Speleothem Records of the Hydroclimate Variability throughout the Last Glacial Cycle from Manita peć Cave (Velebit Mountain, Croatia)
Abstract
:1. Introduction
2. Regional Settings and Study Site
3. Materials and Analytical Methods
4. Results and Discussion
4.1. Monitoring Background
4.2. Speleothem Samples
4.3. Chronology
4.3.1. U-Th Dating and Age–Depth Models
4.3.2. 14C Dating
4.4. Stable Isotope Records
4.4.1. Environmental Changes Documented in the δ13C Signal
4.4.2. Hydroclimate Variations from MIS 5 to MIS 3 as Recorded by Spelean δ18O
4.4.3. MIS 2 to MIS 1 Transition in δ18O Record
5. Conclusions
- Millennial scale climate events, i.e., Dansgaard–Oeschger (DO) cycles, reconstructed from δ18O variations were superimposed upon longer-lasting climate fluctuations, and within the MIS 5–MIS 3 period the δ18O variations were synchronous with GI-GS 22, GI-GS 21, GI-GS 20, GI 19 and from GI-GS 17 to GI-GS 13. Most of these shifts, related to the change in precipitation amount, are consistent with speleothem records from the Adriatic and western Mediterranean regions.
- The presumed Younger Dryas δ18O signal requires confirmation by a coeval MP speleothem or other local proxy records.
- δ13C, as a proxy for the vegetation status and microbial activity in the soil, showed increasing values on longer time scales, pointing to general drying trend towards MIS 3 and MIS 4. With a positive shift of ~8‰, δ13C approached the values of the host rock due to the long residence time of the groundwater within epikarst fractures and probable enhanced prior calcite precipitation—both a consequence of intensive aridity. According to geomorphic studies, the MP area was glacier-free, and carbonic acid dissolution was the driving force of the karstification processes throughout all deposition periods, no matter how modest the vegetation was.
- The MP results complement findings from adjacent submerged speleothems: parts of the samples from both sites consist of white porous calcite, with a narrowing trend from the colder and drier periods and glacial/stadial sea-level lowstands. Warmer and wetter conditions and consequent sea-levels highstands are marked with hiatuses within the submerged speleothems and compact calcite draping over the narrow cold-phase stalagmite bodies.
- In terms of palaeogeography, the recorded climate changes played a key role in land-sea distribution, transforming the near-coastal site of MP into a continental one during the glacial/stadial stages. We assume that such settings during the MIS 4 attenuated aridity of the glacial period by promoting the MP cave into a site receiving somewhat higher amounts of orographic precipitation.
- Accordingly, we also assume that switching the predominance between the amount and source effect, which was proven regionally, might be overprinted by local site-specific features, such as in the MP site.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Isotopic Equilibrium
References
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Sveinbjörnsdottir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- North GRIP Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 2004, 431, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, D.-D.; Kukla, G.; McManus, J. What is what in the ice and the ocean? Quat. Sci. Rev. 2006, 25, 2025–2030. [Google Scholar] [CrossRef] [Green Version]
- Moseley, G.E.; Spötl, C.; Brandstätter, S.; Erhardt, T.; Luetscher, M.; Edwards, R.L. NALPS19: Sub-orbital-scale climate variability recorded in northern Alpine speleothems during the last glacial period. Clim. Past 2020, 16, 29–50. [Google Scholar] [CrossRef] [Green Version]
