Volatile Content Implications of Increasing Explosivity of the Strombolian Eruptive Style along the Fracture Opening on the NE Villarrica Flank: Minor Eruptive Centers in the Los Nevados Group 2
Abstract
:1. Introduction
1.1. Geological and Volcanological Setting
1.2. Local Setting: Los Nevados Group
2. Materials and Methods
2.1. Field Work
2.2. Unmanned Aerial Vehicle (UAV) Survey
2.3. Petrography
2.4. Scanning Electron Microscope
2.5. Populations of Olivine
2.6. Fourier Transform Infrared Microspectrometry (FTIR)
2.7. Electron Microprobe Analyzer (EMPA)
3. Results
3.1. Petrographic Characteristics of the Deposits
3.1.1. Deposit HLN2a6
- This is a double-nested crater with the SW side cutting off the NE side. A deeper base is observed on the NE crater, where a solid gray-black to brown overflow rampart deposit consists of unconsolidated-to-agglutinated scoria with a minimum thickness of 9 m (Figure 2 and Figure S1; HLN2A6a and HLN2A6b). The base of the sequence consists of vitreous vesicular scoria with a medium lapilli size (<~20 cm), and a lesser quantity of fine lapilli (30% of the basal sequence), immersed in a 10% coarse ash-sized matrix (Figure 1d and Figure S1a). Toward the top of the deposit, the size of the clasts increases, consisting essentially of juvenile scoriaceous fragments of a block size of ~60 cm in diameter, with predominantly brown tones (70% of the upper sequence), containing two groups of pyroclasts (HLN2A6A and HLN2A6F). The SW crater is covered with the rest of the series and forms a semiarc rampart structure with a cumulation of bombs (lapilli to block size) dispersed as far as 200 m from the crater (Figure 2). Lapilli fragments were sampled such as crystalline and heavy block HLN2A6 and fusiform scoriaceous HLN2A6F (Figure S1).
- The first group (HLN2A6A) of lapilli is characterized by being hypocrystalline and porphyric, and it presents variations in vesicularity. The pyroclastic fragment obtained from the second group is vesicular with a fusiform morphology (HLN2A6F), characterized by being hypocrystalline, porphyritic, and moderately vesicular (Figure S1 and Table S1). The phenocrysts (5 vol% of the total rock) correspond to plagioclase (4 vol%, 1–2 mm) of subhedral form and olivine (1 vol%, ≤1 mm) of greenish tones and subhedral form. The groundmass (60% of the total rock) is microcrystalline (Figures S2 and S4).
3.1.2. Deposit HLN2a7
- This is an overflow levee crater with AA blocks and lapilli clasts (Figure 2 and Figure S1). The sequence appears as a massive gray-brown deposit of approximately 3 m thickness, made of agglutinated scoria (spatter texture). This eruptive center is made up of abundant highly vesicular scoriaceous juvenile clasts of medium-thick lapilli size (10% of the deposit), which exhibit black-brown colorations and clasts (80% of the deposit) of bomb size with diameters of ~30 cm, which are arranged in an aggregate manner and are immersed in a matrix of coarse ash size (10% of the deposit) (Figures S2 and S4 and Table S1).
- Petrographically, the spatter clasts are basaltic vesicular olivine, mostly hypocrystalline and porphyritic, and the rest of the groundmass is highly vesicular (Figure S4, Table S1). The sampled fragment is made up of phenocrysts (3 vol% with respect to the total rock) of subhedral plagioclase (2%, 0.5–1 mm) and subhedral olivine (<1 vol%, <1 mm). The groundmass (67% of the total rock) has an aphanitic texture. Vesicles occupy from 30 vol% and up to 50–60 vol% of the total rock, and are essentially <1 mm, decreasing in size towards the center of the sample (Figure S1). At microscopic level and using a scanning electron microscope (SEM), the clasts are revealed to be vesicular basalt containing interstitial accessory clinopyroxene (2 vol%) and olivine (<1 vol%) among dominant 5 vol% plagioclase. The rock is highly vesicular (~60 vol% of the total rock) and has a hypocrystalline and vitrophyric texture (Figures S2 and S4).
