Re-assessing the Upper Permian Stratigraphic Succession of the Northern Sydney Basin, Australia, by CA-IDTIMS
Abstract
:1. Introduction
2. Geological Setting
3. Field Characteristics, Petrography and Geochemistry
4. Materials and Methods
5. U-Pb Geochronology Results
6. Discussion
6.1. The Role of CA-IDTIMS Method in Stratigraphic Correlations
6.2. Proposed Revision of the Upper Permian NSB Stratigraphy
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Davydov, V.I.; Biakov, A.; Schmitz, M.; Silantiev, V. Radioisotopic calibration of the Guadalupian (middle Permian) series: Review and updates. Earth-Sci. Rev. 2018, 176, 222–240. [Google Scholar] [CrossRef]
- Hodgskiss, M.S.W.; Dagnaud, O.M.; Frost, J.L.; Halverson, G.P.; Schmitz, M.D.; Swanson-Hysell, N.L.; Sperling, E.A. New insights on the Orosirian carbon cycle, early Cyanobacteria, and the assembly of Laurentia from the Paleoproterozoic Belcher Group. Earth Planet. Sci. Lett. 2019, 520, 141–152. [Google Scholar] [CrossRef]
- Crowley, J.; Schoene, B.; Bowring, S. U-Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 2007, 35, 1123. [Google Scholar] [CrossRef]
- Michel, L.A.; Tabor, N.J.; Montañez, I.P.; Schmitz, M.D.; Davydov, V.I. Chronostratigraphy and Paleoclimatology of the Lodève Basin, France: Evidence for a pan-tropical aridification event across the Carboniferous–Permian boundary. Palaeogeogr. Palaeoclim. Palaeoecol. 2015, 430, 118–131. [Google Scholar] [CrossRef] [Green Version]
- Mory, A.J.; Crowley, J.L.; Backhouse, J.; Nicoll, R.S.; Bryan, S.E.; Martínez, M.L.; Mantle, D.J. Apparent conflicting Roadian–Wordian (middle Permian) CA-IDTIMS and palynology ages from the Canning Basin, Western Australia. Aust. J. Earth Sci. 2017, 64, 889–901. [Google Scholar] [CrossRef]
- Laurie, J.R.; Bodorkos, S.; Nicoll, R.S.; Crowley, J.L.; Mantle, D.J.; Mory, A.J.; Wood, G.R.; Backhouse, J.; Holmes, E.K.; Smith, T.E.; et al. Calibrating the middle and late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating. Aust. J. Earth Sci. 2016, 63, 701–730. [Google Scholar] [CrossRef]
- Metcalfe, I.; Crowley, J.L.; Nicoll, R.S.; Schmitz, M.D. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 2015, 28, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Fiorentini, M.L.; Laflamme, C.; Denyszyn, S.; Mole, D.; Maas, R.; Locmelis, M.; Caruso, S.; Bui, T.-H. Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochim. Cosmochim. Acta 2018, 223, 175–197. [Google Scholar] [CrossRef]
- Reagan, M.; Heaton, D.E.; Schmitz, M.D.; Pearce, J.A.; Shervais, J.; Koppers, A.A. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth Planet. Sci. Lett. 2019, 506, 520–529. [Google Scholar] [CrossRef]
- Phillips, L.J.; Esterle, J.S.; Edwards, S.A. Review of Lopingian (upper Permian) stratigraphy of the Galilee Basin, Queensland, Australia. Aust. J. Earth Sci. 2017, 64, 283–300. [Google Scholar] [CrossRef]
- Roberts, J.; Engel, B.A. Depositional and tectonic history of the southern New England Orogen. Aust. J. Earth Sci. 1987, 34, 1–20. [Google Scholar] [CrossRef]
- Herbert, C.; Helby, R. A guide to the Sydney Basin. In Geological Survey of New South Wales; Herbert, C., Helby, R., Eds.; Geological Society of NSW: Sydney, Australia, 1980; pp. 33–40. [Google Scholar]
- Herbert, C. Sequence stratigraphy of the Late Permian Coal Measures in the Sydney Basin. Aust. J. Earth Sci. 1995, 42, 391–405. [Google Scholar] [CrossRef]
- Herbert, C. Relative sea level control of deposition in the Late Permian Newcastle Coal Measures of the Sydney Basin, Australia. Sediment. Geol. 1997, 107, 167–187. [Google Scholar] [CrossRef]
- Warbrooke, P.R. Depositional Environments of the Upper Tomago and Lower Newcastle Coal Measures, New South Wales. Ph.D. Thesis, University of Newcastle, Callaghan, Australia, 1981. [Google Scholar]
