Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Annual Trends in Atmospheric Deposition of Calcium and Magnesium (2000–2015)
2.2. The Accounting Framework
2.3. The Monetary Valuation
3. Results
3.1. Value of Non-Constrained Potential SIC Sequestration from Annual Mean Ca2+ and Mg2+ Deposition by Soil Order
3.2. Value of Non-Constrained Potential SIC Sequestration from Annual Mean Ca2+ and Mg2+ Deposition by Land Resource Regions (LRRs)
3.3. Value of Non-Constrained Potential SIC Sequestration from Annual Mean Ca2+ and Mg2+ Deposition by States and Regions in the Contiguous U.S.
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- MEA. Ecosystems and Human Well-Being: Synthesis; Millennium Ecosystem Assessment Series; World Resources Institute: Washington, DC, USA, 2005; p. 155. [Google Scholar]
- Costanza, R.; d’Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Wood, S.L.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2017, 29, 70–82. [Google Scholar] [CrossRef] [Green Version]
- Thornes, J.; Bloss, W.; Bouzarovski, S.; Cai, X.; Chapman, L.; Clark, J.; Dessai, S.; Du, S.; van der Horst, D.; Kendall, M.; et al. Communicating the value of atmospheric services. Meteorol. Appl. 2010, 17, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Gray, M. The confused position of the geosciences within the “natural capital” and “ecosystem services” approaches. Ecosyst. Serv. 2018, 34, 106–112. [Google Scholar] [CrossRef]
- Van Ree, C.C.D.F.; Van Beukering, P.J.H. Geosystem services: A concept in support of sustainable development of the subsurface. Ecosyst. Serv. 2016, 20, 30–36. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Jones, L.; Norton, L.; Austin, Z.; Browne, A.L.; Donovan, D.; Emmett, B.A.; Grabowski, Z.J.; Howard, D.C.; Jones, J.P.G.; Kenter, J.O.; et al. Stocks and flows of natural and human-derived capital in ecosystem services. Land Use Policy 2016, 52, 151–162. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Post, C.J.; Schlautman, M.A.; Groshans, G.R.; Cope, M.P.; Zhang, L. A systems-based approach to ecosystem services valuation of various atmospheric calcium deposition flows. Resources 2019, 8, 66. [Google Scholar] [CrossRef] [Green Version]
- Goddard, M.A.; Mikhailova, E.A.; Post, C.J.; Schlautman, M.A. Atmospheric Mg2+ wet deposition within the continental U.S. in relation to soil inorganic carbon sequestration. Tellus 2007, 59B, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Goddard, M.A.; Mikhailova, E.A.; Post, C.J.; Galbraith, J.M. Continental United States atmospheric calcium wet deposition and soil inorganic carbon stocks. Soil Sci. Soc. Am. J. 2009, 73, 989–994. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Goddard, M.A.; Post, C.J.; Schlautman, M.A.; Galbraith, J.M. Potential contribution of combined atmospheric Ca2+ and Mg2+ wet deposition within the continental U.S. to soil inorganic carbon sequestration. Pedosphere 2013, 23, 808–814. [Google Scholar] [CrossRef]
- NADP Program Office, Wisconsin State Laboratory of Hygiene. National Atmospheric Deposition Program (NRSP-3); NADP Program Office, Wisconsin State Laboratory of Hygiene: Madison, WI, USA, 2018; Available online: http://nadp.slh.wisc.edu (accessed on 12 February 2020).
- ESRI. ArcGIS Desktop: Release 10.4; Environmental Systems Research Institute: Redlands, CA, USA, 2016. [Google Scholar]
- Groshans, G.; Mikhailova, E.; Post, C.; Schlautman, M.; Zurqani, H.; Zhang, L. Assessing the value of soil inorganic carbon for ecosystem services in the contiguous United States based on liming replacement costs. Land 2018, 7, 149. [Google Scholar] [CrossRef] [Green Version]
- EPA. The Social Cost of Carbon. EPA Fact Sheet. 2016. Available online: https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html (accessed on 15 March 2019).