3.1.3. Deposit HLN2a9
- This is a circular crater with an excavated 5.4 m steep deposit of scoria on the north side contrasting with the rounded morphology that reaches 12 m high on the south side (Figure 1, Figure 2 and Figure S1). The sampled north wall is a solid gray-black weakly consolidated deposit made up of vesicular scoriaceous clasts of medium-thick lapilli (90%) immersed in a matrix of coarse ash (10%). Gradually, at higher levels, the size of the pyroclastic fragments increases until it is made up of bomb size (~20%) of up to 30 cm in diameter at their greatest length, and which are scoriaceous and highly vesicular.
- Microscope photos show a rock that represents an interstitial vesicular groundmass of clinopyroxene and olivine. This rock is highly vesicular (58 vol% of the total rock), hypocrystalline, and vesicular and porphyritic in texture. The phenocrysts make up 6 vol% of the total rock and include phenocrysts of plagioclase (4 vol% with respect to the total rock, 1–3 mm), which locally exhibit sieved textures and partially resorbed edges (Figure S4); olivine phenocrysts of subhedral form (1 vol%, 1–2.5 mm); olivine microphenocrysts of subhedral form (1 vol%, 0.1–0.6 mm); and subhedral clinopyroxene microphenocrysts (<1 vol%, 0.2–0.4 mm). The groundmass (36 vol% of the total rock) has an interstitial texture and is made up of plagioclase microlites (6 vol%, <0.5 mm) partially surrounded by pyroxene (Figure S4, Table S1).
3.2. Bulk Rock Chemistry
3.3. Olivine Populations
3.4. Infrared Microscopy
3.5. Melt Inclusions and Matrix Glass Composition
3.6. Volatile Contents
4. Discussion
4.1. Textural Relationships: Implications of Melt Inclusions and Clast Cooling Rates
4.2. Degassing Mechanisms
4.3. Eruptive Style Variation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stern, C.R. Active Andean volcanism: Its geologic and tectonic setting. Rev. Geol. Chile 2004, 31, 161–206. [Google Scholar] [CrossRef]
- Clavero, J.; Moreno, H. Evolution of Villarrica Volcano. In Villarrica Volcano (39.5°), Southern Andes, Chile; Servicio Nacional de Geología y Mineria: Providencia, Chile, 2004; pp. 17–27. [Google Scholar]
- Moreno, H.; Clavero, J. Geología del Volcán Villarrica—Regiones de La Araucanía y de Los Lagos; Carta Geológica Básica, No. 98, 35 p., 1 mapa escala 1:50.000; Servicio Nacional de Geología y Minería: Providencia, Chile, 2006.
