Influence of Tsunami Aspect Ratio on Near and Far-Field Tsunami Amplitude
Abstract
:1. Introduction
2. Methodology
3. Results and Discussions
3.1. Idealized Scenarios in the Basin with Constant Depth
3.1.1. Comparison with Analytical Solution
3.1.2. Wave Decay
3.1.3. Cross-Over Point
3.2. Idealized Sources in the Pacific Ocean
3.2.1. Source AR and Damaging Potential in the Near- and Far-field
3.2.2. Real Events in the Pacific Ocean
4. Short Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Arcas, D.; Segur, H. Seismically generated tsunamis. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1505–1542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Menahem, A.; Rosenman, M. Amplitude patterns of tsunami waves from submarine earthquakes. J. Geophys. Res. Space Phys. 1972, 77, 3097–3128. [Google Scholar] [CrossRef]
- Davies, G.; Griffin, J. Sensitivity of Probabilistic Tsunami Hazard Assessment to Far-Field Earthquake Slip Complexity and Rigidity Depth-Dependence: Case Study of Australia. Pure Appl. Geophys. 2020, 177, 1521–1548. [Google Scholar] [CrossRef] [Green Version]
- Fritz, H.M.; Borrero, J.C. Somalia Field Survey after the December 2004 Indian Ocean Tsunami. Earthq. Spectra 2006, 22, 219–233. [Google Scholar] [CrossRef]
- Okal, E.A. Tsunamigenic Earthquakes: Past and Present Milestones. Pure Appl. Geophys. 2010, 168, 969–995. [Google Scholar] [CrossRef]
- Okal, E.A.; Synolakis, C.E.; Fryer, G.J.; Heinrich, P.; Borrero, J.C.; Ruscher, C.; Arcas, D.; Guille, G.; Rousseau, D. A Field Survey of the 1946 Aleutian Tsunami in the Far Field. Seism. Res. Lett. 2002, 73, 490–503. [Google Scholar] [CrossRef]
- Kowalik, Z.; Horrillo, J.; Knight, W.; Logan, T. Kuril Islands tsunami of November 2006: Impact at Crescent City by distant scattering. J. Geophys. Res. Space Phys. 2008, 113, 01020. [Google Scholar] [CrossRef] [Green Version]
- Mofjeld, H.O.; Gonzalez, F.I.; Titov, V.V.; Newman, J.C. Tsunami scattering provinces in the Pacific Ocean. Geophys. Res. Lett. 2001, 28, 335–337. [Google Scholar] [CrossRef]
- Gica, E.; Teng, M.H.; Liu, P.L.-F.; Titov, V.; Zhou, H. Sensitivity Analysis of Source Parameters for Earthquake-Generated Distant Tsunamis. J. Waterw. Port Coastal Ocean Eng. 2007, 133, 429–441. [Google Scholar] [CrossRef]
- Synolakis, C.; Roush, W. SEISMOLOGY: Enhanced: Tsunamigenic Sea-Floor Deformations. Science 1997, 278, 598–600. [Google Scholar] [CrossRef]
- Fukutani, Y.; Anawat, S.; Imamura, F. Uncertainty in tsunami wave heights and arrival times caused by the rupture velocity in the strike direction of large earthquakes. Nat. Hazards 2016, 80, 1749–1782. [Google Scholar] [CrossRef]
- Williamson, A.; Melgar, D.; Rim, D. The Effect of Earthquake Kinematics on Tsunami Propagation. J. Geophys. Res. Solid Earth 2019, 124, 11639–11650. [Google Scholar] [CrossRef]
