Physics of Space Weather Phenomena: A Review
Abstract
:1. Introduction
2. Space Weather: The Solar Perspective
2.1. Solar Activity
2.1.1. The Solar Wind
The Source Regions of Solar Wind Streams
2.1.2. CMEs and ICMEs
2.1.3. Solar Flares
2.1.4. Solar Energetic Particles (SEPs)
2.1.5. Filaments (Prominences)
3. Space Weather: Terrestrial Perspective
3.1. Sun–Earth Interaction and Magnetosphere
3.1.1. The Solar Wind–Magnetosphere Interaction
3.1.2. Magnetospheric Dynamics: Current Understanding
3.2. Storm–Substorm Association
3.3. Magnetotail Dynamics
3.3.1. Bursty Bulk Flows, Dipolarization Fronts and Dipolarization Flux Bundles
3.3.2. BBF Size and Magnetotail Flux Transport
3.3.3. The Effects of Preconditioning on Magnetotail Dynamics
3.4. Ring Current and Space Weather
3.4.1. Ring Current Electrons and Effects on Satellites
3.4.2. Ring Current and Inner Magnetosphere Populations
Ring Current and Radiation Belts
Ring Current and Plasmasphere
3.4.3. Ring Current, Ionosphere and Below
3.5. Space Weather Effects on the Earth
3.5.1. Extreme Space Weather
3.5.2. Effect on Technologies
3.5.3. Space Weather—Societal Impacts
3.6. Anthropogenic Space Weather
3.6.1. Geophysical/Geomagnetic Signatures of High-Altitude Nuclear Explosions
3.6.2. Space Weather Effects on Anthropogenic VLF Transmissions
3.6.3. Artificial Radiation Belts
3.7. Solar Energy Variations and Climatic Change
3.7.1. Solar Irradiance Measurements
3.7.2. Solar UV Irradiance
3.7.3. SEPs and Galactic Cosmic Rays
4. Space Weather Predictions and Future Prospective
4.1. Space Climate—Long-Term Variations
4.2. Space Weather Predictions: Current Status
4.2.1. Future Developments: Modelling and Forecasting
4.2.2. Space Weather Prediction by Cosmic Rays
Solar Proton Events
Geomagnetic Storms
4.2.3. Approaches to SEP Forecasting
Empirical Models
5. Space-Based Observations
6. Discussion
7. Summary
8. Some Unanswered Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baker, D.N. What is Space Weather? Adv. Space Res. 1998, 22, 7–16. [Google Scholar] [CrossRef]
- Crosby, N.B.; Rycroft, N.B. ESF network on space weather and the earth’s weather. Phys. Chem. Earth 2001, 28, 605–607. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.P. Space-weather-causes, consequences and predictions. Indian J. Phys. 2003, 77, 611–616. [Google Scholar]
- Singh, A.K.; Siingh, D.; Singh, R.P. Space Weather: Physics, Effects and Predictability. Surv. Geophys. 2010, 31, 581–638. [Google Scholar] [CrossRef] [Green Version]
- Austin, H.J.; Savani, N.P. Skills for forecasting space weather. Weather 2018, 73, 362–366. [Google Scholar] [CrossRef]
- Lilensten, J.; Belehaki, A. Developing the scientific basis for monitoring, modelling and predicting space weather. Acta Geophys. 2008, 57, 1–14. [Google Scholar] [CrossRef]
- Nagai, T.; Shinohara, I.; Singer, H.J.; Rodriguez, J.; Onsager, T.G. Proton and Electron Injection Path at Geosynchronous Altitude. J. Geophys. Res. 2019, 124, 4083–4103. [Google Scholar] [CrossRef]
- Califf, S.; Early, D.; Grotenhuis, M.; Loto’Aniu, T.M.; Kronenwetter, J. Correcting the Arcjet Thruster Disturbance in GOES-16 Magnetometer Data. Space Weather 2020, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Schrijver, C.; Kauristie, K.; Aylward, A.D.; Denardini, C.M.; Gibson, S.E.; Glover, A.; Gopalswamy, N.; Grande, M.; Hapgood, M.; Heynderickx, D.; et al. Understanding space weather to shield society: A global road map for 2015–2025 commissioned by COSPAR and ILWS. Adv. Space Res. 2015, 55, 2745–2807. [Google Scholar] [CrossRef]
- Charity, M.N.; Mitchell, N. What Color Are the Stars? 2007. Charity’s webpage 2807. Available online: http://www.vendian.org/mncharity/dir3/starcolor/ (accessed on 25 November 2020).
- Gopalaswamy, N.; Miki’c, Z.; Maia, D.; Alexander, D.; Cremades, H.; Kaufmann, P.; Tripathi, D.; Wang, Y.M. The Pre-CME Sun. Space Sci. Rev. 2006, 123, 303–339. [Google Scholar] [CrossRef]
- Dikpati, M.; Toma, G.; Gilman, P.A. Predicting the Strength of Solar Cycle 24 using Flux-Transport Dynamo-based Tool. Geophys. Res. Lett. 2006, 33, L05102. [Google Scholar] [CrossRef] [Green Version]
- De Jager, C.; Duhau, S. Forecasting Parameters of Sunspot Cycle 24 and Beyond. J. Atmos. Sol. Terr. Phys. 2009, 71, 239–245. [Google Scholar] [CrossRef]
- Singh, A.K.; Tonk, A. Solar activity during first six years of solar cycle 24 and 23: A comparative study. Astrophys. Space Sci. 2014, 353, 367–371. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhargawa, A. An early prediction of 25th solar cycle using Hurst exponent. Astrophys. Space Sci. 2017, 362, 199. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhargawa, A. Prediction of declining solar activity trends during solar cycles 25 and 26 and indication of other solar minimum. Astrophys. Space Sci. 2019, 364, 12. [Google Scholar] [CrossRef]
- Bhargawa, A.; Singh, A.K. Elucidation of some solar parameters observed during solar cycles 21–24. Adv. Space Res. 2021. [Google Scholar] [CrossRef]
- Lindsey, C.; Braun, D.C. Basic Principles of Solar Acoustic Holography—(Invited Review). Sol. Phys. 2000, 192, 261–284. [Google Scholar] [CrossRef]
- Hale, G.E. On the Probable Existence of a Magnetic Field in Sun-Spots. Astrophys. J. 1908, 28, 315. [Google Scholar] [CrossRef]
- Vernazza, J.E.; Avrett, E.H.; Loeser, R. Structure of the solar chromosphere. III—Models of the EUV brightness components of the quiet-sun. Astrophys. J. Suppl. Ser. 1981, 45, 635–725. [Google Scholar] [CrossRef]
- Marov, M.Y. The Sun and Heliosphere. In The Fundamentals of Modern Astrophysics; Springer: New York, NY, USA, 2015. [Google Scholar]
- Kosovichev, A.G.T.; Duvall, L., Jr.; Scherrer, P.H. Time-distance inversion methods and results. Sol. Phys. 2000, 192, 159–176. [Google Scholar] [CrossRef]
- Karinen, A.; Mursula, K.; Ulich, T.; Manninen, J. Does the magnetosphere behave differently on weekends? Ann. Geophys. 2002, 20, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Tsurutani, B.T.; Gonzalez, W.D.; Gonzalez, A.L.C. Corotating solar wind streams recurrent geomagnetic activity: A review. J. Geophy. Res. 2006, 111, A07S01. [Google Scholar] [CrossRef] [Green Version]
- Baker, B.; Gupta, O.; Raskar, R.; Naik, N. Accelerating neural architecture search using performance prediction. In Proceedings of the ICLR 2018, Vancouver, BC, Canada, 30 April–3 May 2018. [Google Scholar]
- Reeves, G.D.; McAdams, K.L.; Friedel, R.H.W. Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 2018, 30, 36–40. [Google Scholar] [CrossRef]
- Möstl, C.; Farrugia, C.J.; Temmer, M.; Miklenic, C.; Veronig, A.M.; Galvin, A.B.; Leitner, M.; Biernat, H.K. Linking remote imagery of a coronal mass ejection to its in situ signatures at 1 AU. Astrophys. J. 2009, 705, L180–L185. [Google Scholar] [CrossRef]
- McGregor, S.; Dhuri, D.; Berea, A.; Munoz-Jaramillo, A. FlareNet: A Deep Learning Framework for Solar Phenomena Prediction. In Proceedings of the NIPS Workshop on Deep Learning for Physical Sciences, Long Beach, CA, USA, 8 December 2017. [Google Scholar]
- Singh, A.K.; Tonk, A.; Singh, R. Prospective of coronal mass ejections solar flares geomagnetic storms. Indian J. Phys. 2014, 88, 1127–1133. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhargawa, A.; Tonk, A. Higher-speed coronal mass ejections and their geoeffectiveness. J. Astrophys. Astron. 2018, 39, 32. [Google Scholar] [CrossRef]
- Dryer, M.; Smart, D. Dynamical models of coronal transients and interplanetary disturbances. Adv. Space Res. 1984, 4, 291–301. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.P.; Siingh, D. Solar Variability, Galactic Cosmic Rays and Climate: A review. Earth Sci. India 2014, 7, 15–36. [Google Scholar] [CrossRef]
- Kappenman, J.G. Space Weather and the Vulnerability of Electric Power Grids. In Effects of Space Weather on Technology Infrastructure. NATO Science Series II: Mathematics; Daglis, I.A., Ed.; Springer: Dordrecht, The Netherlands, 2004. [Google Scholar]
- Rycroft, M.J. Space Weather and Hazards to Application Satellites. In Handbook of Satellite Applications; Springer: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Forbes, T.G. A review on the genesis of coronal mass ejections. J. Geophys. Res. 2000, 105, 23153–23165. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Nakamura, R.; Turc, L. The Scientific Foundations of Forecasting Magnetospheric Space Weather. Space Sci. Rev. 2017, 212, 1221–1252. [Google Scholar]
- Provornikova, E.; Laming, J.M.; Lukin, V.S. Plasma Compression in Magnetic Reconnection Regions in the Solar Corona. Astrophys. J. 2016, 825, 55–69. [Google Scholar] [CrossRef] [Green Version]
- Weimer, D.R.; King, J.H. Improved calculations of interplanetary magnetic field phase front angles and propagation time delays. J. Geophys. Res. 2008, 113, A01105. [Google Scholar] [CrossRef] [Green Version]
- Kakad, B.; Kakad, A.; Ramesh, D.S.; Lakhina, G.S. Diminishing activity of recent solar cycles (22–24) and their impact on geospacer. J. Space Weather Space Clim. 2019, 9, A1. [Google Scholar] [CrossRef]
- Wik, M.; Pirjola, R.; Lundstedt, H.; Viljanen, A.; Wintoft, P.; Pulkkinen, A. Space weather events in July 1982 and October 2003 and the effects of geomagnetically induced currents on Swedish technical systems. Ann. Geophys. 2009, 27, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Cohen, O.; Kashyap, V.L.; Drake, J.J.; Sokolov, I.V.; Gombosi, T.I. The dynamics of stellar coronae harbouring hot Jupiters. II. A space weather event on a hot Jupiter. Astrophy. J. 2011, 738, 2. [Google Scholar] [CrossRef]
- Feng, X.; Zhong, D.; Xiang, C.; Zhang, Y. GPU Computing in Space Weather Modeling. ASP Conf. Ser. 2013, 474, 131–139. [Google Scholar]
- García-Rigo, A.; Núñez, M.; Qahwaji, R.; Ashamari, O.; Jiggens, P. Prediction warning system of SEP events solar flares for risk estimation in space launch operations. J. Space Weather Space Clim. 2016, 6, A28. [Google Scholar] [CrossRef] [Green Version]
- Amari, T.; Luciani, J.F.; Aly, J.J.; Mikic, Z.; Linker, J. Coronal Mass Ejection: Initiation, Magnetic Helicity, and Flux Ropes. I. Boundary Motion–driven Evolution. Astrophys. J. 2003, 585, 1073–1086. [Google Scholar] [CrossRef] [Green Version]
- Milan, S.E.; Clausen, L.B.N.; Coxon, J.C.; Carter, J.A.; Walach, M.-T.; Laundal, K.; Østgaard, N.; Tenfjord, P.; Reistad, J.P.; Snekvik, K.; et al. Overview of Solar Wind–Magnetosphere–Ionosphere–Atmosphere Coupling and the Generation of Magnetospheric Currents. Space Sci. Rev. 2017, 206, 547–573. [Google Scholar] [CrossRef]
- Neugebauer, M. Comment on the abundances of rotational and tangential discontinuities in the solar wind. J. Geophys. Res. 2006, 111, 4. [Google Scholar] [CrossRef]
- Huttunen, K.E.J.; Koskinen, H.; Schwenn, R. Variability of magnetospheric storms driven by different solar wind perturbations. J. Geophys. Res. 2002, 107. [Google Scholar] [CrossRef]