- Kereszturi, G.; Németh, K. Monogenetic basaltic volcanoes: Genetic classification, growth, geomorphology and degradation. In Updates in Volcanology—New Advances in Understanding Volcanic System; Németh, K., Ed.; InTech Open: Rijeka, Croatia, 2010; pp. 3–88. [Google Scholar]
- Smith, I.; Németh, K. Source to Surface Model of Monogenetic Volcanism: A Critical Review; Special Publications; Geological Society: London, UK, 2017; Volume 446, pp. 1–28. [Google Scholar]
- Parfitt, E.A.; Wilson, L. Explosive volcanic eruptions -IX. The transition between Hawaiian-style lava fountaining and Strombolian explosive activity. Geophys. J. Int. 1995, 226, 121. [Google Scholar] [CrossRef] [Green Version]
- Pioli, L.; Erlund, E.; Johnson, E.; Cashman, K.; Wallace, P.; Rosi, M.; Granados, H.D. Explosive dynamics of violent Strombolian eruptions: The eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet. Sci. Lett. 2008, 271, 359–368. [Google Scholar] [CrossRef]
- Cassidy, M.; Manga, M.; Cashman, K.; Bachmann, O. Controls on explosive-effusive volcanic eruption styles. Nat. Commun. 2018, 9, 2839. [Google Scholar] [CrossRef] [Green Version]
- Cashman, K. Volatile controls on magma ascent and eruption. In The State of the Planet: Frontiers and Challenges; Geophysics AGU Geophys Monogr Series 150; Sparks, R.S.J., Hawkesworth, C.J., Eds.; 2004; pp. 109–124. [Google Scholar]
- Sparks, R.S.J. The dynamics of bubble formation and growth in magmas: A review and analysis. J. Volcanol. Geotherm. Res. 1978, 3, 1–37. [Google Scholar] [CrossRef]
- Sparks, R.S.J.; Barclay, J.; Jaupart, C.; Mader, H.M.; Phillips, J.C. Chapter 11a. Physical Aspects of Magma Degassing I. Experimental and theoretical constraints on vesiculation. Volatiles Magmas 2018, 413–446. [Google Scholar] [CrossRef]
- Métrich, N.; Wallace, P.J. Volatile abundances in basaltic magmas and their degassing paths tracked by melt inclusions. Rev. Mineral. Geochem. 2008, 69, 363–402. [Google Scholar] [CrossRef]
- Wallace, P. Volatiles in subduction zone magmas; concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 2005, 140, 217–240. [Google Scholar] [CrossRef]
- Roedder, E. Origin and significance of magmatic inclusions. Bull. Mineral. 1979, 102, 487–510. [Google Scholar] [CrossRef]
- Roedder, E. Volume 12: Fluid inclusions. Rev. Miner. 1984, 12, 12. [Google Scholar]
- Jacques, G.; Hoernle, K.; Gill, J.; Wehrmann, H.; Bindeman, I.; Lara, L. Geochemical variations in the Central Southern Volcanic Zone, Chile (38–43 °S): The role of fluids in generating arc magmas. Chem. Geol. 2014, 371, 27–45. [Google Scholar] [CrossRef] [Green Version]
- López, L.; Cembrano, J.; Moreno, H. Geochemistry and tectonics of the chilean Southern Andes basaltic Quaternary volcanism (37°–46°S). Rev. Geol. Chile 1995, 22, 219–234. [Google Scholar]
- Cembrano, J.; Lara, L. The link between volcanism and tectonic in the southern volcanic zone of the Chilean Andes: A review. Tectonophysics 2009, 471, 96–113. [Google Scholar] [CrossRef]
- McGee, L.E.; Brahm, R.; Rowe, M.C.; Handley, H.K.; Morgado, E.; Lara, L.E.; Turner, M.B.; Vinet, N.; Parada, M.-Á.; Valdivia, P. A geochemical approach to distinguishing competing tectono-magmatic processes preserved in small eruptive centres. Contrib. Mineral. Petrol. 2017, 172, 44. [Google Scholar] [CrossRef]