- Corrick, E.C.; Drysdale, R.N.; Hellstrom, J.C.; Capron, E.; Rasmussen, S.O.; Zhang, X.; Fleitmann, D.; Couchoud, I.; Wolff, E. Synchronous timing of abrupt climate changes during the last glacial period. Science 2020, 369, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Hendy, C.H. The Isotopic Geochemistry of Speleothems—I. The Calculation of the Effects of Different Modes of Formation on the Isotopic Composition of Speleothems and Their Applicability as Palaeoclimatic Indicators. Geochim. Cosmochim. Acta 1971, 35, 801–824. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Baker, A. Speleothem Science: From Process to Past Environments; Wiley-Blackwell: Chichester, UK, 2012. [Google Scholar]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar] [CrossRef]
- Moreno, A.; Pérez-Mejías, C.; Bartolomé, M.; Sancho, C.; Cacho, I.; Stoll, H.; Delgado-Huertas, A.; Hellstrom, J.; Edwards, R.L.; Cheng, H. New speleothem data from Molinos and Ejulve caves reveal Holocene hydrological variability in northeast Iberia. Quat. Res. 2017, 88, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Rossi, C.; Bajo, P.; Lozano, R.P.; Hellstrom, J. Younger Dryas to Early Holocene paleoclimate in Cantabria (N Spain): Constraints from speleothem Mg, annual fluorescence banding and stable isotope records. Quat. Sci. Rev. 2018, 192, 71–85. [Google Scholar] [CrossRef]
- Baldini, L.M.; Baldini, J.U.L.; McDermott, F.; Arias, P.; Cueto, M.; Fairchild, I.J.; Hoffmann, D.; Mattey, D.P.; Müller, W.; Nita, D.C.; et al. North Iberian temperature and rainfall seasonality over the Younger Dryas and Holocene. Quat. Sci. Rev. 2019, 226, 105998. [Google Scholar] [CrossRef]
- Budsky, A.; Scholz, D.; Wassenburg, J.A.; Mertz-Kraus, R.; Spötl, C.; Riechelmann, D.F.; Gibert, L.; Jochum, K.P.; Andreae, M.O. Speleothem δ13C record suggests enhanced spring/summer drought in south-eastern Spain between 9.7 and 7.8 ka—A circum-Western Mediterranean anomaly? Holocene 2019, 29, 1113–1133. [Google Scholar] [CrossRef]
- Denniston, R.F.; Houts, A.N.; Asmerom, Y.; Wanamaker, A.D., Jr.; Haws, J.A.; Polyak, V.J.; Thatcher, D.L.; Altan-Ochir, S.; Borowske, A.C.; Breitenbach, S.F.M.; et al. A stalagmite test of North Atlantic SST and Iberian hydroclimate linkages over the last two glacial cycles. Clim. Past 2018, 14, 1893–1913. [Google Scholar] [CrossRef] [Green Version]
- Thatcher, D.L.; Wanamaker, A.D.; Denniston, R.F.; Asmerom, Y.; Polyak, V.J.; Fullick, D.; Ummenhofer, C.C.; Gillikin, D.P.; Haws, J.A. Hydroclimate variability from western Iberia (Portugal) during the Holocene: Insights from a composite stalagmite isotope record. Holocene 2020, 30, 966–981. [Google Scholar] [CrossRef]
- Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.C.; Fallick, A.E.; Isola, I.; Gagan, M.K.; Pareschi, M.T. Enhanced rainfall in the Western Mediterranean during deposition of sapropel S1: Stalagmite evidence from Corchia cave (Central Italy). Quat. Sci. Rev. 2007, 26, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Zanchetta, G.; Bar-Matthews, M.; Drysdale, R.N.; Lionello, P.; Ayalon, A.; Hellstrom, J.C.; Isola, I.; Regattieri, E. Coeval dry events in the central and eastern Mediterranean basin at 52 and 56 ka recorded in Corchia (Italy) and Soreq caves (Israel) speleothems. Glob. Planet. Chang. 2014, 122, 130–139. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.C.; Fallick, A.E.; Zhao, J.-X.; Isola, I.; Bruschi, G. Palaeoclimatic implications of the growth history and stable isotope (δ18O and δ13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy. Earth Planet. Sci. Lett. 2004, 227, 215–229. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Hellstrom, J.C.; Zanchetta, G.; Fallick, A.E.; Goñi, M.F.S.; Couchoud, I.; McDonald, J.; Maas, R.; Lohmann, G.; Isola, I. Evidence for obliquity forcing of glacial termination II. Science 2009, 325, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Zhornyak, L.V.; Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.; Isola, I.; Regattieri, E.; Piccini, L.; Baneschi, I.; Couchoud, I. Stratigraphic evidence for a “pluvial phase” between ca. 8200–7100 ka from Renella Cave (Central Italy). Quat. Sci. Rev. 2011, 30, 409–417. [Google Scholar] [CrossRef]