- Little, M. Stratigraphic analysis of the Newcastle Coal Measures, Sydney Basin, Australia. Ph.D. Thesis, University of Newcastle, Callaghan, Australia, 1998. [Google Scholar]
- Fielding, C.R.; Frank, T.D.; Tevyaw, A.P.; Savatic, K.; Vajda, V.; McLoughlin, S.; Mays, C.; Nicoll, R.S.; Bocking, M.; Crowley, J.L. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 2020. [CrossRef]
- Breckenridge, J.; Maravelis, A.G.; Catuneanu, O.; Ruming, K.; Holmes, E.; Collins, W.J. Outcrop analysis and facies model of an Upper Permian tidally influenced fluvio-deltaic system: Northern Sydney Basin, SE Australia. Geol. Mag. 2019, 156, 1715–1741. [Google Scholar] [CrossRef]
- Leitch, E.C. The geological development of the southern part of the New England Fold Belt. J. Geol. Soc. Aust. 1974, 21, 133–156. [Google Scholar] [CrossRef]
- Korsch, R.J. A framework for the palaeozoic geology of the southern part of the New England Geosyncline. J. Geol. Soc. Aust. 1977, 24, 339–355. [Google Scholar] [CrossRef]
- Mantle, D.J.; Kelman, A.P.; Nicoll, R.S.; Laurie, J.R. Australian Biozonation Chart; Geoscience Australia: Canberra, ACT, Australia, 2010. Available online: http://www.ga.gov.au/metadata-gateway/metadata/record/gcat_70371 (accessed on 22 November 2020).
- Crawford, T.J.; Meffre, S.; Squire, R.J.; Barron, L.M.; Falloon, T.J. Middle and Late Ordovician magmatic evolution of the Macquarie Arc, Lachlan Orogen, New South Wales. Aust. J. Earth Sci. 2007, 54, 181–214. [Google Scholar] [CrossRef]
- Scheibner, E. Explanatory Notes on the Tectonic Map of New South Wales, Scale 1:1,000,000; New South Wales Geological Survey: Sydney, Australia, 1976; 283p.
- Jones, J.G.; Conaghan, P.J.; McDonnell, K.L.; Flood, P.H.; Royce, K. Papuan analogue and a foreland basin model for the Bowen–Sydney Basin. In The Phanerozoic Earth History of Australia; Veevers, J.J., Ed.; Oxford University Press: Oxford, UK, 1984; pp. 243–261. [Google Scholar]
- Danis, C.; Daczko, N.R.; Lackie, M.; Craven, S.J. Retrograde metamorphism of the Wongwibinda Complex, New England Fold Belt and the implications of 2.5D subsurface geophysical structure for the metamorphic history. Aust. J. Earth Sci. 2010, 57, 357–375. [Google Scholar] [CrossRef]
- Collins, W.J. A reassessment of the ‘Hunter-Bowen Orogeny’: Tectonic implications for the southern New England fold belt. Aust. J. Earth Sci. 1991, 38, 409–423. [Google Scholar] [CrossRef]
- Landenberger, B.; Farrell, T.; Offler, R.; Collins, W.; Whitford, D. Tectonic implications of Rb_Sr biotite ages for the Hillgrove Plutonic Suite, New England Fold Belt, NSW, Australia. Precambrian Res. 1995, 71, 251–263. [Google Scholar] [CrossRef]
- Belica, M.; Tohver, E.; Pisarevsky, S.; Jourdan, F.; Denyszyn, S.W.; George, A.D. Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana: Testing Pangea models and the timing of the end of the Kiaman Reverse Superchron. Tectonophysics 2017, 699, 178–198. [Google Scholar] [CrossRef]
- Jenkins, R.B.; Offler, R. Metamorphism and deformation of an Early Permian extensional basin sequence: The Manning Group, southern New England Orogen. Aust. J. Earth Sci. 1996, 43, 423–435. [Google Scholar] [CrossRef]
- Williams, M.; Jones, B.G.; Carr, P. Geochemical consequences of the Permian–Triassic mass extinction in a non-marine succession, Sydney Basin, Australia. Chem. Geol. 2012, 326, 174–188. [Google Scholar] [CrossRef]
- Veevers, J.J.; Conaghan, P.J.; Powell, C.M. Eastern Australia, Permian–Triassic Pangean Basins and Foldbelts along the Panthalassan Margin of Gondwanaland; Geological Society of America: Boulder, CO, USA, 1994; Volume 174, pp. 11–171. [Google Scholar]
- Korsch, R.; Totterdell, J.M.; Cathro, D.L.; Nicoll, M.G. Early Permian East Australian Rift System. Aust. J. Earth Sci. 2009, 56, 381–400. [Google Scholar] [CrossRef]