- Lara, L.E.; Naranjo, J.A.; Moreno, H. Lanín volcano (39.5 °S), Southern Andes: Geology and morphostructural evolution. Rev. Geol. Chile 2004, 31, 241–257. [Google Scholar] [CrossRef]
- Parejas, C.S.; Druitt, T.H.; Robin, C.; Moreno, H.; Naranjo, J.A. The Holocene Pucón eruption of Volcán Villarrica, Chile: Deposit architecture and eruption chronology. Bull. Volcanol. 2010, 72, 677–692. [Google Scholar] [CrossRef]
- Dzierma, Y.; Wehrmann, H. Eruption time series statistically examined: Probabilities of future eruptions at Villarrica and Llaima Volcanoes, Southern Volcanic Zone, Chile. J. Volcanol. Geotherm. Res. 2010, 193, 82–92. [Google Scholar] [CrossRef]
- Wehrmann, H.; Dzierma, Y. Applicability of statistical eruption analysis to the geological record of Villarrica and Lanín volcanoes, Southern Volcanic Zone, Chile. J. Volcanol. Geotherm. Res. 2011, 200, 99–115. [Google Scholar] [CrossRef]
- Castruccio, A.; Clavero, J.; Rivera, A. Comparative study of lahars generated by the 1961 and 1971 eruptions of Calbuco and Villarrica volcanoes, Southern Andes of Chile. J. Volcanol. Geotherm. Res. 2010, 190, 297–311. [Google Scholar] [CrossRef]
- Morgado, E.; Parada, M.A.; Contreras, C.; Castruccio, A.; Gutiérrez, F.; McGee, L.E. Contrasting records from mantle to surface of Holocene lavas of two nearby arc volcanic complexes: Caburgua-Huelemolle Small Eruptive Centers and Villarrica Volcano, Southern Chile. J. Volcanol. Geotherm. Res. 2015, 306, 1–16. [Google Scholar] [CrossRef]
- Pizarro, C.; Parada, M.A.; Contreras, C.; Morgado, E. Cryptic magma recharge associated with the most voluminous 20th century eruptions (1921, 1948 and 1971) at Villarrica Volcano. J. Volcanol. Geotherm. Res. 2019, 384, 48–63. [Google Scholar] [CrossRef]
- Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C. A late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit. J. Volcanol. Geotherm. Res. 2011, 200, 143–158. [Google Scholar] [CrossRef]
- Pioli, L.; Scalisi, L.; Costantini, L.; Di Muro, A.; Bonadonna, C.; Clavero, J. Explosive style, magma degassing and evolution in the Chaimilla eruption, Villarrica volcano, Southern Andes. Bull. Volcanol. 2015, 77, 93. [Google Scholar] [CrossRef]
- Hickey-Vargas, R.; Roa, H.M.; Escobar, L.L.; Frey, F.A. Geochemical variations in Andean basaltic and silicic lavas from the Villarrica-Lanin volcanic chain (39.5 S): An evaluation of source heterogeneity, fractional crystallization, and crustal assimilation. Contrib. Mineral. Petrol. 1989, 103, 361–386. [Google Scholar] [CrossRef]
- Hickey-Vargas, R.; Sun, M.; López-Escobar, L.; Moreno-Roa, H.; Reagan, M.K.; Morris, J.D.; Ryan, J.G. Multiple subduction components in the mantle wedge: Evidence from eruptive centers in the Central Southern volcanic zone, Chile. Geology 2002, 30, 199–202. [Google Scholar] [CrossRef]
- Pastén, D. Relación Entre Estilos de Desgasificación y Eruptivos en Los Centros Eruptivos Menores Los Nevados, Andes del Sur, Memoria Entregada a La Universidad Mayor en Cumplimiento de Los Requisitos Para Optar al Título de Geóloga. Bachelor’s Thesis, Universidad Mayor, Escuela de Geología, Santiago, Chile, 2018. [Google Scholar]
- Liu, E.J.; Wood, K.; Mason, E.; Edmonds, M.; Aiuppa, A.; Giudice, G.; Bitetto, M.; Francofonte, V.; Burrow, S.; Richardson, T.; et al. Dynamics of outgassing and plume transport revealed by proximal Unmanned Aerial System (UAS) measurements at Volcán Villarrica, Chile. Geochem. Geophys. Geosyst. 2019, 20, 730–750. [Google Scholar] [CrossRef] [Green Version]