- Guo, Y.; Amundson, R.; Gong, P.; Yu, Q. Quantity and spatial variability of soil carbon in the conterminous United States. Soil Sci. Soc. Am. J. 2006, 70, 590–600. [Google Scholar] [CrossRef] [Green Version]
- Fargione, J.E.; Bassett, S.; Boucher, T.; Bridgham, S.D.; Conant, R.T.; Cook-Patton, S.C.; Ellis, P.W.; Falcucci, A.; Fourqurean, J.W.; Gopalakrishna, T.; et al. Natural climate solutions for the United States. Sci. Adv. 2018, 4, eaat1869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haan, C.T.; Barfield, B.J.; Hayes, J.C. Design Hydrology and Sedimentology for Small Catchments; Academic Press: San Diego, CA, USA, 1994. [Google Scholar]
- Arnold, C.L.; Gibbons, C.J. Impervious surface coverage: The emergence of a key environmental indicator. Am. Planners Association J. 1996, 62, 243–258. [Google Scholar] [CrossRef]
- Smith, P.; Andrén, O.; Karlsson, T.; Perälä, P.; Regina, K.; Rounsevell, M.; Van Wesemaels, B. Carbon sequestration potential in European croplands has been overestimated. Global Change Biol. 2005, 11, 2153–2163. [Google Scholar] [CrossRef]
- Mikhailova, E.A.; Groshans, G.R.; Post, C.J.; Schlautman, M.A.; Post, G.C. Valuation of total soil carbon stocks in the contiguous United States based on the avoided social cost of carbon emissions. Resources 2019, 8, 157. Available online: https://doi.org/10.3390/resources8040157 (accessed on 12 February 2020). [CrossRef] [Green Version]
- Van der Meulen, E.S.; Braat, L.C.; Brils, J.M. Abiotic flows should be inherent part of ecosystem services classification. Ecosyst. Serv. 2016, 19, 1–5. [Google Scholar] [CrossRef]
- Verspecht, A.; Vandermeulen, V.; Avest, E.T.; Van Huylenbroeck, G. Review of trade-offs and co-benefits from greenhouse gas mitigation measures in agricultural production. J. Integr. Environ. Sci. 2012, 9, 147–157. [Google Scholar] [CrossRef] [Green Version]
TEEB Ecosystem Service Categories | TEEB Typology | Sustainable Development Goals (SDGs) |
---|---|---|
Regulating | Climate regulation | SDG 13 |
Atmospheric Calcium (Ca2+) and Magnesium (Mg2+) Stocks | ||||
---|---|---|---|---|
Separate Constituent Stocks | Composite (Total) Stocks | |||
Ca2+ | Mg2+ | Ca2+ | Mg2+ | Ca2+ + Mg2+ |
Biophysical Accounts (Science-Based) | Administrative Accounts (Boundary-Based) | Monetary Accounts | Benefit | Total Value |
---|---|---|---|---|
Soil extent | Administrative extent | Ecosystem good(s) and service(s) | Sector | Types of value |
Composite (total) flows (sum of constituent flows: wet + dry): Annual mean atmospheric total Ca2+ and Mg2+ deposition | ||||
Soil order | Country State Land Resource Region (LRR) | Regulating | Environment: Carbon sequestration (soil inorganic carbon, SIC) | Social cost of carbon (SC-CO2) and avoided emissions: $42 per metric ton of CO2 (2007 U.S. dollars with an average discount rate of 3% [16]) |