- Li, P.; Rosenbaum, G.; Vasconcelos, P. Chronological constraints on the Permian geodynamic evolution of eastern Australia. Tectonophysics 2014, 617, 20–30. [Google Scholar] [CrossRef]
- Roberts, J.L.; Offler, R.; Fanning, M.; Fanning, C. Carboniferous to Lower Permian stratigraphy of the southern Tamworth Belt, southern New England Orogen, Australia: Boundary sequences of the Werrie and Rouchel blocks. Aust. J. Earth Sci. 2006, 53, 249–284. [Google Scholar] [CrossRef]
- Armstrong, M.; Bamberry, W.J.; Hutton, A.; Jones, B.G. Sydney Basin—Southern Coalfield 1995. In Geology of Australian Coal Basins; Ward, C.R., Harrington, H.J., Mallett, C.W., Beeston, J.W., Eds.; Geological Society of Australia Coal Geology Group: Sydney, Australia, 1995; Volume 1, pp. 213–230. [Google Scholar]
- Bamberry, W.J.; Hutton, A.C.; Jones, B.G. The Permian Illawarra Coal Measures, southern Sydney Basin, Australia: A case study of deltaic sedimentation. In Geology of Deltas; Oti, M., Postma, G., Eds.; Balkema: Rotterdam, The Netherlands, 1995; pp. 153–167. [Google Scholar]
- Veevers, J. Updated Gondwana (Permian–Cretaceous) earth history of Australia. Gondwana Res. 2006, 9, 231–260. [Google Scholar] [CrossRef]
- Jenkins, R.B.; Landenberger, B.; Collins, W.J. Late Palaeozoic retreating and advancing subduction boundary in the New England Fold Belt, New South Wales. Aust. J. Earth Sci. 2002, 49, 467–489. [Google Scholar] [CrossRef]
- McNally, G.H.; Branagan, D.F. Geotechnical consequences of the Newcastle Coal Measures rocks. Aust. J. Earth Sci. 2013, 61, 363–374. [Google Scholar] [CrossRef]
- Dehghani, M.H. Sedimentology, Genetic Stratigraphy and Depositional Environment of the Permo-Triassic Succession in the Southern Sydney Basin, Australia. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 1994. [Google Scholar]
- Retallack, G.J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney Basin, Australia. Geol. Soc. Am. Bull. 1999, 111, 52–70. [Google Scholar] [CrossRef]
- White, R.V.; Saunders, A. Volcanism, impact and mass extinctions: Incredible or credible coincidences? Lithos 2005, 79, 299–316. [Google Scholar] [CrossRef]
- Holcombe, R.; Stephens, C.; Fielding, C.; Gust, D.; Little, T.; Sliwa, R.; Kassan, J.; McPhie, J.; Ewart, A. Tectonic evolution of the northern New England Fold Belt: The Permian–Triassic Hunter–Bowen event. Tecton. Metallog. N. Engl. Orogen 1997, 19, 52–65. [Google Scholar]
- Li, P.-F.; Rosenbaum, G.; Rubatto, D. Triassic asymmetric subduction rollback in the southern New England Orogen (eastern Australia): The end of the Hunter-Bowen Orogeny. Aust. J. Earth Sci. 2012, 59, 965–981. [Google Scholar] [CrossRef]
- Glen, R.A.; Beckett, J. Structure and tectonics along the inner edge of a foreland basin: The Hunter Coalfield in the northern Sydney Basin, New South Wales. Aust. J. Earth Sci. 1997, 44, 853–877. [Google Scholar] [CrossRef]
- Kramer, W.; Weatherall, G.; Offler, R. Origin and correlation of tuffs in the Permian Newcastle and Wollombi Coal Measures, NSW, Australia, using chemical fingerprinting. Int. J. Coal Geol. 2001, 47, 115–135. [Google Scholar] [CrossRef]
- Gulbranson, E.L.; Montanez, I.P.; Schmitz, M.D.; Limarino, C.O.; Isbell, J.L.; Marenssi, S.A.; Crowley, J.L. High-precision U-Pb calibration of Carboniferous glaciation and climate history, Paganzo Group, NW Argentina. GSA Bull. 2010, 122, 1480–1498. [Google Scholar] [CrossRef]
- Mange, M.A.; Maurer, H.F.W. Heavy Minerals in Colour; Chapman and Hall: London, UK, 1992; p. 147. [Google Scholar]
- Mattinson, J.M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 2005, 220, 47–66. [Google Scholar] [CrossRef]