- Stix, J.; de Moor, J.M.; Rüdiger, J.; Alan, A.; Corrales, E.; D’Arcy, F.; Diaz, J.A.; Liotta, M. Using drones and miniaturized instrumentation to study degassing at Turrialba and Masaya volcanoes, Central America. J. Geophys. Res. Solid Earth 2018, 123, 6501–6520. [Google Scholar] [CrossRef]
- Sona, G.; Pinto, L.; Pagliari, D.; Passoni, D.; Gini, R. Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Sci. Inform. 2014, 7, 97–107. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.H.; Robinson, S.A. Spatial co-registration of ultra-high resolution visible, multispectral and thermal images acquired with a micro-UAV over Antarctic moss beds. Remote Sens. 2014, 6, 4003–4024. [Google Scholar] [CrossRef] [Green Version]
- Carrera-Hernández, J.J.; Levresse, G.; Lacan, P. Is UAV-SfM surveying ready to replace traditional surveying techniques? Int. J. Remote Sens. 2020, 41, 4820–4837. [Google Scholar] [CrossRef]
- Robidoux, P.; Frezzotti, M.L.; Hauri, E.H.; Aiuppa, A. Shrinkage Bubbles: The C–O–H–S Magmatic Fluid System at San Cristóbal Volcano. J. Petrol. 2018, 59, 2093–2122. [Google Scholar] [CrossRef]
- Bodnar, R.J.; Student, J.J.; Webster, J.D. Melt inclusions in plutonic rocks: Petrography and microthermometry. Melt Incl. Plutonic Rocks 2006, 36, 1–25. [Google Scholar]
- Ihinger, P.D.; Hervig, R.L.; McMillan, P.F. Analytical methods for volatiles in glasses. Volatiles Magmas 2018, 67–122. [Google Scholar] [CrossRef]
- Ochs, F.; Lange, R. The Density of Hydrous Magmatic Liquids. Science 1999, 283, 1314–1317. [Google Scholar] [CrossRef]
- Dixon, J.E.; Stolper, E.; Delaney, J.R. Infrared spectroscopic measurements of CO2 and H2O in Juan de Fuca Ridge basaltic glasses. Earth Planet. Sci. Lett. 1988, 90, 87–104. [Google Scholar] [CrossRef]
- Nishikida, K.; Nishio, E.; Hannah, R.W. Selected Applications of Modern FT-IR Techniques; Gordon and Breach; CRC Press: London, UK, 1996; p. 200. [Google Scholar]
- von Aulock, F.; Kennedy, B.; Schipper, C.I.; Castro, J.; Martin, D.E.; Oze, C.; Watkins, J.; Wallace, P.; Puskar, L.; Bégué, F.; et al. Advances in Fourier transform infrared spectroscopy of natural glasses: From sample preparation to data analysis. Lithos 2014, 206, 52–64. [Google Scholar] [CrossRef]
- Dixon, J.E.; Stolper, E.M. An experimental study of water and carbon dioxide solubilities in mid-ocean ridge basaltic liquids. Part II: Applications to degassing. J. Petrol. 1995, 36, 1633–1646. [Google Scholar]
- Fine, G.; Stolper, E. Dissolved carbon dioxide in basaltic glasses: Concentrations and speciation. Earth Planet. Sci. Lett. 1986, 76, 263–278. [Google Scholar] [CrossRef]
- Newman, S.; Stolper, E.; Stern, R. H2O and CO2 in magmas from the Mariana arc and back arc systems. Geochem. Geophys. Geosyst. 2000, 1. [Google Scholar] [CrossRef]
- Dixon, J.E.; Pan, V. Determination of the molar absorptivity of dissolved carbonate in basanitic glass. Am. Mineral. 1995, 80, 1339–1342. [Google Scholar] [CrossRef]
- Hauri, E.; Wang, J.; Dixon, J.E.; King, P.L.; Mandeville, C.; Newman, S. SIMS analysis of volatiles in silicate glasses: 1. Calibration, matrix effects and comparisons with FTIR. Chem. Geol. 2002, 183, 99–114. [Google Scholar] [CrossRef]