- Huttunen, K.E.J.; Kilpua, S.P.; Pulkkinen, A.; Viljanen, A.; Tanskanen, E. Solar wind drivers of large geomagnetically induced currents during the solar cycle 23. Space Weather 2002, 6. [Google Scholar] [CrossRef] [Green Version]
- Gnevyshev, M. Essential features of the 11-year solar cycle. Sol. Phys. 1977, 51, 175–183. [Google Scholar] [CrossRef]
- McComas, D.J.; Ebert, R.W.; Elliot, H.A.; Goldstein, B.E.; Gosling, J.T.; Schwadron, N.A.; Skoug, J. Weaker solar wind from the polar coronal holes and the whole Sun. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Nagai, T.; Fujimoto, M.; Nakamura, R.; Baumjohann, W.; Ieda, A.; Shinohara, I.; Machida, S.; Saito, Y.; Mukai, T. Solar wind control of the radial distance of the magnetic reconnection site in the magnetotail. J. Geophys. Res. 2005, 110, A09208. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, A.; Anastasiadis, A.; Sandberg, I.; Jiggens, P. Nowcasting of Solar Energetic Particle Events using near real-time Coronal Mass Ejection characteristics in the framework of the FORSPEF tool. J. Space Weather Space Clim. 2018, 8, A37. [Google Scholar] [CrossRef]
- Odstrcil, D.; Pizzo, V.J.; Arge, C.N. Propagation of the 12 May 1997 interplanetary coronal mass ejection in evolving solar wind structures. J. Geophys. Res. 2005, 106, A02. [Google Scholar] [CrossRef]
- Phan, T.D.; Gosling, J.T.; Paschmann, G.; Pasma, C.; Drake, J.F.; Oieroset, M.; Larson, D.; Lin, R.P.; Davis, M.S. The dependence of magnetic reconnection on plasma beta magnetic shear: Evidence from solar wind observations Astrophys. J. Lett. 2010, 719, L199–L203. [Google Scholar]
- Pulkkinen, T.I.; Dimmock, A.P.; Lakka, A.; Osmane, A.; Kilpua, E.; Myllys, M.; Tanskanen, E.I.; Viljanen, A. Magnetosheath control of solar wind-magnetosphere coupling efficiency. J. Geophys. Res. Space Phys. 2016, 121, 8728–8739. [Google Scholar] [CrossRef] [Green Version]
- Roussev, I.I.; Gombosi, T.I.; Sokolov, I.V.; Velli, M.; Manchester, W.; De Zeeuw, D.L.; Liewer, P.; Toth, G.; Luhmann, J. A three-dimensional model of the solar wind incorporating solar magnetogram observations. Astrophys. J. 2003, 595, L57. [Google Scholar] [CrossRef]
- Sakao, T.; Kano, R.; Narukage, N.; Kotoku, J.; Bando, T.; Deluca, E.E.; Lundquist, L.L.; Tsuneta, S.; Harra, L.K.; Katsukawa, Y.; et al. Continuous Plasma Outflows from the Edge of a Solar Active Region as a Possible Source of Solar Wind. Science 2007, 318, 1585–1588. [Google Scholar] [CrossRef]
- Borovsky, J.E.; Denton, M.H.; Denton, R.E.; Jordanova, V.K.; Krall, J. Estimating the effects of ionospheric plasma on solar wind/magnetosphere coupling via mass loading of dayside reconnection: Ion-plasma-sheet oxygen, plasmaspheric drainage plumes, and the plasma cloak. J. Geophys. Res. 2013, 118, 5695–5719. [Google Scholar] [CrossRef] [Green Version]
- Cane, H.V.; Richardson, I.G. Interplanetary coronal mass ejections in the near-Earth solar wind during 1996–2002. J. Geophys. Res. 2003, 108, 1156. [Google Scholar] [CrossRef]
- Case, N.A.; Wild, J.A. A statistical comparison of solar wind propagation delays derived from multi spacecraft techniques. J. Geophys. Res. 2012, 117, A02101. [Google Scholar]
- Wilhelm, K.; Dammasch, I.E.; Marsch, E.; Hassler, D.M. On the source regions of the fast solar wind in polar coronal holes. Astrono. Astrophys. 2000, 353, 749–756. [Google Scholar]
- DeForest, C.E.; Howard, T.A.; Tappin, S.J. Observations of detailed structure in the solar wind at 1 AU with STEREO/HI-2. Astrophys. J. 2011, 738, 103. [Google Scholar] [CrossRef]
- Liu, Y.D.; Luhmann, J.G.; Kajdič, P.; Kilpua, E.; Lugaz, N.; Nitta, N.V.; Moestl, C.; Lavraud, B.; Bale, S.D.; Farrugia, C.J.; et al. Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 2014, 5, 3481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiggens, P.; Clavie, C.; Evans, H.; O’Brien, T.P.; Witasse, O.; Mishev, A.L.; Nieminen, P.; Daly, E.; Kalegaev, V.; Vlasova, N.; et al. In situ data and effect correlation during September 2017 solar particle event. Space Weather 2019, 17, 99–117. [Google Scholar] [CrossRef] [Green Version]
- Kilpua, E.K.J.; Hietala, H.; Turner, D.L.; Koskinen, H.; Pulkkinen, T.I.; Rodriguez, J.V.; Reeves, G.D.; Claudepierre, S.G.; Spence, H.E. Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 2015, 42. [Google Scholar] [CrossRef] [Green Version]
- Tousey, R. The solar corona. Space Res. 1973, 13, 713–730. [Google Scholar]
- MacQueen, R.M.; Csoeke-Poeckh, A.; Hildner, E.; House, L.; Reynolds, R.; Stanger, A.; TePoel, H.; Wagner, W. The High Altitude Observatory Coronagraph/Polarimeter on the Solar Maximum Mission. Sol. Phys. 1980, 65, 91–107. [Google Scholar] [CrossRef]
- Brueckner, G.E.; Howard, R.A.; Koomen, M.J.; Korendyke, C.M.; Michels, D.J.; Moses, J.D.; Socker, D.G.; Dere, K.P.; Lamy, P.L.; Llebaria, A.; et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 1995, 162, 357–402. [Google Scholar] [CrossRef]
- Kaiser, M.L.; Kucera, T.; Davila, J.M.; Cyr, O.C.; Guhathakurta, M.; Christian, E. The STEREO Mission: An Introduction. Space Sci. Rev. 2008, 136, 5–16. [Google Scholar] [CrossRef]
- Howard, R.A.; Moses, J.D.; Vourlidas, A.; Newmark, J.S.; Socker, D.G.; Plunkett, S.P.; Korendyke, C.M.; Cook, J.W.; Hurley, A.; Davila, J.M.; et al. Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 2008, 136, 67–115. [Google Scholar] [CrossRef] [Green Version]
- Luhmann, J.G.; Curtis, D.W.; Schroeder, P.; McCauley, J.; Lin, R.P.; Larson, D.E.; Bale, S.D.; Sauvaud, J.A.; Aoustin, C.; Mewaldt, R.A.; et al. STEREO IMPACT investigation goals, measurements, and data products overview. Space Sci. Rev. 2008, 136, 117–184. [Google Scholar] [CrossRef] [Green Version]
- Lugaz, N.; Manchester, W.B.; Roussev, I.I.; Tóth, G.; Gombosi, T.I. Numerical investigation of the homologous coronal mass ejection events from active region 9236. Astrophys. J. 2007, 659, 788–800. [Google Scholar] [CrossRef]
- Tóth, G.; Zeeuw, D.L.D.; Gombosi, T.I.; Manchester, W.B.; Ridley, A.J.; Sokolov, I.V.; Roussev, I.I. Sun to thermosphere simulation of the October 28–30, 2003 storm with the Space Weather Modeling Framework. Space Weather 2007, 5, S06. [Google Scholar] [CrossRef]
- Manchester, W.B.; Vourlidas, A.; Tóth, G.; Lugaz, N.; Roussev, I.I.; Sokolov, I.V.; Gombosi, T.I.; De Zeeuw, D.L.; Opher, M. Three-dimensional MHD Simulation of the 2003 October 28 Coronal Mass Ejections: Comparison with LASCO Coronagraph Observations. Astro. Phy. J. 2008, 684, 2. [Google Scholar] [CrossRef] [Green Version]
- Webb, D.F.; Howard, T.A. Coronal Mass Ejections: Observations. Living Rev. Sol. Phys. 2012, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.F. Coronal Mass Ejections: Models and Their Observational Basis. Living Rev. Sol. Phys. 2011, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Hundhausen, A.J. Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984–1989. J. Geophys. Res. 1993, 98, 177. [Google Scholar] [CrossRef]
- Howard, R.A.; Brueckner, G.E.; St Cyr, O.C.; Biesecker, D.A.; Dere, K.P.; Koomen, M.J.; Korendyke, C.M.; Lamy, P.L.; Llebaria, A. Observations of CMEs from SOHO/LASCO; in Washington, D.C. Am. Geophys. Union Geophys. Monogr. Ser. 1997, 99, 17–26. [Google Scholar]
- Colaninno, R.C.; Vourlidas, A. First determination of the true mass of coronal mass ejections: A novel approach to using the two STEREO viewpoints. Astrophys. J. 2009, 698, 852–858. [Google Scholar] [CrossRef] [Green Version]
- Hundhausen, A.J.; Burkepile, J.T.; Cyr, O.C. Speeds of coronal mass ejections: SMM observations from 1980 and 1984–1989. J. Geophys. Res. 1994, 99, 6543–6552. [Google Scholar] [CrossRef]
- Davis, C.J.; Davies, J.A.; Lockwood, M.; Rouillard, A.P.; Eyles, C.J.; Harrison, R.A. Stereoscopic imaging of an Earth-impacting solar coronal mass ejection: A major milestone for the STEREO mission. Geophys. Res. Lett. 2009, 36, L08102. [Google Scholar] [CrossRef] [Green Version]
- Byrne, J.; Maloney, S.; McAteer, R.; Refojo, J.M.; Gallagher, P.T. Propagation of an Earth-directed coronal mass ejection in three dimensions. Nat. Commun. 2010, 1, 74. [Google Scholar] [CrossRef] [Green Version]
- Howard, T.A.; DeForest, C.E. Inner heliospheric flux rope evolution via imaging of coronal mass ejections. Astrophys. J. 2012, 746, 64. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Davies, J.A.; Luhmann, J.G.; Vourlidas, A.; Bale, S.D.; Lin, R.P. Geometric triangulation of imaging observations to track coronal mass ejections continuously out to 1 AU. Astrophys. J. 2010, 710, L82–L87. [Google Scholar] [CrossRef] [Green Version]
- Manchester, W.; Kilpua, E.K.J.; Liu, Y.D.; Lugaz, N.; Riley, P.; Török, T.; Vršnak, B. The Physical Processes of CME/ICME Evolution. Space Sci. Rev. 2017, 212, 1159–1219. [Google Scholar] [CrossRef] [Green Version]
- Manchester, W.B.; Gombosi, T.I.; De Zeeuw, D.L.; Sokolov, I.V.; Roussev, I.I.; Powell, K.G.; Kóta, J.; Tóth, G.; Zurbuchen, T.H. Coronal Mass Ejection Shock and Sheath Structures Relevant to Particle Acceleration. Astrophys. J. 2005, 622, 1225–1239. [Google Scholar] [CrossRef] [Green Version]
- Wood, B.E.; Howard, R.A. An empirical reconstruction of the 2008 April 26 coronal mass ejection. Astrophys. J. 2009, 702, 901–910. [Google Scholar] [CrossRef]
- Werner, A.L.E.; Yordanova, E.; Dimmock, A.P.; Temmer, M. Modeling the Multiple CME Interaction Event on 6–9 September 2017 with WSA-ENLIL+Cone. Space Weather 2019, 17, 357–369. [Google Scholar] [CrossRef]
- Yurchyshyn, V.; Hu, Q.; Lepping, R.; Lynch, B.; Krall, J. Orientations of LASCO Halo CMEs and their connection to the flux rope structure of interplanetary CMEs. Adv. Space Res. 2007, 40, 1821–1826. [Google Scholar] [CrossRef] [Green Version]
- Möstl, C.; Miklenic, C.; Farrugia, C.J.; Temmer, M.; Veronig, A.; Galvin, A.B.; Vršnak, B.; Biernat, H.K. Two spacecraft reconstruction of a magnetic cloud and comparison to its solar source. Ann. Geophys. 2008, 26, 3139–3152. [Google Scholar] [CrossRef] [Green Version]
- Manchester, W.B.; Van Der Holst, B.; Lavraud, B. Flux rope evolution in interplanetary coronal mass ejections: The 13 May 2005 event. Plasma Phys. Control. Fusion 2014, 56, 1–11. [Google Scholar] [CrossRef]
- Burlaga, L.F. Magnetic loop behind an interplanetary shock: Voyager, Helios and MP-8 observations. J. Geophys. Res. 1981, 86, 6673. [Google Scholar] [CrossRef]
- Burlaga, L.F. Magnetic clouds and force-free fields with constant alpha. J. Geophys. Res. 1988, 93, 7217–7224. [Google Scholar] [CrossRef]
- Lepping, R.P.; Burlaga, L.F.; Jones, J.A. Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. Space Phys. 1990, 95, 957–965. [Google Scholar] [CrossRef]
- Hu, Q.; Sonnerup, B.U.Ö. Reconstruction of magnetic clouds in the solar wind: Orientations configurations. J. Geophys. Res. 2002, 107, 1142. [Google Scholar] [CrossRef]
- Liu, Y.; Luhmann, J.G.; Huttunen, K.E.J.; Lin, R.P.; Bale, S.; Russell, C.; Galvin, A.B. Reconstruction of the 2007 May 22 Magnetic Cloud: How Much Can We Trust the Flux-Rope Geometry of CMEs? Astrophys. J. 2008, 677, L133. [Google Scholar] [CrossRef] [Green Version]