- Condon, D.J. Progress report on the U-Pb interlaboratory experiment. Geochim. Cosmochim. Acta 2005, 69, 319. [Google Scholar]
- Parrish, R.; Bowring, S.; Condon, D.J.; Schoene, B.; Crowley, J.; Ramezani, J. EARTHTIME U–Pb tracer for community use. Geochim. Cosmochim. Acta 2006, 76, A473. [Google Scholar] [CrossRef]
- Krogh, T. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochim. Cosmochim. Acta 1973, 37, 485–494. [Google Scholar] [CrossRef]
- Gerstenberger, H.; Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 1997, 136, 309–312. [Google Scholar] [CrossRef]
- Schmitz, M.D.; Schoene, B. Derivation of isotope ratios, errors, and error correlations for U-Pb geochronology using205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef]
- Hiess, J.; Condon, D.J.; McLean, N.; Noble, S.R. 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science 2012, 335, 1610–1614. [Google Scholar] [CrossRef] [Green Version]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Rossignol, C.; Hallot, E.; Bourquin, S.; Poujol, M.; Jolivet, M.; Pellenard, P.; Ducassou, C.; Nalpas, T.; Heilbronn, G.; Yu, J.; et al. Using volcaniclastic rocks to constrain sedimentation ages: To what extent are volcanism and sedimentation synchronous? Sediment. Geol. 2019, 381, 46–64. [Google Scholar] [CrossRef] [Green Version]
- Diessel, C.F.K. Coal-Bearing Depositional Systems; Springer: Berlin, Germany, 1992; p. 721. [Google Scholar]
- Ruming, K. High Precision Zircon Dating of Tuffs in the Sydney-Gunnedah Basin. Trade and Investment: Resource and Energy. 2015. Available online: https://www.slideshare.net/nswdre/05-eith2015ruming (accessed on 22 November 2020).
- Hutton, A.C. Geological Setting of Australasian Coal Deposits. In Australasian Coal Mining Practice; Kininmonthand, R., Baafi, E., Eds.; Australasian Institute of Mining and Metallurgy Carlton: Carlton, Australia, 2009; pp. 40–84. [Google Scholar]
- Alder, J.; Hawley, S.; Maung, T.; Scott, J.; Shaw, R.; Sinelnikov, A.; Kouzmina, G. Prospectivity of the Offshore Sydney Basin: A New Perspective. APPEA J. 1998, 38, 68–92. [Google Scholar] [CrossRef]
- Maravelis, A.; Chamilaki, E.; Pasadakis, N.; Zelilidis, A.; Collins, W.J. Hydrocarbon generation potential of a Lower Permian sedimentary succession (Mount Agony Formation): Southern Sydney Basin, New South Wales, Southeast Australia. Int. J. Coal Geol. 2017, 183, 52–64. [Google Scholar] [CrossRef]
- Maravelis, A.; Chamilaki, E.; Pasadakis, N.; Vassiliou, A.; Zelilidis, A. Organic geochemical characteristics and paleodepositional conditions of an Upper Carboniferous mud-rich succession (Yagon Siltstone): Myall Trough, southeast Australia. J. Pet. Sci. Eng. 2017, 158, 322–335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maravelis, A.G.; Breckenridge, J.; Ruming, K.; Holmes, E.; Amelin, Y.; Collins, W.J. Re-assessing the Upper Permian Stratigraphic Succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 2020, 10, 474. https://doi.org/10.3390/geosciences10110474
Maravelis AG, Breckenridge J, Ruming K, Holmes E, Amelin Y, Collins WJ. Re-assessing the Upper Permian Stratigraphic Succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences. 2020; 10(11):474. https://doi.org/10.3390/geosciences10110474
Chicago/Turabian StyleMaravelis, Angelos G., Jake Breckenridge, Kevin Ruming, Erin Holmes, Yuri Amelin, and William J. Collins. 2020. "Re-assessing the Upper Permian Stratigraphic Succession of the Northern Sydney Basin, Australia, by CA-IDTIMS" Geosciences 10, no. 11: 474. https://doi.org/10.3390/geosciences10110474
APA StyleMaravelis, A. G., Breckenridge, J., Ruming, K., Holmes, E., Amelin, Y., & Collins, W. J. (2020). Re-assessing the Upper Permian Stratigraphic Succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences, 10(11), 474. https://doi.org/10.3390/geosciences10110474