- Wehrmann, H.; Hoernle, K.; Garbe-Schönberg, D.; Jacques, G.; Mahlke, J.; Schumann, K. Insights from trace element geochemistry as to the roles of subduction zone geometry and subduction input on the chemistry of arc magmas. Int. J. Earth Sci. 2014, 103, 1929–1944. [Google Scholar] [CrossRef]
- Held, S.; Schill, E.; Schneider, J.; Nitschke, F.; Morata, D.; Neumann, T.; Kohl, T. Geochemical characterization of the geothermal system at Villarrica volcano, Southern Chile; Part 1: Impacts of lithology on the geothermal reservoir. Geothermics 2018, 74, 226–239. [Google Scholar] [CrossRef]
- Tormey, D.R.; Hickey-Vargas, R.; Frey, F.A.; López-Escobar, L. Recent lavas from the Andean volcanic front (33 to 42 S); interpretations of along-arc compositional variations. Andean Magmat. Tecton. Setting Geol. Soc. Am. Spec. Pap. 1991, 265, 57–77. [Google Scholar]
- Lowenstern, J.B. Dissolved volatile concentrations in an ore-forming magma. Geology 1994, 22, 893–896. [Google Scholar] [CrossRef]
- Moore, L.; Gazel, E.; Tuohy, R.; Lloyd, A.; Esposito, R.; Steele-MacInnis, M.; Hauri, E.H.; Wallace, P.J.; Plank, T.; Bodnar, R.J. Bubbles matter: An assessment of the contribution of vapor bubbles to melt inclusion volatile budgets. Am. Mineral. 2015, 100, 806–823. [Google Scholar] [CrossRef]
- Stolper, E. Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral. Petrol. 1982, 81, 1–17. [Google Scholar] [CrossRef]
- Nichols, A.R.; Wysoczanski, R.J. Using micro-FTIR spectroscopy to measure volatile contents in small and unexposed inclusions hosted in olivine crystals. Chem. Geol. 2007, 242, 371–384. [Google Scholar] [CrossRef]
- Danyushevsky, L.V.; Plechov, P. Petrolog3: Integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef]
- Kress, V.C.; Carmichael, I.S. Stoichiometry of the iron oxidation reaction in silicate melts. Am. Mineral. 1988, 73, 1267–1274. [Google Scholar]
- Kress, V.C.; Carmichael, I.S. The compressibility of silicate liquids containing Fe2O3 and the effect of composition, temperature, oxygen fugacity and pressure on their redox states. Contrib. Mineral. Petrol. 1991, 108, 82–92. [Google Scholar] [CrossRef]
- Marsh, B.D. On the interpretation of crystal size distributions in magmatic systems. J. Petrol. 1998, 39, 553–599. [Google Scholar] [CrossRef]
- Armienti, P.; Pareschi, M.T.; Innocenti, F.; Pompilio, M. Effects of magma storage and ascent on the kinetics of crystal growth. Contrib. Mineral. Petrol. 1994, 115, 402–414. [Google Scholar] [CrossRef]
- Nelson, S.T.; Montana, A. Sieve-textured plagioclase in volcanic rocks produced by rapid decompression. Am. Mineral. 1992, 77, 1242–1249. [Google Scholar]
- Johnson, E.; Wallace, P.; Cashman, K.; Delgado Granados, H.; Kent, A. Magmatic volatile contents and degassing-induced crystallization at Volcán Jorullo, Mexico: Implications for melt evolution and the plumbing systems of monogenetic volcanoes. Earth Planet. Sci. Lett. Res. 2008, 269, 477–486. [Google Scholar] [CrossRef]
- Lloyd, A.S.; Plank, T.; Ruprecht, P.; Hauri, E.H.; Rose, W. Volatile loss from melt inclusions in pyroclasts of differing sizes. Contrib. Mineral. Petrol. 2013, 165, 129–153. [Google Scholar] [CrossRef] [Green Version]
- Sisson, T.W.; Layne, G.D. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet. Sci. Lett. 1993, 117, 619–635. [Google Scholar] [CrossRef]