- Gosling, J.T.; Skoug, R.M.; Feldman, W.C. Solar wind electron halo depletions at 90 degree pitch angle. Geophys. Res. Lett. 2001, 28, 4155–4158. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation. Geophys. Res. Lett. 2004, 31, L18804. [Google Scholar] [CrossRef] [Green Version]
- Gosling, J.T. Coronal Mass Ejections Magnetic Flux Ropes in Interplanetary Space in Physics of Magnetic Flux Ropes; Russell, C.T., Priest, E.R., Lee, L.C., Eds.; AGU Geophys. Monogr. Ser.; AGU: Washington, DC, USA, 1990; Volume 58, pp. 343–364. [Google Scholar]
- Forbes, T.G. Magnetic reconnection in solar flares. Geophys. Astrophys. Fluid Dyn. 1991, 62, 15–36. [Google Scholar] [CrossRef]
- Maehara, H.; Shibayama, T.; Notsu, S.; Yuta Notsu, Y.; Nagao, T.; Kusaba, S.; Honda, S.; Nogami, D.; Shibata, K. Super flares on solar-type stars. Nature 2012, 485, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Shibayama, T.; Maehara, H.; Notsu, S.; Notsu, Y.; Nagao, T.; Honda, S.; Ishii, T.T.; Nogami, D.; Shibata, K. Super flares on solar-type stars observed with Kepler. I. Statistical properties of super flares. Astrophys. J. Suppl. 2013, 209, 05. [Google Scholar] [CrossRef] [Green Version]
- Shibata, K.; Magara, T. Solar Flares: Magnetohydrodynamic Processes. Living Rev. Sol. Phys. 2011, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Carrington, R.C. Description of a Singular Appearance seen in the Sun on 1 September 1859. Mon. Not. R. Astron. Soc. 1859, 20, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Hodgson, R. On a curious Appearance seen in the Sun. Mon. Not. R. Astron. Soc. 1859, 20, 15–16. [Google Scholar] [CrossRef] [Green Version]
- Zuccarello, F.P.; Aulanier, G.; Dudik, J.; Démoulin, P.; Schmieder, B.; Gilchrist, S.A. Vortex and Sink Flows in Eruptive Flares as a Model for Coronal Implosions. Astrophys. J. 2017, 837, 115. [Google Scholar] [CrossRef] [Green Version]
- Camporeale, E.; Chu, X.; Agapitov, O.V.; Bortnik, J. On the Generation of Probabilistic Forecasts from Deterministic Models. Space Weather 2019, 17, 455–475. [Google Scholar] [CrossRef]
- Fan, Y. Magnetic Fields in the Solar Convection Zone. Living Rev. Sol. Phys. 2009, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Grayson, J.A.; Krucker, S.; Lin, R.P. A statistical study of spectral hardening in solar flares and related solar energetic particle events. Astrophys. J. 2009, 707, 1588–1594. [Google Scholar] [CrossRef] [Green Version]
- Sakurai, T. A New Approach to the Force-Free Field and Its Application to the Magnetic Field of Solar Active Regions. Astronom. Soci. Jpn. 1979, 31, 209–230. [Google Scholar]
- Kahler, S.W. Solar flares and coronal mass ejections. Annu. Rev. Astron. Astrophys. 1992, 30, 113–141. [Google Scholar] [CrossRef]
- Siingh, D.; Singh, R.P.; Singh, A.K.; Kulkarni, M.N.; Gautam, A.S.; Singh, A.K. Solar Activity, Lightning and Climate. Surv. Geophys. 2011, 32, 659–703. [Google Scholar] [CrossRef]
- Rust, D.M. Chromospheric explosions and satellite sunspots. Symp. Int. Astron. Union 1968, 35, 77–84. [Google Scholar] [CrossRef] [Green Version]
- Martres, M.J.; Michard, R.; Iscovici, I.S.; Tsap, T.T. Étude de la localisation des éruptions dans la structure magnétique évolutive des régions actives solaires. Sol. Phy. 1968, 5, 187–206. [Google Scholar] [CrossRef]
- Heyvaerts, J.; Priest, E.R.; Rust, D.M. An emerging flux model for the solar flare phenomenon. Astrophys. J. 1977, 216, 123–137. [Google Scholar] [CrossRef]
- Martin, S.F.; Marquette, W.H.; Bilimoria, R. The Solar Cycle Pattern in the Direction of the Magnetic Field along the Long Axes of Polar Filaments. In The Solar Cycle; Harvey, K.L., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 27, p. 53. [Google Scholar]
- Feynman, J.; Martin, S.F. The initiation of coronal mass ejections by newly emerging magnetic flux. J. Geophys. Res. 1995, 100, 3355–3367. [Google Scholar] [CrossRef]
- Giamini, S.A.; Jiggens, P.; Anastasiadis, A.; Sandberg, A.A.; Aran, A.; Vainio, R.; Papadimitriou, C.; Papaioannou, A.; Tsigkanos, A.; Paouris, E.; et al. Prediction of Solar Proton Event Fluence spectra from their Peak flux spectra. J. Space Weather Space Clim. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Richardson, I.G.; Von Rosenvinge, T.T.; Cane, H.V.; Christian, E.R.; Cohen, C.M.S.; Labrador, A.W.; Leske, R.A.; Mewaldt, R.A.; Wiedenbeck, M.E.; Stone, E.C. > 25 MeV proton events observed by the High Energy Telescopes on the STEREO A and B spacecraft and/or at Earth during the first seven years of the STEREO mission. Sol. Phys. 2014, 289, 3059–3107. [Google Scholar] [CrossRef]
- Wijsen, N.; Aran, A.; Pomoell, J.; Poedts, S. Modelling three-dimensional transport of solar energetic protons in a corotating interaction region generated with EUHFORIA. Astron. Astrophys. 2019, 622, A28. [Google Scholar] [CrossRef]
- Dalla, S.; Balogh, A.; Krucker, S.; Posner, A.; Müller-Mellin, R.; Anglin, J.D.; Hofer, M.Y.; Marsden, R.G.; Sanderson, T.R.; Tranquille, C.; et al. Properties of high heliolatitude solar energetic particle events and constraints on models of acceleration and propagation. Geophys. Res. Lett. 2003, 30, 8035. [Google Scholar] [CrossRef] [Green Version]
- Van Hollebeke, M.A.I.; Sung, L.S.M.; McDonald, F.B. The variation of solar proton energy spectra and size distribution with heliolongitude. Sol. Phys. 1975, 41, 189–223. [Google Scholar] [CrossRef]
- Cane, H.V.; Reames, D.V.; Von Rosenvinge, T.T. The role of interplanetary shocks in the longitude distribution of solar energetic particles. J. Geophys. Res. 1988, 93, 9555–9567. [Google Scholar] [CrossRef]
- Cohen, C.M.S. Observations of Energetic Storm Particles: An Overview. In Solar Eruptions and Energetic Particles; American Geophysical Union: Washington, DC, USA, 2006. [Google Scholar] [CrossRef] [Green Version]
- Klein, K.L.; Trottet, G.; Klassen, A. Energetic Particle Acceleration and Propagation in Strong CME-Less Flares. Sol. Phys. 2010, 263, 185–208. [Google Scholar] [CrossRef]
- Klein, K.L.; Dalla, S. Acceleration and Propagation of Solar Energetic Particles. Space Sci. Rev. 2017, 212, 1107–1136. [Google Scholar] [CrossRef]
- Marque, C.; Posner, A.; Klein, K. Solar Energetic Particles and Radio-silent Fast Coronal Mass Ejections. Astrophys. J. 2006, 642, 1222–1235. [Google Scholar] [CrossRef]
- Mason, G.M.; Nitta, N.V.; Wiedenbeck, M.E.; Innes, D.E. Evidence for a common acceleration mechanism for enrichments of 3He and heavy ions in impulsive SEP events. Astrophys. J. 2016, 823. [Google Scholar] [CrossRef]
- Trottet, G.; Samwel, S.; Klein, K.L.; Dudok deWit, T.; Miteva, R. Statistical evidence for contributions of flares and coronal mass ejections to major solar energetic particle events. Sol. Phys. 2015, 290, 819–839. [Google Scholar] [CrossRef]
- Sato, T.; Kataoka, R.; Shiota, D.; Kubo, Y.; Ishii, M.; Yasuda, H.; Miyake, S.; Miyoshi, Y.; Ueno, H.; Nagamatsu, A. Nowcast and forecast of galactic cosmic ray (GCR) and solar energetic particle (SEP) fluxes in magnetosphere and ionosphere—extension of WASAVIES to Earth orbit. J. Space Weather Space Clim. 2019, 9, A9. [Google Scholar] [CrossRef] [Green Version]
- Vainio, R.; Desorgher, L.; Heynderickx, D.; Storini, M.; Flückiger, E.; Horne, R.B.; Kovaltsov, G.A.; Kudela, K.; Laurenza, M.; McKenna-Lawlor, S.; et al. Dynamics of the Earth’s particle radiation environment. Space Sci. Rev. 2009, 147, 187–231. [Google Scholar] [CrossRef]
- Engvold, O. Thermodynamic models and fine structure of prominences. Sol. Phys. 1980, 67, 351–355. [Google Scholar] [CrossRef]
- Sterling, A.C.; Moore, R.L.; Freeland, S.L. Insights into filament eruption onset from solar dynamics observatory observations. Astrophys. J. Lett. 2011, 731, L3. [Google Scholar] [CrossRef]
- Tripathi, D.; Reeves, K.K.; Gibson, S.E.; Srivastava, A.; Joshi, N.C. SDO/AIA observations of a partially erupting prominence. Astrophys. J. 2013, 778, 2. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.F.; Harra, L.K.; Fang, C. Imaging and spectroscopic observations of a filament channel and the implications for the nature of counter streaming. Astrophy. J. 2014, 784, 1. [Google Scholar] [CrossRef] [Green Version]
- Engvold, O.; Vial, J.C.; Skumanich, A. The Sun as a Guide to Stellar Physics; Elsevier Inc.: Amsterdam, The Netherlands, 2019. [Google Scholar] [CrossRef]
- Lilensten, J.; Coates, A.J.; Dehant, V.; de Wit, T.D.; Horne, R.B.; Leblanc, F.; Luhmann, J.; Woodfield, E.; Barthélemy, M. What characterizes planetary space weather? Astron Astrophys. Rev. 2014, 22, 79. [Google Scholar] [CrossRef] [Green Version]
- Lanzerotti, L.J.; Thomson, D.J.; Maclennan, C.G. Engineering issues in space weather. In Modern Radio Science; Stuchly, M.A., Ed.; Wiley-IEEE Press: Hoboken, NJ, USA, 1999; pp. 25–51. [Google Scholar]
- Singh, A.K. Remote Sensing of Earth’s Plasmasphere. J. Advan. Geosci. 2010, 21, 415–427. [Google Scholar]
- Dungey, J.W. Interplanetary Magnetic Field and the Auroral Zones. Phys. Rev. Lett. 1961, 6, 47–48. [Google Scholar] [CrossRef]
- Karimabadi, H.; Roytershteyn, V.; Vu, H.X.; Omelchenko, Y.A.; Scudder, J.; Daughton, W.; Dimmock, A.; Nykyri, K.; Wan, M.; Sibeck, D.; et al. The link between shocks, turbulence, and magnetic reconnection in collision less plasmas. Phys. Plasmas 2014, 42. [Google Scholar] [CrossRef]
- von Alfthan, S.; Pokhotelov, D.; Pfau-Kempf, Y.; Hoilijoki, S.; Honkonen, I.; Sandroos, A.; Palmroth, M. Vlasiator: First global hybrid-Vlasov simulations of Earth’s foreshock and magnetosheath. J. Atmos. Solar Terr. Phys. 2014, 120, 24–35. [Google Scholar] [CrossRef]
- Baker, D.N.; Kanekal, S.G.; Hoxie, V.C.; Henderson, M.G.; Li, X.; Spence, H.; Elkington, S.R.; Friedel, R.H.W.; Goldstein, J.; Hudson, M.K.; et al. A long lived relativistic electron storage ring embedded in Earth’s outer Van Allen belt. Science 2013, 34. [Google Scholar] [CrossRef]
- Thorne, R.M.; Li, W.; Ni, B.; Ma, Q.; Bortnik, J.; Chen, L.; Baker, D.N.; Spence, H.; Reeves, G.; Henderson, M.; et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 2013, 504, 411–414. [Google Scholar] [CrossRef] [PubMed]
- Afanasiev, A.; Rami, V.; Rouillard, A.P.; Battarbee, M.; Aran, A.; Zucca, P. Modelling of proton acceleration in application to a ground level enhancement. Astron. Astrophy 2018, 614, A4. [Google Scholar] [CrossRef] [Green Version]
- Hapgood, M.A. Towards a scientific understanding of the risk from extreme space weather. Adv. Space Res. 2011, 47, 2059–2072. [Google Scholar] [CrossRef]
- Cannon, P.; Angling, M.; Barclay, L.; Curry, C.; Dyer, C.; Edwards, R.; Greene, G.; Hapgood, M.; Horne, R.B.; Jackson, D.; et al. Extreme Space Weather: Impacts on Engineered Systems and Infrastructure; Royal Academy of Engineering: London, UK, 2013. [Google Scholar]
- Anastasiadis, A.; Lario, D.; Papaioannou, A.; Kouloumvakos, A.; Vourlidas, A. Solar energetic particles in the inner heliosphere: Status and open questions. Phil. Trans. R Soc. A 2019, 377, 20180100. [Google Scholar] [CrossRef] [PubMed]