- Kawata, Y.; Okumura, Y.; Koshimura, S. Influence of dynamic fault rupture effects on tsunami generation. Proc. Coast. Eng. Conf. Jpn. Soc. Civ. Eng. 2006, 53, 291–295. (In Japanese) [Google Scholar]
- Suppasri, A.; Imamura, F.; Koshimura, S. Effects of the Rupture Velocity of Fault Motion, Ocean Current and Initial Sea Level on the Transoceanic Propagation of Tsunami. Coast. Eng. J. 2010, 52, 107–132. [Google Scholar] [CrossRef]
- Kajiura, K. Tsunami source, energy and the directivity of wave radiation. Bull. Earthq. Res Inst. 1970, 48, 835–869. [Google Scholar]
- Le Gal, M.; Violeau, D.; Benoit, M. Influence of timescales on the generation of seismic tsunamis. Eur. J. Mech. B Fluids 2017, 65, 257–273. [Google Scholar] [CrossRef]
- Geist, E.L. Local Tsunamis and Earthquake Source Parameters. Adv. Geophys. 1998, 39, 117–209. [Google Scholar] [CrossRef]
- Geist, E.L. Rapid tsunami models and earthquake source parameters: Far-field and local applications. ISET J. Earthq. Technol. 2005, 42, 127–136. [Google Scholar]
- Gica, E.; Spillane, M.C.; Titov, V.V.; Chamberlin, C.D.; Newman, J.C. Development of the Forecast Propagation Database for NOAA’s Short-Term Inundation Forecasting for Tsunamis (SIFT); U.S. Department of Commerce, National Oceanic and Atmospheric Administration, Office of Oceanic and Atmospheric Research, Pacific Marine Environmental Laboratory: Seattle, WA, USA, 2008.
- Goda, K.; Mai, P.M.; Yasuda, T.; Mori, N. Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth Planets Space 2014, 66, 105. [Google Scholar] [CrossRef] [Green Version]
- Ioualalen, M. Sensitivity tests on relations between tsunami signal and seismic rupture characteristics: The 26 December 2004 Indian Ocean event case study. Environ. Model. Softw. 2009, 24, 1354–1362. [Google Scholar] [CrossRef]
- Levin, B.W.; Nosov, M. Physics of Tsunamis. Metzler, J.B., Ed.; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Necmioglu, O.; Ozel, N. An Earthquake Source Sensitivity Analysis for Tsunami Propagation in the Eastern Mediterranean. Oceanogr. 2014, 27, 76–85. [Google Scholar] [CrossRef] [Green Version]
- Okal, E.A. Seismic parameters controlling far-field tsunami amplitudes: A review. Nat. Hazards 1988, 1, 67–96. [Google Scholar] [CrossRef]
- Okal, E.A.; Synolakis, C.E. Source discriminants for near-field tsunamis. Geophys. J. Int. 2004, 158, 899–912. [Google Scholar] [CrossRef] [Green Version]
- Pires, C.; Miranda, P.M.A. Sensitivity of the adjoint method in the inversion of tsunami source parameters. Nat. Hazards Earth Syst. Sci. 2003, 3, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Satake, K.; Tanioka, Y. Tsunami generation of the 1993 Hokkaido Nansei-Oki earthquake. Pure Appl. Geophys. PAGEOPH 1995, 144, 803–821. [Google Scholar] [CrossRef]
- Titov, V.V.; Gonzales, F.I.; Mofjeld, H.O.; Newman, J.C. Offshore Forecasting of Alaska-Aleutian Subduction Zone Tsunamis in Hawaii; NOAA Technical Memorandum ERL PMEL-U.S. Government Publishing Office: Seattle, WA, USA, 1999.