- Chen, Y.; Provost, A.; Schiano, P.; Cluzel, N. The rate of water loss from olivine-hosted melt inclusions. Contrib. Mineral. Petrol. 2011, 162, 625–636. [Google Scholar] [CrossRef]
- Qin, Z.; Lu, F.; Anderson, A.T. Diffusive reequilibration of melt and fluid inclusions. Am. Mineral. 1992, 77, 565–576. [Google Scholar]
- De Maisonneuve, C.B.; Dungan, M.A.; Bachmann, O.; Burgisser, A. Insights into shallow magma storage and crystallization at Volcán Llaima (Andean southern volcanic zone, Chile). J. Volcanol. Geotherm. Res. 2012, 211, 76–91. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, P.; Wallace, P. Magma degassing and basaltic eruption styles: A case study of ~2000 year BP Xitle volcano in central Mexico. J. Volcanol. Geotherm. Res. 2003, 120, 249–270. [Google Scholar] [CrossRef]
- Berlo, K.; Stix, J.; Roggensack, K.; Ghaleb, B. A tale of two magmas, Fuego, Guatemala. Bull. Volcanol. 2012, 74, 377–390. [Google Scholar] [CrossRef]
- Rust, A.C.; Cashman, K.V. Permeability controls on expansion and size distributions of pyroclasts. J. Geophys. Res. Solid Earth 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Iacono-Marziano, G.; Morizet, Y.; Le Trong, E.; Gaillard, F. New experimental data and semi-empirical parameterization of H2O–CO2 solubility in mafic melts. Geochim. Cosmochim. Acta 2012, 97, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Mironov, N.; Portnyagin, M.; Botcharnikov, R.; Gurenko, A.; Hoernle, K.; Holtz, F. Quantification of the CO2 budget and H2O–CO2 systematics in subduction-zone magmas through the experimental hydration of melt inclusions in olivine at high H2O pressure. Earth Planet. Sci. Lett. 2015, 425, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aster, E.M.; Wallace, P.J.; Moore, L.R.; Watkins, J.; Gazel, E.; Bodnar, R.J. Reconstructing CO2 concentrations in basaltic melt inclusions using Raman analysis of vapor bubbles. J. Volcanol. Geotherm. Res. 2016, 323, 148–162. [Google Scholar] [CrossRef]
- Venugopal, S.; Schiavi, F.; Moune, S.; Bolfan-Casanova, N.; Druitt, T.; Williams-Jones, G. Melt inclusion vapour bubbles: The hidden reservoir for major and volatile elements. Sci. Rep. 2020, 10, 9034. [Google Scholar] [CrossRef] [PubMed]
- Schiavi, F.; Bolfan-Casanova, N.; Buso, R.; Laumonier, M.; Laporte, D.; Medjoubi, K.; Venugopal, S.; Gómez-Ulla, A.; Cluzel, N.; Hardiagon, M. Quantifying magmatic volatiles by Raman microtomography of glass inclusion-hosted bubbles. Geochem. Perspect. Lett. 2020, 16, 17–24. [Google Scholar] [CrossRef]
- Webster, J.D.; Kinzler, R.J.; Mathez, E.A. Chloride and water solubility in basalt and andesite melts and implications for magmatic degassing. Geochim. Cosmochim. Acta 1999, 63, 729–738. [Google Scholar] [CrossRef]
- Aiuppa, A.; Baker, D.R.; Webster, J.D. Halogens in volcanic systems. Chem. Geol. 2009, 263, 1–18. [Google Scholar] [CrossRef]
- Martini, M. On the behaviour of fluorine in volcanic processes. Bull. Volcanol. 1984, 47, 483–489. [Google Scholar] [CrossRef]
- Moune, S.; Gauthier, P.J.; Gislason, S.R.; Sigmarsson, O. Trace element degassing and enrichment in the eruptive plume of the 2000 eruption of Hekla volcano, Iceland. Geochim. Cosmochim. Acta 2006, 70, 461–479. [Google Scholar] [CrossRef]