- Bolduc, L. GIC observations and studies in the Hydro-Québec power system. J. Atmos. Sol. Terr. Phys. 2002, 64, 1793–1802. [Google Scholar] [CrossRef]
- Erinmez, I.A.; Kappenman, J.G.; Radasky, W.A.A. Management of the geomagnetically induced current risks on the national grid company’s electric power transmission system. J. Atmos. Sol. Terr. Phys. 2002, 64, 743–756. [Google Scholar] [CrossRef]
- Cliver, E.W.; Dietrich, W.F. The 1859 space weather event revisited: Limits of extreme activity. J. Space Weather Space Clim. 2013, 3, A31. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.; Terasawa, T.; Christon, S.; Angelopoulos, V.; Hoshino, M.; Lennartsson, W.; Maezawa, K.; Sibeck, D.G.; Treumann, R.A.; Williams, D.J.; et al. Source and loss processes in the magnetotail. Space Sci. Rev. 1999, 88, 285–353. [Google Scholar] [CrossRef]
- Milan, S.E. Both solar wind-magnetosphere coupling and ring current intensity control of the size of the auroral oval. Geophys. Res. Lett. 2009, 36, L18101. [Google Scholar] [CrossRef]
- Cowley, S.W.H.; Lockwood, M. Excitation and decay of solar wind-driven flows in the magnetosphere ionosphere system. Ann. Geophys. 1992, 10, 103–115. [Google Scholar]
- Milan, S.E. Solar Wind-Magnetosphere Coupling as Deduced from Ionospheric Flows Polar Auroras in Magnetospheric Plasma Physics: The Impact of Jim Dungey’s Research; Cowley, S.W.H., Southwood, D., Mitton, S., Eds.; Springer: Cham, Switzerland, 2015; pp. 33–64. [Google Scholar]
- Hones, E.W., Jr. Substorm Processes in the Magnetotail: Comments on ‘On Hot Tenuous Plasmas, Fireballs Boundary Layers in the Earth’s Magnetotail’. J. Geophys. Res. 1977, 82, 5633–5640. [Google Scholar] [CrossRef]
- Eastwood, J.P.; Kiehas, S.A. Origin and Evolution of Plasmoids and Flux Ropes in the Magneto Tails of Earth and Mars. In Magneto Tails in the Solar System; Wiley: New York, NY, USA, 2015; pp. 269–287. [Google Scholar]
- Tsurutani, B.T.; Guarnieri, F.L.; Lakhina, G.S.; Hada, T. Rapid evolution of magnetic decreases (MDs) and discontinuities in the solar wind: ACE and Cluster. Geophys. Res. Lett. 2005, 32, L1. [Google Scholar] [CrossRef]
- Cash, M.D.; Hicks, S.W.; Biesecker, D.A.; Reinard, A.A.; De Koning, C.A.; Weimer, D.R. Validation of an operational product to determine L1 to Earth propagation time delays. Space Weather 2016, 14, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Coleman, I.J. A multi-spacecraft survey of magnetic field line draping in the dayside magnetosheath. Ann. Geophys. 2005, 23, 885–900. [Google Scholar] [CrossRef]
- Longmore, M.; Schwartz, S.J.; Lucek, E.A. Rotation of the magnetic field in Earth’s magnetosheath by bulk magnetosheath plasma flow. Ann. Geophys. 2006, 24, 339–354. [Google Scholar] [CrossRef]
- Šafránková, J.; Hayosh, M.; Gutynska, O.; Nemecek, Z.; Prech, L. Reliability of prediction of the magnetosheath BZ component from interplanetary magnetic field observations. J. Geophys. Res. Space Phys. 2009, 114, A12213. [Google Scholar] [CrossRef]
- Turc, L.; Fontaine, D.; Escoubet, C.P.; Kilpua, E.K.J.; Dimmock, A.P. Statistical study of the alteration of the magnetic structure of magnetic clouds in the Earth’s magnetosheath. J. Geophys. Res. Space Phys. 2017, 122, 2956–2972. [Google Scholar] [CrossRef] [Green Version]
- Turc, L.; Fontaine, D.; Savoini, P.; Kilpua, E. Magnetic clouds’ structure in the magnetosheath as observed by Cluster and Geotail: Four case studies. Ann. Geophys. 2014, 32, 1247–1261. [Google Scholar] [CrossRef] [Green Version]
- Dimmock, A.P.; Nykyri, K. The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame. J. Geophys. Res. Space Phys. 2013, 118, 4963–4976. [Google Scholar] [CrossRef] [Green Version]
- Borovsky, J.E.; Hesse, M.; Birn, J.; Kuznetsova, M.M. What determines the reconnection rate at the dayside magnetosphere? J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Farrugia, C.J.; Gratton, F.T.; Torbert, R.B. Viscous-type processes in the solar wind-magnetosphere interaction. Space Sci. Rev. 2001, 95, 443–456. [Google Scholar] [CrossRef]
- Fuselier, S.A.; Lewis, W.S. Properties of Near-Earth Magnetic Reconnection from In-Situ Observations. Space Sci. Rev. 2011, 160, 95–121. [Google Scholar] [CrossRef]
- Lavraud, B.; Foullon, C.; Farrugia, C.J.; Eastwood, J.P. The Magnetopause Its Boundary Layers Pathways to the Magnetotail in the Dynamic Magnetosphere; Liu, W., Fujimoto, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Hasegawa, H. Structure and Dynamics of the Magnetopause and Its Boundary Layers. Monogr. Environ. Earth Planets 2012, 1, 71–119. [Google Scholar] [CrossRef] [Green Version]
- Vasyliunas, V.M. Theoretical models of magnetic field line merging. Rev. Geophys. 1975, 13, 303–336. [Google Scholar] [CrossRef]
- Paschmann, G.; Øieroset, M.; Phan, T. In-Situ Observations of Reconnection in Space. Space Sci. Rev. 2013, 178, 385–417. [Google Scholar] [CrossRef]
- Goldman, M.V.; Newman, D.L.; Lapenta, G. What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations? Space Sci. Rev. 2016, 199, 651–688. [Google Scholar] [CrossRef] [Green Version]
- Burch, J.L.; Moore, T.E.; Torbert, R.B.; Giles, B. Magnetospheric Multiscale Overview and Science Objectives. Space Sci. Rev. 2016, 199, 5–21. [Google Scholar] [CrossRef] [Green Version]
- Pollock, C.; Moore, T.; Jacques, A.; Burch, J.; Gliese, U.; Saito, Y.; Omoto, T.; Avanov, L.; Barrie, A.; Coffey, V.; et al. Fast Plasma Investigation for Magnetospheric Multiscale. Space Sci. Rev. 2016, 199, 331–406. [Google Scholar] [CrossRef] [Green Version]
- Russell, C.T.; Elphic, R.C. Initial ISEE magnetometer results: Magnetopause observations. Space Sci. Rev. 1978, 22, 681–715. [Google Scholar] [CrossRef]
- Hasegawa, H.; Wang, J.; Dunlop, M.W.; Pu, Z.Y.; Zhang, Q.-H.; Lavraud, B.; Taylor, M.G.G.T.; Constantinescu, O.D.; Berchem, G.; Angelopoulos, V.; et al. Evidence for a flux transfer event generated by multiple X-line reconnection at the magnetopause. Geophys. Res. Lett. 2010, 37, 1. [Google Scholar] [CrossRef] [Green Version]
- Pu, Z.Y.; Raeder, J.; Zhong, J.; Bogdanova, Y.V.; Dunlop, M.; Xiao, C.J.; Wang, X.G.; Fazakerley, A. Magnetic topologies of an in vivo FTE observed by Double Star/TC-1 at Earth’s magnetopause. Geophys. Res. Lett. 2013, 40, 3502–3506. [Google Scholar] [CrossRef]
- Fear, R.; Milan, S.E.; Oksavik, K. Determining the axial direction of high-shear flux transfer events: Implications for models of FTE structure. J. Geophys. Res. Space Phys. 2012, 117, 09220. [Google Scholar] [CrossRef]
- Hasegawa, H.; Fujimoto, M.; Phan, T.-D.; Rème, H.; Balogh, A.; Dunlop, M.W.; Hashimoto, C.; TanDokoro, R. Transport of solar wind into Earth’s magnetosphere through rolled-up Kelvin–Helmholtz vortices. Nat. Cell Biol. 2004, 430, 755–758. [Google Scholar] [CrossRef]
- Eriksson, S.; Lavraud, B.; Wilder, F.D.; Stawarz, J.E.; Giles, B.; Burch, J.L.; Baumjohann, W.; Ergun, R.E.; Lindqvist, P.-A.; Magnes, W.; et al. Magnetospheric Multiscale observations of magnetic reconnection associated with Kelvin-Helmholtz waves. Geophys. Res. Lett. 2016, 43, 5606–5615. [Google Scholar] [CrossRef] [Green Version]
- Palmroth, M.; Laitinen, T.V.; Pulkkinen, T.I. Magnetopause energy and mass transfer: Results from a global MHD simulation. Ann. Geophys. 2006, 24, 3467–3480. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is geomagnetic storm. J. Geophys. Res. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Tanskanen, E.I.; Slavin, J.A.; Tanskanen, A.J.; Viljanen, A.; Pulkkinen, T.I.; Koskinen, H.; Pulkkinen, A.; Eastwood, J. Magnetospheric substorms are strongly modulated by interplanetary high-speed streams. Geophys. Res. Lett. 2005, 32, L16104. [Google Scholar] [CrossRef]
- Pulkkinen, T.I.; Partamies, N.; Huttunen, K.E.J.; Reeves, G.D.; Koskinen, H.E.J. Differences in geomagnetic storms driven by magnetic clouds and ICME sheath regions. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Ngwira, C.M.; Sibeck, D.; Silveira, M.V.D.; Georgiou, M.; Weygand, J.M.; Nishimura, Y.; Hampton, D. A Study of Intense Local dB/dt Variations During Two Geomagnetic. Storms. Space Weather 2018, 16, 676–693. [Google Scholar] [CrossRef] [Green Version]
- Gosling, J.T.; McComas, D.J.; Phillips, J.L.; Weiss, L.A.; Pizzo, V.J.; Goldstein, B.E.; Forsyth, R.J. A new class of forward-reverse shock pairs in the solar wind. Geophy. Res. Lett. 1994, 21, 2271–2274. [Google Scholar] [CrossRef]
- Richardson, I.G.; Webb, D.F.; Zhang, J.; Berdichevsky, D.B.; Biesecker, D.A.; Kasper, J.C. Major geomagnetic storms (Dst ≤ −100 nT) generated by corotating interaction regions. J. Geophys. Res. 2006, 111, A07S09. [Google Scholar] [CrossRef]
- Badruddin, A.; Falak, Z. Study of the geoeffectiveness of coronal mass ejections, corotating interaction regions and their associated structures observed during Solar Cycle 23. Astrophys. Space Sci 2016, 361, 253. [Google Scholar] [CrossRef]
- Watari, S. Geomagnetic storms of cycle 24 and their solar sources. Earth Planets Space 2017, 69, 70. [Google Scholar] [CrossRef]
- McPherron, R.L. Growth phase of magnetospheric substorms. J. Geophys. Res. 1970, 75, 5592–5599. [Google Scholar] [CrossRef] [Green Version]
- Rostoker, G.; Akasofu, S.I.; Foster, J.; Greenwald, R.A.; Kamide, Y.; Lui, A.T.Y.; McPherron, R.L.; Russell, C.T. Magnetospheric substorms-definition signatures. J. Geophys. Res. 1980, 85, 1663–1668. [Google Scholar] [CrossRef]
- Akasofu, S.I. Energy coupling between the solar wind and the magnetosphere. Space Sci. Rev. 1981, 28, 121–190. [Google Scholar] [CrossRef]
- Viljanen, A.; Pulkkinen, A.; Pirjola, R.; Pajunpää, K.; Posio, P.; Koistinen, A. Recordings of geomagnetically induced currents and a now casting service of the Finnish natural gas pipeline system. Space Weather 2006, 4, S10004. [Google Scholar] [CrossRef]
- Ngwira, C.M.; Pulkkinen, A.; Wilder, F.D.; Crowley, G. Extended study of extreme geoelectric field event scenarios for geomagnetically induced current applications. Space Weather 2013, 11, 121–131. [Google Scholar] [CrossRef]
- Angelopoulos, V.; McFadden, J.P.; Larson, D.; Carlson, C.W.; Mende, S.B.; Frey, H.; Phan, T.; Sibeck, D.G.; Glassmeier, K.-H.; Auster, U.; et al. Tail Reconnection Triggering Substorm Onset. Science 2008, 321, 931–935. [Google Scholar] [CrossRef] [Green Version]
- Sergeev, V.A.; Angelopoulos, V.; Nakamura, R. Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Anderson, B.J.; Takahashi, K.; Toth, B.A. Sensing global Birkeland currents with iridium® engineering magnetometer data. Geophys. Res. Lett. 2000, 27, 4045–4048. [Google Scholar] [CrossRef]
- Clausen, L.B.N.; Milan, S.E.; Baker, J.; Ruohoniemi, J.M.; Glassmeier, K.H.; Coxon, J.C.; Anderson, B.J. On the influence of open magnetic flux on substorm intensity: Ground- and space-based observations. J. Geophys. Res. 2013, 118, 2958–2969. [Google Scholar] [CrossRef] [Green Version]