- Carrier, G.F.; Yeh, H. Tsunami propagation from a finite source. Comput. Model. Eng. Sci. 2005, 10, 113–121. [Google Scholar] [CrossRef]
- Takahashi, R.; Hatori, T. A model experiment on the tsunami generation from a bottom deformation area of elliptic shape. Bull. Earthq. Res. Inst. 1962, 40, 873–883. [Google Scholar]
- Okal, E.A. Normal Mode Energetics for Far-field Tsunamis Generated by Dislocations and Landslides. Pure Appl. Geophys. 2003, 160, 2189–2221. [Google Scholar] [CrossRef]
- Okal, E.A.; Synolakis, C.E. Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys. J. Int. 2008, 172, 995–1015. [Google Scholar] [CrossRef]
- Yolsal, S.; Taymaz, T. Sensitivity analysis on relations between earthquake source rupture parameters and far-field tsunami waves: Case studies in the Eastern Mediterranean region. Turk. J. Earth Sci. 2010, 19, 313–349. [Google Scholar] [CrossRef]
- Synolakis, C.E.; Bernard, E.N.; Titov, V.V.; Kânoğlu, U.; González, F.I. Validation and Verification of Tsunami Numerical Models. Pure Appl. Geophys. 2008, 165, 2197–2228. [Google Scholar] [CrossRef]
- Titov, V.V.; Synolakis, C.E. Numerical Modeling of Tidal Wave Runup. J. Waterw. Port Coastal Ocean Eng. 1998, 124, 157–171. [Google Scholar] [CrossRef]
- Titov, V.V.; Gonzalez, F.I. Implementation and Testing of the Method of Splitting Tsunami (MOST) Model; NOAA Technical Memorandum ERL PMEL-U.S. Government Publishing Office: Seattle, WA, USA, 1997.
- Okada, Y. Surface deformation due to shear and tensile faults in a half space. Bull. Seismol. Soc. Am. 1985, 75, 1135–1154. [Google Scholar]
- Tozer, B.; Sandwell, D.T.; Smith, W.H.F.; Olson, C.; Beale, J.R.; Wessel, P. Global Bathymetry and Topography at 15 Arc Sec: SRTM15+. Earth Space Sci. 2019, 6, 1847–1864. [Google Scholar] [CrossRef]
- Polyanin, A.D. Linear partial differential equations for Engineers and Scientists; Chapman and Hall/CRC: London, UK; New York, NY, USA; Washington, DC, USA, 2002; pp. 354–356. [Google Scholar]
- Wells, D.; Coppersmith, K. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seismol. Soc. Am. 1994, 84, 974–1002. [Google Scholar]
- Tang, L.; Titov, V.V.; Bernard, E.N.; Wei, Y.; Chamberlin, C.D.; Newman, J.C.; Mofjeld, H.O.; Arcas, D.; Eble, M.C.; Moore, C.; et al. Direct energy estimation of the 2011 Japan tsunami using deep-ocean pressure measurements. J. Geophys. Res. Space Phys. 2012, 117, 08008. [Google Scholar] [CrossRef]
- Gusiakov, V.K. Static displacement on the surface of an elastic space. In Ill-Posed Problems of Mathematical Physics and Interpretation of Geophysical Data; Computer Center of Soviet Academy of Sciences: Novosibirsk, Russia, 1978; pp. 23–51. [Google Scholar]
- Omira, R.; Baptista, M.A.C.V.; Lisboa, F. Tsunami Characteristics Along the Peru–Chile Trench: Analysis of the 2015 Mw8.3 Illapel, the 2014 Mw8.2 Iquique and the 2010 Mw8.8 Maule Tsunamis in the Near-field. Pure Appl. Geophys. 2016, 173, 1063–1077. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sannikova, N.K.; Segur, H.; Arcas, D. Influence of Tsunami Aspect Ratio on Near and Far-Field Tsunami Amplitude. Geosciences 2021, 11, 178. https://doi.org/10.3390/geosciences11040178
Sannikova NK, Segur H, Arcas D. Influence of Tsunami Aspect Ratio on Near and Far-Field Tsunami Amplitude. Geosciences. 2021; 11(4):178. https://doi.org/10.3390/geosciences11040178
Chicago/Turabian StyleSannikova, Natalia K., Harvey Segur, and Diego Arcas. 2021. "Influence of Tsunami Aspect Ratio on Near and Far-Field Tsunami Amplitude" Geosciences 11, no. 4: 178. https://doi.org/10.3390/geosciences11040178
APA StyleSannikova, N. K., Segur, H., & Arcas, D. (2021). Influence of Tsunami Aspect Ratio on Near and Far-Field Tsunami Amplitude. Geosciences, 11(4), 178. https://doi.org/10.3390/geosciences11040178