from 182W-142Nd isotope systematics in the SNC meteorites. Geochim. Cosmochim. Acta 2005, 69, 4557–4571. [Google Scholar] [CrossRef]
- Kleine, T.; Mezger, K.; Münker, C.; Palme, H.; Bischoff, A. 182Hf-182W isotope systematics of chondrites, eucrites, and martian meteorites: Chronology of core formation and early mantle differentiation in Vesta and Mars. Geochim. Cosmochim. Acta 2004, 68, 2935–2946. [Google Scholar] [CrossRef]
- Righter, K.; Shearer, C.K. Magmatic fractionation of Hf and W: Constraints on the timing of core formation and differentiation in the Moon and Mars. Geochim. Cosmochim. Acta 2003, 67, 2497–2507. [Google Scholar] [CrossRef]
- Nimmo, F.; Kleine, T. How rapidly did Mars accrete? Uncertainties in the Hf-W timing of core formation. Icarus 2007, 191, 497–504. [Google Scholar] [CrossRef]
- Dauphas, N.; Pourmand, A. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 2011, 473, 489–492. [Google Scholar] [CrossRef]
- Bellucci, J.J.; Nemchin, A.A.; Whitehouse, M.J.; Snape, J.F.; Bland, P.; Benedix, G.K.; Roszjar, J. Pb evolution in the Martian mantle. Earth Planet. Sci. Lett. 2018, 485, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Debaille, V.; Yin, Q.Z.; Brandon, A.D.; Jacobsen, B. Martian mantle mineralogy investigated by the 176Lu-176Hf and 147Sm-143Nd systematics of shergottites. Earth Planet. Sci. Lett. 2008, 269, 186–199. [Google Scholar] [CrossRef]
Meteorites | Ages | Rock Type(s) | Geochemistry |
---|---|---|---|
Shergottites | ~150–600 Ma; ~2400 Ma | Gabbro, diabase, basalt | Depleted to Enriched in LREE |
Nakhlites | ~1300 Ma | Augite and olivine cumulate | Enriched in REE and LREE |
Chassignites | ~1300 Ma | Dunite | Enriched in LREE |
NWA 8159 | ~2300 Ma | Augite basalt | Depleted in LREE |
ALH 84001 | ~4100 Ma | Orthopyroxenite | Nearly chondritic REE |
NWA 7034 and pairs | ~4500 Ma | Polymict igneous breccia | Enriched in REE and LREE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Váci, Z.; Agee, C. Constraints on Martian Chronology from Meteorites. Geosciences 2020, 10, 455. https://doi.org/10.3390/geosciences10110455
Váci Z, Agee C. Constraints on Martian Chronology from Meteorites. Geosciences. 2020; 10(11):455. https://doi.org/10.3390/geosciences10110455
Chicago/Turabian StyleVáci, Zoltán, and Carl Agee. 2020. "Constraints on Martian Chronology from Meteorites" Geosciences 10, no. 11: 455. https://doi.org/10.3390/geosciences10110455
APA StyleVáci, Z., & Agee, C. (2020). Constraints on Martian Chronology from Meteorites. Geosciences, 10(11), 455. https://doi.org/10.3390/geosciences10110455