- Loto’aniu, T.M.; Singer, H.J.; Rodriguez, J.V.; Green, J.; Denig, W.; Biesecker, D.; Angelopoulos, V. Space weather conditions during the Galaxy 15 spacecraft anomaly. Space Weather 2015, 13, 484–502. [Google Scholar] [CrossRef] [Green Version]
- Petrukovich, A.; Artemyev, A.; Nakamura, R. Magnetotail Reconnection in Magnetic Reconnection: Concepts Applications; Gonzalez, W., Parker, E., Eds.; Springer: Cham, Switzerland, 2016; pp. 277–313. [Google Scholar]
- Angelopoulos, V.; Mozer, F.S.; Lin, R.P.; Mukai, T.; Tsuruda, K.; Lepping, R.; Baumjohann, W. Comment on “Geotail Survey of Ion Flow in The Plasma Sheet: Observations Between, 10 and 50 RE”. J. Geophys. Res. Space Phys. 1999, 104, 17521–17525. [Google Scholar] [CrossRef]
- Schödel, R.; Baumjohann, W.; Nakamura, R.; Sergeev, V.; Mukai, T. Rapid flux transport in the central plasma sheet. J. Geophys. Res. Space Phys. 2001, 106, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, R.; Baumjohann, W.; Mouikis, C.; Kistler, L.M.; Runov, A.; Volwerk, M.; Asano, Y.; Vörös, Z.; Zhang, T.L.; Klecker, B.; et al. Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Nakamura, R.; Retinò, A.; Baumjohann, W.; Volwerk, M.; Erkaev, N.; Klecker, B.; Lucek, E.A.; Dandouras, I.; Andre, M.; Khotyaintsev, Y. Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport. Ann. Geophys. 2009, 27, 1743–1754. [Google Scholar] [CrossRef]
- Liu, J.; Angelopoulos, V.; Runov, A.; Zhou, X.Z. On the current sheets surrounding dipolarizing flux bundles in the magnetotail: The case for wedge lets. J. Geophys. Res. Space Phys. 2013, 118, 2000–2020. [Google Scholar] [CrossRef]
- Quinn, J.M.; Southwood, D.J. Observations of parallel ion energization in the equatorial region. J. Geophys. Res. Space Phys. 1982, 87, 10536–10540. [Google Scholar] [CrossRef]
- Dubyagin, S.; Sergeev, V.; Apatenkov, S.; Angelopoulos, V.; Runov, A.; Nakamura, R.; Baumjohann, W.; Mc-Fadden, J.; Larson, D. Can flow bursts penetrate into the inner magnetosphere? Geophys. Res. Lett. 2011, 38, L0. [Google Scholar] [CrossRef]
- Schmid, D.; Volwerk, M.; Nakamura, R.; Baumjohann, W.; Heyn, M. A statistical and event study of magnetotail dipolarization fronts. Ann. Geophys. 2011, 29, 1537–1547. [Google Scholar] [CrossRef] [Green Version]
- Ashour-Abdalla, M.; El-Alaoui, M.; Goldstein, M.L.; Zhou, M.; Schriver, D.; Richard, R.; Walker, R.; Kivelson, M.G.; Hwang, K.J. Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys. 2011, 7, 360–365. [Google Scholar] [CrossRef]
- Zhou, X.Z.; Angelopoulos, V.; Liu, J.; Runov, A.; Li, S.S. On the origin of pressure magnetic perturbations ahead of dipolarization fronts. J. Geophys. Res. Space Phys. 2014, 119, 211–220. [Google Scholar] [CrossRef]
- Panov, E.V.; Kubyshkina, M.V.; Nakamura, R.; Baumjohann, W.; Angelopoulos, V.; Sergeev, V.A.; Petrukovich, A.A. Oscillatory flow braking in the magnetotail: THEMIS statistics. Geophys. Res. Lett. 2013, 40, 2505–2510. [Google Scholar] [CrossRef]
- Gabrielse, C.; Angelopoulos, V.; Runov, A.; Turner, D.L. Statistical characteristics of particle injections throughout the equatorial magnetotail. J. Geophys. Res. Space Phys. 2014, 119, 2512–2535. [Google Scholar] [CrossRef]
- Liu, J.; Angelopoulos, V.; Zhang, X.Z.; Turner, D.L.; Gabrielse, C.; Runov, A.; Li, J.; Funsten, H.O.; Spence, H.E. Diolarizing flux bundles in the geosynchronous magnetosphere: Relationship between electric fields energetic particle injections. J. Geophys. Res. Space Phys. 2016, 121, 1362–1376. [Google Scholar] [CrossRef]
- Birn, J.; Hesse, M.; Nakamura, R.; Zaharia, S. Particle acceleration in dipolarization events. J. Geophys. Res. 2013, 118, 1960–1971. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Wang, C.; Duan, S.; He, Z.; Wygant, J.R.; Cattell, C.A.; Tao, X.; Su, Z.; Kletzing, C.; Baker, D.N.; et al. Near-Earth injection of MeV electrons associated with intense dipolarization electric fields: Van Allen Probes observations. Geophys. Res. Lett. 2015, 42, 6170–6179. [Google Scholar] [CrossRef]
- Angelopoulos, V.; Runov, A.; Zhou, X.-Z.; Turner, D.L.; Kiehas, S.A.; Li, S.-S.; Shinohara, I. Electromagnetic Energy Conversion at Reconnection Fronts. Science 2013, 341, 1478–1482. [Google Scholar] [CrossRef]
- Kauristie, K.; Amm, O.; Kubyshkina, M.; Donovan, E.; Sergeev, V.; Jussila, J.; Liou, K. Bursty bulk flow intrusion to the inner plasma sheet as inferred from auroral observations. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Kepko, L.; McPherron, R.L.; Amm, O.; Apatenkov, S.; Baumjohann, W.; Birn, J.; Lester, M.I.; Nakamura, R.; Pulkkinen, T.I.; Sergeev, V. Substorm Current Wedge Revisited. Space Sci. Rev. 2015, 190, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Sergeev, V.A.; Sormakov, D.A.; Angelopoulos, V. A missing variable in solar wind-magnetosphere-ionosphere coupling studies. Geophys. Res. Lett. 2014, 41, 8215–8220. [Google Scholar] [CrossRef]
- Knight, S. Parallel electric fields. Planet. Space Sci. 1973, 21, 741–750. [Google Scholar] [CrossRef]
- Kronberg, E.A.; Ashour-Abdalla, M.; Dandouras, I.; Delcourt, D.C.; Grigorenko, E.E.; Kistler, L.M.; Kuzichev, I.V.; Maggiolo, J.L.R.; Malova, H.V.; Orlova, K.G.; et al. Circulation of heavy ions and their dynamical effects in the magnetosphere: Recent observations and models. Space Sci. Rev. 2014, 184, 173–235. [Google Scholar] [CrossRef]
- Pytte, T.; McPherron, R.L.; Hones, E.W.; West, H.I. Multiple-satellite studies of magnetospheric substorms: Distinction between polar magnetic substorms and convection-driven negative bays. J. Geophys. Res. Space Phys. 1978, 83, 663–679. [Google Scholar] [CrossRef]
- Kissinger, J.; McPherron, R.L.; Hsu, T.S.; Angelopoulos, V. Diversion of plasma due to high pressure in the inner magnetosphere during steady magnetospheric convection. J. Geophys. Res. Space Phys. 2012, 117, A05206. [Google Scholar] [CrossRef] [Green Version]
- Miyashita, Y.; Miyoshi, Y.; Matsumoto, Y.; Ieda, A.; Kamide, Y.; Nose, M.; Machida, S.; Hayakawa, H.; McEntire, R.W.; Christon, S.P.; et al. Geotail observations of signatures in the near-Earth magnetotail for the extremely intense substorms of the 30 October 2003 storm. J. Geophys. Res. Space Phys. 2005, 110, A09S25. [Google Scholar] [CrossRef] [Green Version]
- Baker, D.N.; Jaynes, A.N.; Kanekal, S.G.; Foster, J.C.; Erickson, P.J.; Fennell, J.F.; Blake, J.B.; Zhao, H.; Li, X.; Elkington, S.R.; et al. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of Marchand June 2015. J. Geophys. Res. 2016, 121, 6647–6660. [Google Scholar] [CrossRef]
- Vallat, C.; Dandouras, I.; Dunlop, M.; Balogh, A.; Lucek, E.; Parks, G.K.; Wilber, M.; Roelof, E.C.; Chanteur, G.; Rème, H. First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data. Ann. Geophys. 2005, 23, 1849–1865. [Google Scholar] [CrossRef] [Green Version]
- Liemohn, M.W.; Ganushkina, N.Y.; Ilie, R.; Welling, D.T. Challenges associated with near-Earth night side current. J. Geophys. Res. 2016, 121, 6763–6768. [Google Scholar] [CrossRef]
- Yu, Y.; Jordanova, V.; Zou, S.; Heelis, R.; Ruohoniemi, M.; Wygant, J. Modeling subauroral polarization streams during the 17 March 2013 storm. J. Geophys. Res. Space Phys. 2015, 120, 1738–1750. [Google Scholar] [CrossRef]
- Kistler, L.M.; Mouikis, C.G.; Spence, H.E.; Menz, A.M.R.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M.; Wygant, J.R.; et al. The source of O+ in the storm time ring current. J. Geophy. Res. 2016, 29, 5333–5349. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Wang, Y.; Wan, L.; Cheng, X.; Ding, M.; Zhang, J. Predicting the arrival time of coronal mass ejections with the graduated cylindrical shell and drag force model. Astrophys. J. 2016, 806. [Google Scholar] [CrossRef] [Green Version]
- Menz, A.M.; Kistler, L.M.; Mouikis, C.G.; Spence, H.E.; Skoug, R.M.; Funsten, H.O.; Larsen, B.A.; Mitchell, D.G.; Gkioulidou, M. The role of convection in the build-up of the ring current pressure during the 17 March 2013 storm. J. Geophy. Res. 2017, 121, 475–492. [Google Scholar] [CrossRef]
- Bourdarie, S.; Jordanova, V.K.; Liemohn, M.; O’Brien, T.P. Modeling the Energetic Particles of the Inner Magnetosphere. In Waves, Particles, and Storms in Geospace: A Complex Interplay; Balasis, G., Daglis, I.A., Mann, I.R., Eds.; Oxford Scholarship: London, UK, 2016. [Google Scholar]
- Tsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry 1. Mathematical structure. J. Geophys. Res. 2002, 107, 1–15. [Google Scholar]
- Tsyganenko, N.A. A model of the near magnetosphere with a dawn-dusk asymmetry 2 Parameterization fitting to observations. J. Geophys. Res. 2002, 107, 1–17. [Google Scholar] [CrossRef]
- Ganushkina, N.; Jaynes, A.; Liemohn, M. Space Weather Effects Produced by the Ring Current Particles. Space Sci. Rev. 2017, 212, 1315–1344. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Li, X.; Baker, D.N.; Claudepierre, S.G.; Fennell, J.F.; Blake, J.B.; Larsen, B.A.; Skoug, R.; Funsten, H.O.; Friedel, R.H.W.; et al. Ring current electron dynamics during geomagnetic storms based on the Van Allen Probes measurements. J. Geophys. Res. Space Phys. 2016, 121, 3333–3346. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Chen, M.W.; Roeder, J.L.; Lyons, L.R.; Schulz, M. Relative contribution of electrons to the storm time total ring current energy content. Geophys. Res. Lett. 2005, 32, L03110. [Google Scholar] [CrossRef] [Green Version]
- Frank, L.A. Several observations of low-energy protons and electrons in the Earth’s magnetosphere with OGO 3. J. Geophys. Res. Space Phys. 1967, 72. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Ganushkina, N.Y.; Jiggens, P.; Jun, I.; Meier, M.; Minow, J.I.; O’Brien, T.P.; Pitchford, D.; Shprits, Y.; Tobiska, W.K.; et al. Space Radiation and Plasma Effects on Satellites and Aviation: Quantities and Metrics for Tracking Performance of Space Weather Environment Models. Space Weather 2019, 17, 1384–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fennell, J.F.; Koons, H.C.; Roeder, J.L.; Blake, J.B. Spacecraft charging: Observations and relationship to satellite anomalies. In Spacecraft Charging Technology, Proceedings of the Seventh International Conference ESTEC, 17 July 2001; Harris, R.A., Ed.; European Space Agency: Noordwijk, The Netherlands, 2001; pp. 279–285. [Google Scholar]
- O’Brien, T.P. SEAES-GEO: A spacecraft environmental anomalies expert system for geosynchronous orbit. Space Weather 2009, 7, S09003. [Google Scholar] [CrossRef]
- Schulz, M.; Lanzerotti, L. Particle Diffusion in The Radiation Belts; Springer: New York, NY, USA, 1974. [Google Scholar]
- Liemohn, M.W. Introduction to special section on “Results of the National Science Foundation Geospace Environment Modeling Inner Magnetosphere/Storms Assessment Challenge”. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Reeves, G.D.; Friedel, R.H.W.; Larsen, B.A.; Skoug, R.M.; Funsten, H.O.; Claudepierre, S.G.; Fennell, J.F.; Turner, D.L.; Denton, M.H.; Spence, H.E.; et al. Energy-dependent dynamics of keV to MeV electrons in the inner zone outer, zone slot regions. J. Geophys. Res. Space Phys. 2016, 121, 397–412. [Google Scholar] [CrossRef] [PubMed]