- Moreno, H.; Gardeweg, M.C. La erupción reciente en el complejo volcánico Lonquimay (Diciembre 1988), Andes del Sur. Andean Geol. 1989, 16, 93–117. [Google Scholar]
- Heiken, G.; Wohletz, K. Fragmentation processes in explosive volcanic eruptions. Sediment. Volcan. Settings 1991, 19–26. [Google Scholar]
- Guilbaud, M.N.; Siebe, C.; Agustín-Flores, J. Eruptive style of the young high-Mg basaltic-andesite Pelagatos scoria cone, southeast of México City. Bull. Volcanol. 2009, 71, 859–880. [Google Scholar] [CrossRef]
- Roberge, J.; Guilbaud, M.N.; Mercer, C.N.; Reyes-Luna, P.C. Insight into monogenetic eruption processes at Pelagatos volcano, Sierra Chichinautzin, Mexico: A combined melt inclusion and physical volcanology study. In The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas; Zellmer, G.F., Edmonds, M., Straub, S.M., Eds.; Special Publications; Geological Society: London, UK, 2015; Volume 410. [Google Scholar]
- Esposito, R.; Hunter, J.; Schiffbauer, J.D.; Shimizu, N.; Bodnar, R.J. An assessment of the reliability of melt inclusions as recorders of the pre-eruptive volatile content of magmas. Am. Mineral. 2014, 99, 976–998. [Google Scholar] [CrossRef]
- Sinton, J.M.; Detrick, R.S. Mid-ocean ridge magma chambers. J. Geophys. Res. Solid Earth 1992, 97, 197–216. [Google Scholar] [CrossRef]
- Danyushevsky, L.V.; McNeill, A.W.; Sobolev, A.V. Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: An overview of techniques, advantages and complications. Chem. Geol. 2002, 183, 5–24. [Google Scholar] [CrossRef] [Green Version]
- Danyushevsky, L.V.; FNDella-Pasqua, S. Sokolov, Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contrib Miner. Pet. 2000, 138, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Pering, T.D.; McGonigle, A.J.S.; James, M.R.; Capponi, A.; Lane, S.J.; Tamburello, G.; Aiuppa, A. The dynamics of slug trains in volcanic conduits: Evidence for expansion driven slug coalescence. J. Volcanol. Geotherm. Res. 2017, 348, 26–35. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robidoux, P.; Pastén, D.; Levresse, G.; Diaz, G.; Paredes, D. Volatile Content Implications of Increasing Explosivity of the Strombolian Eruptive Style along the Fracture Opening on the NE Villarrica Flank: Minor Eruptive Centers in the Los Nevados Group 2. Geosciences 2021, 11, 309. https://doi.org/10.3390/geosciences11080309
Robidoux P, Pastén D, Levresse G, Diaz G, Paredes D. Volatile Content Implications of Increasing Explosivity of the Strombolian Eruptive Style along the Fracture Opening on the NE Villarrica Flank: Minor Eruptive Centers in the Los Nevados Group 2. Geosciences. 2021; 11(8):309. https://doi.org/10.3390/geosciences11080309
Chicago/Turabian StyleRobidoux, Philippe, Daniela Pastén, Gilles Levresse, Gloria Diaz, and Dante Paredes. 2021. "Volatile Content Implications of Increasing Explosivity of the Strombolian Eruptive Style along the Fracture Opening on the NE Villarrica Flank: Minor Eruptive Centers in the Los Nevados Group 2" Geosciences 11, no. 8: 309. https://doi.org/10.3390/geosciences11080309
APA StyleRobidoux, P., Pastén, D., Levresse, G., Diaz, G., & Paredes, D. (2021). Volatile Content Implications of Increasing Explosivity of the Strombolian Eruptive Style along the Fracture Opening on the NE Villarrica Flank: Minor Eruptive Centers in the Los Nevados Group 2. Geosciences, 11(8), 309. https://doi.org/10.3390/geosciences11080309