Non-Constrained Potential C Sequestration | Non-Constrained Maximum Monetary Value | ||||
---|---|---|---|---|---|
Soil Order | Area (ha) | Total C (kg) | Per Area (kg C ha−1) | Total ($) | Per Area ($ ha−1) |
Slight Weathering | |||||
Entisols | 1.05 × 108 | 1.15 × 108 | 1.09 | 1.77 × 107 | 0.17 |
Inceptisols | 7.87 × 107 | 8.81 × 107 | 1.12 | 1.36 × 107 | 0.17 |
Histosols | 1.07 × 107 | 1.36 × 107 | 1.27 | 2.09 × 106 | 0.19 |
Gelisols | - | - | - | - | - |
Andisols | 6.87 × 106 | 4.27 × 106 | 0.62 | 6.57 × 105 | 0.10 |
Intermediate Weathering | |||||
Aridisols | 8.09 × 107 | 8.25 × 107 | 1.02 | 1.27 × 107 | 0.16 |
Vertisols | 1.32 × 107 | 3.01 × 107 | 2.28 | 4.64 × 106 | 0.35 |
Alfisols | 1.27 × 108 | 1.70 × 108 | 1.33 | 2.62 × 107 | 0.21 |
Mollisols | 2.02 × 108 | 2.58 × 108 | 1.28 | 3.98 × 107 | 0.20 |
Strong Weathering | |||||
Spodosols | 2.50 × 107 | 2.51 × 107 | 1.00 | 3.87 × 106 | 0.15 |
Ultisols | 8.60 × 107 | 8.89 × 107 | 1.03 | 1.37 × 107 | 0.16 |
Oxisols | - | - | - | - | - |
Totals or Averages | 7.36 × 108 | 8.76 × 108 | 1.19 | 1.35 × 108 | 0.18 |
Non-Constrained Potential C Sequestration | Non-Constrained Maximum Monetary Value | ||||
---|---|---|---|---|---|
LRRs | Area (ha) | Total (kg) | Per Area (kg C ha−1) | Total ($) | Per Area ($ ha−1) |
A | 1.81 × 107 | 1.26 × 107 | 0.69 | 1.94 × 106 | 0.11 |
B | 2.59 × 107 | 1.06 × 107 | 0.41 | 1.63 × 106 | 0.06 |
C | 1.47 × 107 | 9.27 × 106 | 0.63 | 1.43 × 106 | 0.10 |
D | 1.27 × 108 | 1.39 × 108 | 1.09 | 2.13 × 107 | 0.17 |
E | 5.22 × 107 | 5.23 × 107 | 1.00 | 8.05 × 106 | 0.15 |
F | 3.52 × 107 | 2.97 × 107 | 0.84 | 4.57 × 106 | 0.13 |
G | 5.21 × 107 | 4.31 × 107 | 0.83 | 6.63 × 106 | 0.13 |
H | 5.84 × 107 | 9.64 × 107 | 1.65 | 1.48 × 107 | 0.25 |
I | 1.70 × 107 | 3.84 × 107 | 2.26 | 5.92 × 106 | 0.35 |
J | 1.40 × 107 | 2.55 × 107 | 1.83 | 3.93 × 106 | 0.28 |
K | 3.00 × 107 | 3.64 × 107 | 1.21 | 5.60 × 106 | 0.19 |
L | 1.20 × 107 | 1.60 × 107 | 1.34 | 2.47 × 106 | 0.21 |
M | 7.18 × 107 | 1.32 × 108 | 1.84 | 2.04 × 107 | 0.28 |
N | 6.03 × 107 | 7.48 × 107 | 1.24 | 1.15 × 107 | 0.19 |
O | 9.47 × 106 | 1.07 × 107 | 1.14 | 1.66 × 106 | 0.17 |
P | 6.77 × 107 | 6.39 × 107 | 0.94 | 9.84 × 106 | 0.15 |
R | 3.01 × 107 | 2.47 × 107 | 0.82 | 3.80 × 106 | 0.13 |
S | 9.91 × 106 | 1.04 × 107 | 1.05 | 1.60 × 106 | 0.16 |
T | 2.31 × 107 | 3.57 × 107 | 1.54 | 5.49 × 106 | 0.24 |
U | 8.54 × 106 | 1.60 × 107 | 1.88 | 2.47 × 106 | 0.29 |
Totals or Averages | 7.37 × 108 | 8.77 × 108 | 1.19 | 1.35 × 108 | 0.18 |
Non-Constrained Potential C Sequestration | Non-Constrained Maximum Monetary Value | ||||
---|---|---|---|---|---|
State (Region) | Area (ha) [17] | Total (kg) | Per Area (kg C ha−1) | Total ($) | Per Area ($ ha−1) |