- Meredith, N.; Horne, R.; Summers, D.; Fraser, B.J.; Anderson, R.R. Statistical analysis of relativistic electron energies for cyclotron resonance with EMIC waves observed on CRRES. J. Geophys. Res. Space Phys. 2003, 108, 1250. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Chan, A.A. Fully adiabatic changes in storm time relativistic electron fluxes. J. Geophys. Res. Space Phys. 1997, 102, 22107–22116. [Google Scholar] [CrossRef]
- Usanova, M.E.; Drozdov, A.; Orlova, K.; Mann, I.R.; Shprits, Y.; Robertson, M.T.; Turner, D.L.; Milling, D.K.; Kale, A.; Baker, D.N.; et al. Effect of EMIC waves on relativistic and ultra-relativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett. 2014, 41, 1375–1381. [Google Scholar] [CrossRef] [Green Version]
- Rodger, C.J.; Clilverd, M.A.; Seppälä, A.; Thomson, N.R.; Gamble, R.J.; Parrot, M.; Sauvaud, J.-A.; Ulich, T. Radiation belt electron precipitation due to geomagnetic storms: Significance to middle atmosphere ozone chemistry. J. Geophys. Res. 2010, 115, A1. [Google Scholar] [CrossRef]
- Meredith, N.P.; Horne, R.B.; Anderson, R.R. Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies. J. Geophys. Res. 2001, 106, 13165–13178. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Reeves, G.D.; Friedel, R.H.W. The energization of relativistic electrons in the outer Van Allen radiation belt. Nat. Phys. 2007, 3, 614–617. [Google Scholar] [CrossRef] [Green Version]
- Thorne, R.M. Radiation belt dynamics: The importance of wave-particle interactions. Geophys. Res. Lett. 2010, 37, L2. [Google Scholar] [CrossRef]
- Kozyra, J.U.; Nagy, A.F.; Slater, D.W. High-altitude energy source(s) for stable auroral red arcs. Rev. Geophys. 1997, 35, 155–190. [Google Scholar] [CrossRef]
- Burch, J.L.; Mitchell, D.G.; Sandel, B.R.; Brandt, P.; Wüest, M. Global dynamics of the plasmasphere and ring current during magnetic storms. Geophys. Res. Lett. 2001, 28, 1159–1162. [Google Scholar] [CrossRef]
- Liemohn, M.W.; Ridley, A.J.; Gallagher, D.L.; Ober, D.M.; Kozyra, J.U. Dependence of plasmaspheric morphology on the electric field description during the recovery phase of the 17 April 2002 magnetic storm. J. Geophys. Res. 2004, 109, 03209. [Google Scholar] [CrossRef]
- Gallagher, D.L.; Adrian, M.L.; Liemohn, M.W. Origin and evolution of deep plasmaspheric notches. J. Geophys. Res. 2005, 110, 09201. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.; Sandel, B.R.; Thomsen, M.F.; Spasojevic, M.; Reiff, P.H. Simultaneous remote sensing insitu observations of plasmaspheric drainage plumes. J. Geophys. Res. 2004, 109, A03202. [Google Scholar]
- Califf, S.; Li, X.; Wolf, R.A.; Zhao, H.; Jaynes, A.N.; Wilder, F.D.; Malaspina, D.M.; Redmon, R. Large-amplitude electric fields in the inner magnetosphere: Van Allen Probes observations of subauroral polarization streams. J. Geophys. Res. 2016, 121, 5294–5306. [Google Scholar] [CrossRef] [Green Version]
- Chum, J.; Santolík, O. Propagation of whistler-mode chorus to low altitudes: Divergent ray trajectories and ground accessibility. Ann. Geophys. 2005, 23, 3727–3738. [Google Scholar] [CrossRef]
- Singh, A.K.; Singh, R.P.; Siingh, D. State studies of Earth’s plasmasphere: A review. Planet. Space Sci. 2011, 59, 810–834. [Google Scholar] [CrossRef]
- Jaggi, R.K.; Wolf, R.A. Self-consistent calculation of the motion of a sheet of ions in the magnetosphere. J. Geophys. Res. 1973, 78, 2852–2866. [Google Scholar] [CrossRef]
- Fok, M.C.; Moore, T.E.; Spjeldvik, W.N. Rapid enhancement of radiation belt electron fluxes due to substorm dipolarization of the geomagnetic field. J. Geophys. Res. 2001, 106, 3873–3882. [Google Scholar] [CrossRef]
- Foster, J.C.; Vo, H.B. Average characteristics activity dependence of the subauroral polarization stream. J. Geophys. Res. 2002, 107, 1475. [Google Scholar] [CrossRef]
- Pintér, B.; Thom, S.D.; Balthazor, R.; Vo, H.; Bailey, G.J. Modeling subauroral polarization streams equator ward of the plasmapause footprints. J. Geophys. Res. 2006, 111, A10306. [Google Scholar] [CrossRef] [Green Version]
- Kelley, M.C.; Vlasov, M.N.; Foster, J.C.; Coster, A. A quantitative explanation for the phenomenon known as storm-enhanced density. Geophys. Res. Lett. 2004, 31, L19809. [Google Scholar] [CrossRef]
- Heelis, R.A.; Coley, W.R. Variations in the low-and middle-latitude topside ion concentration observed by DMSP during superstorm events. J. Geophys. Res. 2007, 112, A08310. [Google Scholar] [CrossRef] [Green Version]
- Yin, P.; Mitchell, C.; Spencer, P.S.J.; Foster, J.C. Ionospheric electron concentration imaging using GPS over the USA during the storm of July 2000. Geophys. Res. Lett. 2004, 31, L1. [Google Scholar] [CrossRef]
- Basu, S.; Makela, J.J.; MacKenzie, E.; Doherty, P.; Wright, J.W.; Rich, F.; Keskinen, M.J.; Sheehan, R.E.; Coster, A.J. Large magnetic storm-induced night time ionospheric flows at mid latitudes their impacts on GPS-based navigation systems. J. Geophys. Res. 2008, 113, A00A06. [Google Scholar]
- Horvath, I.; Lovell, B.C. Storm-enhanced plasma density features daytime polar cap plasma, enhancements and their underlying plasma flows investigated during superstorms. J. Geophys. Res. 2009, 114, A1. [Google Scholar] [CrossRef] [Green Version]
- Horváth, I.; Lovell, B.C. Investigating storm-enhanced density and polar tongue of ionization development during the 22 October 1999 great storm. J. Geophys. Res. Space Phys. 2015, 120, 1428–1444. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lühr, H.; Häusler, K.; Ritter, P. Effect of subauroral polarization streams on the thermosphere: A statistical study. J. Geophys. Res. 2011, 116, A03312. [Google Scholar] [CrossRef]
- Wang, W.; Talaat, E.R.; Burns, A.G.; Emery, B.; Hsieh, S.; Lei, J.; Xu, J. Thermosphere ionosphere response to subauroral polarization streams (SAPS): Model simulations. J. Geophys. Res. 2012, 117, A0. [Google Scholar] [CrossRef] [Green Version]
- Mishin, E.; Sutton, E.; Milikh, G.; Galkin, I.; Roth, C.; Förster, M. F2-region atmospheric gravity waves due to high-power HF heating and subauroral polarization streams. Geophys. Res. Lett. 2012, 39, L11101. [Google Scholar] [CrossRef] [Green Version]
- Ebihara, Y.; Ejiri, M.; Nilsson, H.; Sandahl, I.; Grande, M.; Fennell, J.F.; Roeder, J.L.; Weimer, D.R.; Fritz, A.T. Multiple discrete-energy ion features in the inner magnetosphere: 9 February 1998, event. Ann. Geophys. 2004, 22, 1297. [Google Scholar] [CrossRef] [Green Version]
- Liemohn, M.W.; Ridley, A.J.; Brandt, P.C.; Gallagher, D.L.; Kozyra, J.U.; Mitchell, D.G.; Roelof, E.C.; DeMajistre, R. Parametric analysis of night side conductance effects on inner magnetospheric dynamics for the 17 April 2002 storm. J. Geophys. Res. 2005, 110, A12S22. [Google Scholar]
- Marshall, R.A.; Dalzell, M.; Waters, C.L.; Goldthorpe, P.; Smith, E.A. Geomagnetically induced currents in the New Zealand power network. Space Weather 2012, 10, S08003. [Google Scholar] [CrossRef]
- Zhang, J.J.; Wang, C.; Sun, T.R.; Liu, C.M.; Wang, K.R. GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation. Space Weather 2015, 13, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Watari, S. Estimation of geomagnetically induced currents based on the measurement data of a transformer in a Japanese power network and geoelectric field observations. Earth Planets Space 2015, 67, 77. [Google Scholar] [CrossRef]
- Cerruti, A.P.; Kintner, P.M.; Gary, D.E.; Mannucci, A.J.; Meyer, R.F.; Doherty, P.; Coster, A. Effect of intense December 2006 solar radio bursts on GPS receivers. Space Weather 2008, 6, S10D07. [Google Scholar] [CrossRef]
- Carrano, C.S.; Bridgwood, C.T.; Groves, K.M. Impacts of the December 2006 solar radio bursts on the performance of GPS. Radio Sci. 2009, 44, RS0A25. [Google Scholar] [CrossRef]
- Riley, P. On the probability of occurrence of extreme space weather events. Space Weather 2012, 10. [Google Scholar] [CrossRef]
- Temerin, M.; Li, X. Dstmodel for 1995–2002. J. Geophys. Res. Space Phys. 2006, 111. [Google Scholar] [CrossRef]
- Koskinen, H.E.J.; Baker, D.N.; Balogh, A.; Gombosi, T.; Veronig, A.; von Steiger, R. Achievements and Challenges in the Science of Space Weather. Space Sci. Rev. 2017, 212, 1137–1157. [Google Scholar]
- Snekvik, K.; Østgaard, N.; Tenfjord, P.; Reistad, J.P.; Laundal, K.M.; Milan, S.E.; Haaland, S.E. Dayside and night side magnetic field responses at 780 km altitude to dayside reconnection. J. Geophys. Res. Space Phys. 2017, 122, 1670–1689. [Google Scholar] [CrossRef]
- Pirjola, R.; Viljanen, A.; Pulkkinen, A.; Kilpua, S.; Amm, O. Ground Effects of Space Weather. In Effects of Space Weather on Technology Infrastructure. NATO Science Series II: Mathematics; Daglis, I.A., Ed.; Springer: Dordrecht, The Netherlands, 2004; Volume 176. [Google Scholar]
- Samuelsson, O. Geomagnetic Disturbances and Their Impact on Power Systems—Status Report, Industrial Electrical Engineering and Automation; Lund University: Luad, Sweden, October 2013. [Google Scholar]
- Viljanen, A.; Pirjola, R.; Prácser, E.; Katkalov, J.; Wik, M. Geomagnetically induced currents in Europe. J. Space Weather Space Clim. 2014, 4, A09. [Google Scholar] [CrossRef]
- Kappernman, J.; Albertson, V. Bracing for the geomagnetic storms. IEEE Spectr. 1990, 27, 27–33. [Google Scholar] [CrossRef]
- Fok, M.-C.; Wolf, R.A.; Spiro, R.W.; Moore, T.E. Comprehensive computational model of Earth’s ring current. J. Geophys. Res. 2001, 106, 8417–8424. [Google Scholar] [CrossRef]
- Czech, P.; Chano, S.; Huynh, H.; Dutil, A. The Hydro-Que’bec system blackout of 13 March 1989: System response to geomagnetic disturbance, EPRI Report, TR-100450. In Proceedings of the Geomagnetically Induced Currents Conference, Millbrae, CA, USA, 8–10 November 1989; pp. 19.1–19.21. [Google Scholar]
- Gummow, R.A. GIC effects on pipeline corrosion and corrosion control systems. J. Atm. Sol. Terr. Phys. 2002, 64, 1755–1764. [Google Scholar] [CrossRef]
- Nevanlinna, H.; Tenhunen, P.; Pirjola, R.; Annanpalo, J.; Pulkkinen, A. Breakdown caused by a geomagnetically induced current in the Finnish telesystem in 1958. J. Atmos. Sol. Terr. Phys. 2001, 63, 1099–1103. [Google Scholar] [CrossRef]
- Karsberg, A.; Swedenborg, G.; Wyke, K. The Influences of Earth Magnetic Currents on Telecommunication Lines; Tele (English edition), Televerket (Swedish Telecom): Stockholm, Sweden, 1959; Volume 1, pp. 1–21. [Google Scholar]
- Wallerius, A. Solen Gav Sverige en Stromstot. Ny Tek. Tek. Tidskr. 1982, 29, 3. [Google Scholar]
- Bell, J.E.; Brown, C.L.; Conlon, K.; Herring, S.; Kunkel, K.E.; Lawrimore, J.; Luber, G.; Schreck, C.; Smith, A.; Uejio, C. Changes in extreme events and the potential impacts on human health. J. Air Waste Manag. Assoc. 2018, 68, 265–287. [Google Scholar] [CrossRef] [Green Version]
- Kellogg, P.J.; Ney, E.P.; Winckler, J.R. Geophysical Effects Associated with High-Altitude Explosions. Nat. Cell Biol. 1959, 183. [Google Scholar] [CrossRef]
- Christofilos, N.C. THE ARGUS EXPERIMENT. Proc. Natl. Acad. Sci. USA 1959, 45, 1144–1152. [Google Scholar] [CrossRef] [Green Version]
- Pisharoty, P.R. Geomagnetic Disturbances Associated with the Nuclear Explosion of July 9. Nat. Cell Biol. 1962, 196, 822–882. [Google Scholar] [CrossRef]
- Foster, J.S.; Gjelde, E.; Graham, W.R.; Hermann, R.J.; Kluepfel, H.M.; Lawson, R.L.; Soper, G.K.; Wood, L.L.; Woodard, J.B. Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures; Technical Report A2473; United States Congress: Washington, DC, USA, 2008. [Google Scholar]
- Longmire, C.L. Justification Verification of High-Altitude EMPTheory: Part, I.; Technical report Technical Note 368 2008; Mission Research Corporation: Santa Barbara, CA, USA, 1986. [Google Scholar]
- Savage, E.; Gilbert, J.; Radasky, W. The Early Time (E1) High-Altitude Electromagnetic Pulse (HEMP) and Its Impact on the US Power Grid; Technical report Meta-R-320; Metatech Corporation: Goleta, CA, USA, 2010. [Google Scholar]
- Bomke, H.A.; Balton, I.A.; Grote, H.H.; Harris, A.K. Near distant observations of the 1962 Johnston Island high-altitude nuclear tests. J. Geophys. Res. 1964, 69, 3125–3136. [Google Scholar] [CrossRef]
- Miles, D.P.; Lepping, R.P. Magnetic disturbances due to the high-altitude nuclear explosion of 9 July 1962. J. Geophys. Res. 1964, 69, 547–548. [Google Scholar] [CrossRef]
- Baker, R.C.; Strome, W.M. Magnetic disturbance from a high-altitude nuclear explosion. J. Geophys. Res. 1962, 67, 4927–4928. [Google Scholar] [CrossRef]
- Edwards, P.J.; Reid, J.S. Effects of nuclear explosion starfish prime observed at Hobart, Tasmania, 9 July 1962. J. Geophys. Res. 1964, 69, 3607–3612. [Google Scholar] [CrossRef]
- Dyal, P. Particle and field measurements of the Starfish diamagnetic cavity. J. Geophys. Res. Space Phys. 2006, 111, 1. [Google Scholar] [CrossRef] [Green Version]
- Gebhar, L.A. Evolution of Naval Radio-Electronics and Contributions of the Naval Research Laboratory; Naval Research Laboratory 2211: Washington, DC, USA, 1979. [Google Scholar]
- Clilverd, M.A.; Rodger, C.J.; Thomson, N.R.; Brundell, J.B.; Ulich, T.; Lichtenberger, J.; Cobbett, N.; Collier, A.B.; Menk, F.W.; Sepälä, A.; et al. Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Weather 2009, 7. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, D.L. Very Low Frequency Space Radio Research at Stanford, 1st ed.; lulu.com 2015: Stanford, CA, USA, 2015; ISBN 9781329884106. [Google Scholar]
- Inan, U.S.; Rodriguez, J.V.; Lev-Tov, S.; Oh, J. Ionospheric modification with a VLF transmitter. Geophys. Res. Lett. 1992, 19, 2071–2074. [Google Scholar] [CrossRef]
- Foster, J.C.; Erickson, P.J.; Baker, D.N.; Jaynes, A.N.; Mishin, A.V.; Fennell, J.F.; Li, Z.; Henderson, M.G.; Kanekal, S.G. Observations of the impenetrable barrier, the plasmapause, and the VLF bubble during the 17 March 2015 storm. J. Geophys. Res. 2016, 121, 5537–5548. [Google Scholar] [CrossRef] [Green Version]
- Raghuram, R.; Bell, T.F.; Helliwell, R.A.; Katsufrakis, J.P. A quiet band produced by VLF transmitter signals in the magnetosphere. Geophys. Res. Lett. 1977, 4, 199–202. [Google Scholar] [CrossRef]
- Smith, A.J.; Clilverd, M.A. Magnetic storm effects on the mid-latitude plasmasphere. Planet. Space Sci. 1991, 39, 1069–1079. [Google Scholar] [CrossRef]
- Van Allen, J.A. The geomagnetically trapped corpuscular radiation. J. Geophys. Res. 1959, 64, 1683. [Google Scholar] [CrossRef]
- Van Allen, J.A.; Frank, L.A. Radiation Around the Earth to a Radial Distance of 107,400 km. Nature 1959, 183, 430–434. [Google Scholar] [CrossRef]
- Van Allen, J.A.; McIlwain, C.E.; Ludwig, G.H. Radiation observations with satellite. J. Geophys. Res. 1958, 64, 271–286. [Google Scholar] [CrossRef]
- Baker, D.N. How to cope with space weather. Science 2002, 297, 1486–1487. [Google Scholar] [CrossRef]
- Hess, W.N. The artificial radiation belt made on 9 July 1962. J. Geophys. Res. Space Phys. 1963, 68, 667–683. [Google Scholar] [CrossRef]
- Wenaas, E.P. Spacecraft Charging Effects on Satellites Following Starfish Events; Technical Report RE-78–2044–057; JAYCOR: Alexandria, VA, USA, 1978. [Google Scholar]
- Conrad, E.E.; Gurtman, G.A.; Kweder, G.; Mandell, M.J.; White, W.W. Collateral Damage to Satellites from an Emp Attack; Technical report DTRA-IR-10–22 1978; Defense Threat Reduction Agency: Fort Belvoir, VA, USA, 2010. [Google Scholar]
- Mayo, J.S.; Mann, H.; Witt, F.J.; Peck, D.S.; Gummel, H.K.; Brown, W.L. The command system malfunction. Bell Syst. Tech. J. 1963, 42, 1631–1657. [Google Scholar] [CrossRef]
- Lockwood, M. Solar Influence on Global and Regional Climates. Surv. Geophys. 2012, 33, 503–534. [Google Scholar] [CrossRef] [Green Version]
- Floyd, L.; Newmark, J.; Cook, J.; Herring, L.; McMullin, D. Solar EUV and UV spectral irradiances solar indices. J. Atmos. Sol. Terr. Phys. 2005, 67, 3–15. [Google Scholar] [CrossRef]
- Wiegelmann, T.; Solanki, S.; Borrero, J.M.; Peter, H.; Barthol, P.; Gandorfer, A.; Pillet, V.M.; Schmidt, W.; Knölker, M. Evolution of the Fine Structure of Magnetic Fields in the Quiet Sun: Observations from Sunrise/IMaX and Extrapolations. Sol. Phys. 2013, 283, 253–272. [Google Scholar] [CrossRef] [Green Version]
- Dameris, M. Climate Change and Atmospheric Chemistry: How Will the Stratospheric Ozone Layer Develop? Angew. Chem. Int. Ed. 2010, 49, 8092–8102. [Google Scholar] [CrossRef] [Green Version]
- Montzka, S.A.; Krol, M.; Dlugokencky, E.; Hall, B.; Lelieveld, P.J.; Jöckel, P. Small Interannual Variability of Global Atmospheric Hydroxyl. Science 2011, 331, 67–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, A.; Siingh, D.S.; Singh, R. Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos. Environ. 2011, 45, 3806–3818. [Google Scholar] [CrossRef]
- Usoskin, I.G.; Ilya, G. A history of solar activity over millennia. Living Rev. Sol. Phys. 2017, 14, 3. [Google Scholar] [CrossRef] [Green Version]
- Ormes, J.F. Cosmic rays and climate. Adv. Space Res. 2018, 62, 2880–2891. [Google Scholar] [CrossRef]
- Singh, A.K.; Bhargawa, A. Delineation of possible influence of solar variability and galactic cosmic rays on terrestrial climate parameters. Adv. Space Res 2020, 65, 1831–1842. [Google Scholar] [CrossRef]
- Fröhlich, C.; Lean, J. The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophys. Res. Lett. 1998, 25, 4377–4380. [Google Scholar] [CrossRef]
- Willson, R.C.; Mordvinov, A.V. Secular total solar irradiance trend during solar cycles 21–23. Geophys. Res. Lett. 2003, 30, 3. [Google Scholar] [CrossRef] [Green Version]
- Dewitte, S.; Crommelynck, D.; Mekaoui, S.; Joukoff, A. Measurement and Uncertainty of the Long-Term Total Solar Irradiance Trend. Sol. Phys. 2004, 224, 209–216. [Google Scholar] [CrossRef]
- Kopp, G.; Lean, J. A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Coddington, O.; Lean, J.; Pilewskie, P.; Snow, M.; Richard, E.; Kopp, G.; Lindholm, C.; Deland, M.; Marchenko, S.; Haberreiter, M.; et al. Solar Irradiance Variability: Comparisons of Models and Measurements. Earth Space Sci. 2019, 6, 2525–2555. [Google Scholar] [CrossRef]
- Bhargawa, A.; Singh, A. Solar irradiance, climatic indicators and climate change–An empirical analysis. Adv. Space Res. 2019, 64, 271–277. [Google Scholar] [CrossRef]
- Gray, L.J.; Rumbold, S.T.; Shine, K.P. Stratospheric Temperature and Radiative Forcing Response to 11-Year Solar Cycle Changes in Irradiance and Ozone. J. Atmos. Sci. 2009, 66, 2402–2417. [Google Scholar] [CrossRef]
- Chatani, S.; Yamaji, K.; Itahashi, S.; Saito, M.; Takigawa, M.; Morikawa, T.; Kanda, I.; Miya, Y.; Komatsu, H.; Sakurai, T.; et al. Identifying key factors influencing model performance on ground-level ozone over urban areas in Japan through model inter-comparisons. Atmos. Environ. 2020, 223, 117255. [Google Scholar] [CrossRef]
- Vakkari, V.; Beukes, J.P.; Josipovic, M.; van Zyl, P.G. Observations of ozone formation in southern African savanna and grassland fire plumes. Atmos. Environ. 2020, 223, 117256. [Google Scholar] [CrossRef]
- Wang, W.; Matthes, K.; Tian, W.; Park, W.; Shangguan, M.; Ding, A. Solar impacts on decadal variability of tropopause temperature and lower stratospheric (LS) water vapour: A mechanism through ocean–atmosphere coupling. Clim. Dyn. 2019, 52, 5585–5604. [Google Scholar] [CrossRef] [Green Version]
- Reames, D.V. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev. 1999, 90, 413–491. [Google Scholar] [CrossRef]
- Jackman, C.H.; Marsh, D.R.; Vitt, F.M.; Garcia, R.R.; Fleming, E.L.; Labow, G.J.; Randall, C.E.; López-Puertas, M.; Funke, B.; Von Clarmann, T.; et al. Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. Discuss. 2008, 8, 765–785. [Google Scholar] [CrossRef] [Green Version]
- Bhargawa, A.; Yakub, M.; Singh, A.K. Repercussions of solar high energy protons on ozone layer during super storms. Res. Astron. Astrophys. 2019, 19, 002. [Google Scholar] [CrossRef]
- Ney, E.P. Cosmic Radiation and the Weather. Nat. Cell Biol. 1959, 183, 451–452. [Google Scholar] [CrossRef]
- Dickinson, E. Solar variability and the lower atmosphere. Bull. Am. Meteorol. Soc. 1975, 56, 1240–1248. [Google Scholar] [CrossRef] [Green Version]
- Tinsley, B.A. Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere. Space Sci. Rev. 2000, 94, 231–258. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Harrison, R.G. Electromagnetic Atmosphere-Plasma Coupling: The Global Atmospheric Electric Circuit. Space Sci. Rev. 2011, 168, 363–384. [Google Scholar] [CrossRef]
- Rycroft, M.J.; Israelsson, S.; Price, C. The global atmospheric electric circuit, solar activity and climate change. J. Atmos. Sol. Terr. Phys. 2000, 62, 17–18. [Google Scholar] [CrossRef] [Green Version]
- Baumgaertner, A.J.G.; Lucas, G.M.; Thayer, J.P.; Mallios, S.A. On the role of clouds in the fair weather part of the global electric circuit. Atmos. Chem. Phys. Discuss. 2014, 14, 8599–8610. [Google Scholar] [CrossRef] [Green Version]
- Hathway, D.H. The solar cycle. Living Rev. Sol. Phys. 2015, 12, 4. [Google Scholar]
- Eddy, J.A. The Maunder Minimum. Science 1976, 192, 1189–1202. [Google Scholar] [CrossRef] [Green Version]
- Gleissberg, W. A long-periodic fluctuation of the sun-spot numbers. Observatory 1939, 62, 158–159. [Google Scholar]
- Powell, K.G.; Roe, P.L.; Linde, T.J.; Gombosi, T.I.; De Zeeuw, D.L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 1999, 154, 284–309. [Google Scholar] [CrossRef]
- Lyon, J.G.; Fedder, J.A.; Mobarry, C.M. The Lyon–Fedder–Mobarry (LFM) global MHD magnetospheric simulation code. J. Atmos. Sol. Terr. Phys. 2004, 66, 1333–1350. [Google Scholar] [CrossRef]
- Raeder, J.; Larson, D.; Li, W.; Kepko, E.L.; Rowell, T.F. Open GGCM Simulations for the THEMIS Mission. Space Sci. Rev. 2008, 141, 535–555. [Google Scholar] [CrossRef]