Connecticut | 1.24 × 106 | 1.25 × 106 | 1.01 | 1.93 × 105 | 0.16 |
Delaware | 5.04 × 105 | 6.01 × 105 | 1.19 | 9.26 × 104 | 0.18 |
Massachusetts | 1.89 × 106 | 1.73 × 106 | 0.92 | 2.67 × 105 | 0.14 |
Maryland | 2.53 × 106 | 2.69 × 106 | 1.07 | 4.15 × 105 | 0.16 |
Maine | 8.06 × 106 | 5.15 × 106 | 0.64 | 7.93 × 105 | 0.10 |
New Hampshire | 2.28 × 106 | 1.45 × 106 | 0.64 | 2.24 × 105 | 0.10 |
New Jersey | 1.78 × 106 | 2.07 × 106 | 1.17 | 3.19 × 105 | 0.18 |
New York | 1.18 × 107 | 1.01 × 107 | 0.85 | 1.55 × 106 | 0.13 |
Pennsylvania | 1.15 × 107 | 1.25 × 107 | 1.08 | 1.92 × 106 | 0.17 |
Rhode Island | 2.58 × 105 | 2.46 × 106 | 0.95 | 3.79 × 104 | 0.15 |
Vermont | 2.38 × 106 | 1.59 × 106 | 0.67 | 2.45 × 105 | 0.10 |
West Virginia | 6.14 × 106 | 8.20 × 106 | 1.33 | 1.26 × 106 | 0.21 |
(East) | 5.04 × 107 | 4.75 × 107 | 0.94 | 7.32 × 106 | 0.15 |
Iowa | 1.44 × 107 | 2.91 × 107 | 2.02 | 4.48 × 106 | 0.31 |
Illinois | 1.44 × 107 | 2.65 × 107 | 1.84 | 4.09 × 106 | 0.28 |
Indiana | 9.36 × 106 | 1.60 × 107 | 1.71 | 2.47 × 106 | 0.26 |
Michigan | 1.48 × 107 | 1.89 × 107 | 1.28 | 2.90 × 106 | 0.20 |
Minnesota | 2.09 × 107 | 2.49 × 107 | 1.19 | 3.84 × 106 | 0.18 |
Missouri | 1.77 × 107 | 3.05 × 107 | 1.72 | 4.69 × 106 | 0.26 |
Ohio | 1.05 × 107 | 1.46 × 107 | 1.38 | 2.25 × 106 | 0.21 |
Wisconsin | 1.41 × 107 | 2.08 × 107 | 1.48 | 3.20 × 106 | 0.23 |
(Midwest) | 1.16 × 108 | 1.81 × 108 | 1.56 | 2.79 × 107 | 0.24 |
Arkansas | 1.36 × 107 | 1.65 × 107 | 1.21 | 2.54 × 106 | 0.19 |
Louisiana | 1.09 × 107 | 1.46 × 107 | 1.33 | 2.24 × 106 | 0.21 |
Oklahoma | 1.77 × 107 | 2.83 × 107 | 1.60 | 4.35 × 106 | 0.25 |
Texas | 6.61 × 107 | 1.26 × 108 | 1.91 | 1.94 × 107 | 0.29 |
(South Central) | 1.08 × 108 | 1.85 × 108 | 1.71 | 2.86 × 107 | 0.26 |
Alabama | 1.31 × 107 | 1.19 × 107 | 0.91 | 1.83 × 106 | 0.14 |
Florida | 1.36 × 107 | 2.16 × 107 | 1.58 | 3.33 × 106 | 0.24 |
Georgia | 1.49 × 107 | 1.16 × 107 | 0.78 | 1.79 × 106 | 0.12 |
Kentucky | 1.02 × 107 | 1.17 × 107 | 1.15 | 1.80 × 106 | 0.18 |
Mississippi | 1.23 × 107 | 1.24 × 107 | 1.01 | 1.91 × 106 | 0.16 |
North Carolina | 1.26 × 107 | 1.20 × 107 | 0.96 | 1.85 × 106 | 0.15 |
South Carolina | 7.85 × 106 | 6.38 × 106 | 0.81 | 9.83 × 105 | 0.13 |
Tennessee | 1.04 × 107 | 1.09 × 107 | 1.05 | 1.68 × 106 | 0.16 |
Virginia | 1.03 × 107 | 9.12 × 106 | 0.89 | 1.40 × 106 | 0.14 |
(Southeast) | 1.05 × 108 | 1.08 × 108 | 1.02 | 1.66 × 107 | 0.16 |
Colorado | 2.54 × 107 | 2.77 × 107 | 1.09 | 4.26 × 106 | 0.17 |
Kansas | 2.12 × 107 | 4.34 × 107 | 2.04 | 6.68 × 106 | 0.31 |
Montana | 3.51 × 107 | 2.14 × 107 | 0.61 | 3.30 × 106 | 0.09 |
North Dakota | 1.79 × 107 | 1.59 × 107 | 0.89 | 2.44 × 106 | 0.14 |
Nebraska | 1.98 × 107 | 2.79 × 107 | 1.41 | 4.30 × 106 | 0.22 |
South Dakota | 1.92 × 107 | 1.90 × 107 | 0.99 | 2.92 × 106 | 0.15 |
Wyoming | 2.29 × 107 | 2.01 × 107 | 0.88 | 3.10 × 106 | 0.14 |
(Northern Plains) | 1.62 × 108 | 1.75 × 108 | 1.09 | 2.70 × 107 | 0.17 |
Arizona | 2.67 × 107 | 3.11 × 107 | 1.17 | 4.79 × 106 | 0.18 |
California | 3.54 × 107 | 2.51 × 107 | 0.71 | 3.86 × 106 | 0.11 |
Idaho | 1.97 × 107 | 1.35 × 107 | 0.68 | 2.07 × 106 | 0.11 |
New Mexico | 2.84 × 107 | 3.89 × 107 | 1.37 | 5.99 × 106 | 0.21 |
Nevada | 2.69 × 107 | 2.35 × 107 | 0.87 | 3.61 × 106 | 0.13 |
Oregon | 2.40 × 107 | 1.03 × 107 | 0.43 | 1.59 × 106 | 0.07 |
Utah | 1.85 × 107 | 3.01 × 107 | 1.63 | 4.64 × 106 | 0.25 |
Washington | 1.62 × 107 | 7.63 × 106 | 0.47 | 1.18 × 106 | 0.07 |
(West) | 1.96 × 108 | 1.80 × 108 | 0.92 | 2.77 × 107 | 0.14 |
Totals or averages | 7.37 × 108 | 8.77 × 108 | 1.19 | 1.35 × 108 | 0.18 |
Maximum Value < --------------------------------------------------------------------------------------------------------------------------------------------------- > Minimum Value | ||||
---|---|---|---|---|
Greenhouse Gas (GHG) Mitigation Potential | ||||
Account (Example) | Biologically/Physically Non-Constrained Potential | Biologically/Physically Constrained Potential | Economically Constrained Potential | Socially/Politically Constrained Potential 1 |
Soil inorganic carbon (SIC) sequestration potential from atmospheric calcium (Ca2+) and magnesium (Mg2+) deposition | ||||
Order: Mollisols | ||||
Total ($) | 3.98 × 107 | ? | ? | 0–3.98 × 106 |
Per area ($ ha−1) | 0.20 | ? | ? | 0–0.02 |
LRR: N | ||||
Total ($) | 1.15 × 107 | ? | ? | 0–1.15 × 106 |
Per area ($ ha−1) | 0.19 | ? | ? | 0–0.02 |
State: Texas | ||||
Total ($) | 1.94 × 107 | ? | ? | 0–1.94 × 106 |
Per area ($ ha−1) | 0.29 | ? | ? | 0–0.03 |
Region: Midwest | ||||
Total ($) | 2.79 × 107 | ? | ? | 0–2.79 × 106 |
Per area ($ ha−1) | 0.24 | ? | ? | 0–0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikhailova, E.A.; Zurqani, H.A.; Post, C.J.; Schlautman, M.A. Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration. Geosciences 2020, 10, 200. https://doi.org/10.3390/geosciences10050200
Mikhailova EA, Zurqani HA, Post CJ, Schlautman MA. Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration. Geosciences. 2020; 10(5):200. https://doi.org/10.3390/geosciences10050200
Chicago/Turabian StyleMikhailova, Elena A., Hamdi A. Zurqani, Christopher J. Post, and Mark A. Schlautman. 2020. "Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration" Geosciences 10, no. 5: 200. https://doi.org/10.3390/geosciences10050200
APA StyleMikhailova, E. A., Zurqani, H. A., Post, C. J., & Schlautman, M. A. (2020). Assessing Ecosystem Services of Atmospheric Calcium and Magnesium Deposition for Potential Soil Inorganic Carbon Sequestration. Geosciences, 10(5), 200. https://doi.org/10.3390/geosciences10050200