- Howes, G.G. A dynamical model of plasma turbulence in the solar wind. Philos. Trans. R. Soc. A 2015, 373, 2041. [Google Scholar] [CrossRef] [PubMed]
- Tóth, G.; Sokolov, I.; Gombosi, T.I.; Chesney, D.R.; Clauer, C.R.; De Zeeuw, D.L.; Hansen, K.C.; Kane, K.J.; Manchester, W.B.; Oehmke, R.C.; et al. Space Weather Modeling Framework: A new tool for the space science community. J. Geophys. Res. Space Phys. 2005, 110, A12226. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; van der Holst, B.; Sokolov, I.; De Zeeuw, D.L.; Gombosi, T.I.; Fang, F.; Manchester, W.B.; Meng, X.; Najib, D.; Powell, K.G.; et al. Adaptive numerical algorithms in space weather modeling. J. Comput. Phys. 2012, 231, 870–903. [Google Scholar] [CrossRef] [Green Version]
- Knipp, D. Advances in Space Weather Ensemble Forecasting. Space Weather 2016, 14, 52–53. [Google Scholar] [CrossRef]
- Kuznetsova, M.M.; Hesse, M.; Rastätter, L.; Taktakishvili, A.; Toth, G.; De Zeeuw, D.L.; Ridley, A.; Gombosi, T.I.; Rastaetter, L. Multiscale modeling of magnetospheric reconnection. J. Geophys. Res. Space Phys. 2007, 112, A10210. [Google Scholar] [CrossRef] [Green Version]
- Tóth, G.; Jia, X.; Markidis, S.; Peng, I.B.; Chen, Y.; Daldorff, L.K.S. Extended magnetohydrodynamics with embedded particle-in-cell simulation of ganymede’s magnetosphere. J. Geophys. Res. 2016, 121, 1273–1293. [Google Scholar] [CrossRef] [Green Version]
- Sandroos, A.; Honkonen, I.; Von Alfthan, S.; Palmroth, M. Multi-GPU simulations of Vlasov’s equation using Vlasiator. Parallel Comput. 2013, 39, 306–318. [Google Scholar] [CrossRef]
- Kempf, Y.; Pokhotelov, D.; Gutynska, O.; Wilson, L.B., III; Walsh, B.M.; Alfthan, S.V.; Hannuksela, O.; Sibeck, D.G.; Palmroth, M. Ion distributions in the Earth’s foreshock: Hybrid-Vlasov simulation THEMIS observations. J. Geophys. Res. 2015, 120, 3684–3701. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Parker, E.N.; Mozer, F.S.; Vasyliūnas, V.M.; Pritchett, P.L.; Karimabadi, H.; Cassak, P.A.; Scudder, J.D.; Yamada, M.; Kulsrud, R.M.; et al. Fundamental concepts associated with magnetic reconnection. In Magnetic Reconnection: Concepts and Applications; Gonzalezed, W., Parker, E., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–32. [Google Scholar]
- Mavromichalaki, H.; Sarlanis, C.; Souvatzoglou, G.; Tatsis, S.; Belov, A.; Eroshenko, E.; Yanke, V.; Pchelkin, A. Athens Neutron Monitor and its aspects in the cosmic-ray variations studies. In Proceedings of the ICRC 2001, Hamburg, Germany, 7–15 August 2001. [Google Scholar]
- Tirado-Andrés, F.; Rozas, A.; Araujo, A. A Methodology for Choosing Time Synchronization Strategies for Wireless IoT Networks. Sensors 2019, 19, 3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belov, A.; Dorman, L.; Gushchina, R.; Obridko, V.; Shelting, B.; Yanke, V. Prediction of expected global climate change by forecasting of galactic cosmic ray intensity time variation in near future based on solar magnetic field data. Adv. Space Res. 2005, 35, 491–495. [Google Scholar] [CrossRef]
- Mavromichalaki, H.; Yanke, V.; Dorman, L.; Iucci, N.; Chilingaryan, A.; Kryakunova, O. Neutron Monitor Network in Real Time and Space Weather. In Effects of Space Weather on Technology Infrastructure. NATO Science Series II: Mathematics; Daglis, I.A., Ed.; Springer: Dordrecht, The Netherlands, 2004; Volume 176. [Google Scholar]
- Malandraki, O. Heliospheric Energetic Particles and Galactic Cosmic Ray Modulation. J. Phys. Conf. Ser. 2015, 632, 012070. [Google Scholar] [CrossRef] [Green Version]
- Leerungnavarat, K.; Ruffolo, D.; Bieber, J.W. Loss Cone Precursors to Forbush Decreases and Advance Warning of Space Weather Effects, The American Astronomical Society. Astrophys. J. 2015, 593, 1. [Google Scholar]
- Balch, C.C. Updated verification of the Space Weather Prediction Center’s solar energetic particle prediction model. Space Weather 2008, 6. [Google Scholar] [CrossRef]
- Kahler, S.; Cliver, E.; Ling, A. Validating the proton prediction system (PPS). J. Atmos. Sol. Terr. Phys. 2007, 69, 43–49. [Google Scholar] [CrossRef]
- Dierckxsens, M.; Tziotziou, K.; Dalla, S.; Patsou, I.; Marsh, M.S.; Crosby, N.B.; Malandraki, O.; Tsiropoula, G. Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events. Sol. Phys. 2015, 290, 841–874. [Google Scholar] [CrossRef] [Green Version]
- Marsh, M.S.; Dalla, S.; Dierckxsens, M.; Laitinen, T.; Crosby, N.B. SPARX: A modeling system for Solar Energetic Particle Radiation Space Weather forecasting. Space Weather 2015, 13, 386–394. [Google Scholar] [CrossRef]
- Núñez, M. Predicting solar energetic proton events (E > 10 MeV). Space Weather 2011, 9. [Google Scholar] [CrossRef]
- Souvatzoglou, G.; Papaioannou, A.; Mavromichalaki, H.; Dimitroulakos, J.; Sarlanis, C. Optimizing the real-time ground level enhancement alert system based on neutron monitor measurements: IntroducingGLE Alert Plus. Space Weather 2014, 12, 633–649. [Google Scholar] [CrossRef]
- Kiplinger, A.L. Comparative Studies of Hard X-Ray Spectral Evolution in Solar Flares with High-Energy Proton Events Observed at Earth. Astrophys. J. 1995, 453, 973. [Google Scholar] [CrossRef]
- Grigis, P.C.; Benz, A. The spectral evolution of impulsive solar X-ray flares. Astron. Astrophys. 2004, 426, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Chertok, I.M.; Grechnev, V.V.; Meshalkina, N.S. On the correlation between spectra of solar microwave bursts and proton fluxes near the Earth. Astron. Rep. 2009, 53, 1059–1069. [Google Scholar] [CrossRef]
- Garcia, H.A. Forecasting methods for occurrence and magnitude of proton storms with solar soft X rays. Space Weather 2004, 2, 2. [Google Scholar] [CrossRef]
- Schwadron, N.A.; Townsend, L.; Kozarev, K.; Dayeh, M.A.; Cucinotta, F.; Desai, M.; Golightly, M.; Hassler, D.; Hatcher, R.; Kim, M.-Y.; et al. Earth-Moon-Mars Radiation Environment Module framework. Space Weather 2010, 8, S00E02. [Google Scholar] [CrossRef]
- Kozarev, K.; Evans, R.M.; Schwadron, N.A.; Dayeh, M.A.; Opher, M.; Korreck, K.E.; Van Der Holst, B. Global Numerical Modeling of Energetic Proton Acceleration in A Coronal Mass Ejection Traveling Through the Solar Corona. Astrophys. J. 2013, 778, 43. [Google Scholar] [CrossRef] [Green Version]
- Mazur, J.; Friesen, L.; Lin, A.; Mabry, D.; Katz, N.; Dotan, Y.; George, J.; Blake, J.B.; Looper, M.; Redding, M.; et al. The Relativistic Proton Spectrometer (RPS) for the Radiation Belt Storm Probes Mission. Space Sci. Rev. 2012, 179, 221–261. [Google Scholar] [CrossRef] [Green Version]
- Knipp, D.J.; Biesecker, D.A. Changing of the Guard: Satellite Will Warn Earth of Solar Storms. EOS 2015, 24 March 2015, Science News by AGU.
- Dickinson, D. First Science returns from NASA’s Parker Solar Probe. Spacecraft and Space Missions 2019. Available online: https://www.nasa.gov/feature/goddard/2019/nasas-parker-solar-probe-sheds-new-light-on-the-sun/ (accessed on 5 December 2019).
- Hatfield, M. ESA/NASA’s Solar Orbiter Returns First Data, Snaps, Closest Picture of the Sun. Available online: https://www.nasa.gov/feature/goddard/2020/solar-orbiter-returns-first-data-snaps-closest-pictures-of-the-sun/ (accessed on 16 July 2020).
- Plainaki, C.; Lilensten, J.; Radioti, A.; Andriopoulou, M.; Milillo, A.; Nordheim, T.A.; Dandouras, I.; Coustenis, A.; Grassi, D.; Mangano, V.; et al. Planetary space weather: Scientific aspects and future perspectives. J. Space Weather Space Clim. 2016, 6, A31. [Google Scholar] [CrossRef] [Green Version]
- André, N.; Grande, M.; Achilleos, N.; Barthélémy, M.; Bouchemit, M.; Benson, K.; Blelly, P.-L.; Budnik, E.; Caussarieu, S.; Cecconi, B.; et al. Virtual Planetary Space Weather Services offered by the Europlanet H2020 Research Infrastructure. Planet. Space Sci. 2018, 150, 50–59. [Google Scholar] [CrossRef] [Green Version]
- Hassler, D.M.; Zeitlin, C.; Ehresmann, B.; Wimmer-Schweingruber, R.F.; Guo, J.; Matthiä, D.; Rafkin, S.; Berger, T.; Reitz, G. Space Weather on the Surface of Mars: Impact of the September 2017 Events. Space Weather 2018, 16, 1702–1708. [Google Scholar] [CrossRef]
- Hueso, R.; del Río-Gaztelurrutia, T.; Sánchez-Lavega, A. Detectability of possible space weather effects on Mars upper atmosphere meteor impacts in Jupiter Saturn with small telescopes. J. Space Weather Space Clim. 2018, 8, A57. [Google Scholar] [CrossRef]
- Hapgood, M.A. The Impact of Space Weather on Human Missions to Mars: The Need for Good Engineering and Good Forecasts. In The Human Factor in a Mission to Mars. Space and Society; Szocik, K., Ed.; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Klimchuk, J.A. Key aspects of coronal heating. Philos. Trans. R. Soc. A 2015, 373. [Google Scholar] [CrossRef] [PubMed]
- Chapman, S. On the kinetic theory of a gas. Part II—A composite monatomic gas: Diffusion 1918, viscosity, and thermal conduction. Philos. Trans. R. Soc. A 2015, 217, 549–560. [Google Scholar]
- Chapman, S.; Ferraro, V.C.A. A new theory of magnetic storms. Terr. Mag. Atmos. Elect. 1931, 36, 77–97. [Google Scholar] [CrossRef]
- Biermann, l. Kometenschweife und solare Korpuskularstrahlung. Z. fur Astrophys. 1951, 29, 274–286. [Google Scholar]
- Alfvén, H. On the Theory of Comet Tails. Tellus 1951, 9, 92–96. [Google Scholar]
- Parker, E.N. Interaction of the Solar Wind with the Geomagnetic Field. Phys. Fluids 1958, 1, 171. [Google Scholar] [CrossRef]
- Crary, F.; Clarke, J.; Dougherty, M.; Hanlon, P.G.; Hansen, K.C.; Steinberg, J.T.; Barraclough, B.L.; Coates, A.J.; Gérard, J.C.; Grodent, D.; et al. Solar wind dynamic pressure and electric field as the main factors controlling Saturn’s aurorae. Nature 2005, 433, 720–722. [Google Scholar] [CrossRef] [PubMed]
- Khabarova, O.V.; Zank, G.P.; Li, G.; Malandraki, O.E.; Le Roux, J.A.; Webb, G.M. Small-Scale Magnetic Islands in the Solar Wind and Their Role in Particle Acceleration. II. Particle Energization Inside Magnetically Confined Cavities. Astrophys. J. 2016, 827, 122. [Google Scholar] [CrossRef]
- Scherrer, P.H.; Schou, J.; Bush, R.I.; Kosovichev, A.G.; Bogart, R.S.; Hoeksema, J.T.; Liu, Y.; Duvall, T.L.; Zhao, J.; Title, A.M.; et al. The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Sol. Phys. 2012, 275, 207–227. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, A.K.; Bhargawa, A.; Siingh, D.; Singh, R.P. Physics of Space Weather Phenomena: A Review. Geosciences 2021, 11, 286. https://doi.org/10.3390/geosciences11070286
Singh AK, Bhargawa A, Siingh D, Singh RP. Physics of Space Weather Phenomena: A Review. Geosciences. 2021; 11(7):286. https://doi.org/10.3390/geosciences11070286
Chicago/Turabian StyleSingh, Ashok Kumar, Asheesh Bhargawa, Devendraa Siingh, and Ram Pal Singh. 2021. "Physics of Space Weather Phenomena: A Review" Geosciences 11, no. 7: 286. https://doi.org/10.3390/geosciences11070286
APA StyleSingh, A. K., Bhargawa, A., Siingh, D., & Singh, R. P. (2021). Physics of Space Weather Phenomena: A Review. Geosciences, 11(7), 286. https://doi.org/10.3390/geosciences11070286