- Regattieri, E.; Zanchetta, G.; Drysdale, R.N.; Isola, I.; Hellstrom, J.C.; Roncioni, A. A continuous stable isotope record from the penultimate glacial maximum to the Last Interglacial (159-121 ka) from Tana Che Urla Cave (Apuan Alps, central Italy). Quat. Res. 2014, 82, 450–461. [Google Scholar] [CrossRef]
- Regattieri, E.; Zanchetta, G.; Drysdale, R.N.; Isola, I.; Hellstrom, J.C.; Dallai, L. Lateglacial to Holocene trace element record (Ba, Mg, Sr) from Corchia Cave (Apuan Alps, central Italy): Paleoenvironmental implications. J. Quat. Sci. 2014, 29, 381–392. [Google Scholar] [CrossRef]
- Columbu, A.; Drysdale, R.; Capron, E.; Woodhead, J.; De Waele, J.; Sanna, L.; Hellstrom, J.; Bajo, P. Early last glacial intra-interstadial climate variability recorded in a Sardinian speleothem. Quat. Sci. Rev. 2017, 169, 391–397. [Google Scholar] [CrossRef]
- Columbu, A.; Sauro, F.; Lundberg, J.; Drysdale, R.; De Waele, J. Palaeoenvironmental changes recorded by speleothems of the southern Alps (Piani Eterni, Belluno, Italy) during four interglacial to glacial climate transitions. Quat. Sci. Rev. 2018, 197, 319–335. [Google Scholar] [CrossRef]
- Columbu, A.; Spötl, C.; De Waele, J.; Yu, T.-L.; Shen, C.-C.; Gázquez, F. A long record of MIS 7 and MIS 5 climate and environment from a western Mediterranean speleothem (SW Sardinia, Italy). Quat. Sci. Rev. 2019, 220, 230–243. [Google Scholar] [CrossRef]
- Columbu, A.; Chiarini, V.; Spötl, C.; Benazzi, S.; Hellstrom, J.; Cheng, H.; De Waele, J. Speleothem record attests to stable environmental conditions during Neanderthal—Modern Human turnover in Southern Italy. Nat. Ecol. Evol. 2020, 4, 1188–1195. [Google Scholar] [CrossRef] [PubMed]
- Rudzka, D.; Mcdermott, F.; Surić, M. A Late Holocene Climate Record in Stalagmites from Modrič Cave (Croatia). J. Quat. Sci. 2012, 27, 585–596. [Google Scholar] [CrossRef] [Green Version]
- Lončar, N.; Bar-Matthews, M.; Ayalon, A.; Surić, M.; Faivre, S. Early and Mid-Holocene environmental conditions in the Eastern Adriatic recorded in speleothems from Mala špilja Cave and Vela špilja Cave (Mljet Island, Croatia). Acta Carsologica. 2017, 46, 229–249. [Google Scholar] [CrossRef] [Green Version]
- Lončar, N.; Bar-Matthews, M.; Ayalon, A.; Faivre, S.; Surić, M. Holocene Climatic Conditions in the Eastern Adriatic Recorded in Stalagmites from Strašna Peć Cave (Croatia). Quat. Int. 2019, 508, 98–106. [Google Scholar] [CrossRef]
- Surić, M.; Columbu, A.; Lončarić, R.; Bajo, P.; Bočić, N.; Lončar, N.; Drysdale, R.N.; Hellstrom, J.C. Holocene hydroclimate changes in continental Croatia recorded in speleothem δ13C and δ18O from Nova Grgosova Cave. Holocene 2021, 31, 1401–1416. [Google Scholar] [CrossRef]
- Finné, M.; Bar-Matthews, M.; Holmgren, K.; Sundqvist, H.S.; Liakopoulos, I.; Zhang, Q. Speleothem evidence for late Holocene climate variability and floods in Southern Greece. Quat. Res. 2014, 81, 213–227. [Google Scholar] [CrossRef]
- Psomiadis, D.; Dotsika, E.; Albanakis, K.; Ghaleb, B.; Hillaire-Marcel, C. Speleothem record of climatic changes in the northern Aegean region (Greece) from the Bronze Age to the collapse of the Roman Empire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 489, 272–283. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Kaufman, A.; Wasserburg, G.J. The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel. Earth Planet. Sci. Lett. 1999, 166, 85–95. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A.; Gilmour, M.; Matthews, A.; Hawkesworth, C.J. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 2003, 67, 3181–3199. [Google Scholar] [CrossRef]
- Bar-Matthews, M.; Ayalon, A. Mid-Holocene climate variations revealed by high resolution speleothems records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 2011, 21, 163–171. [Google Scholar] [CrossRef]
- Spötl, C.; Mangini, A.; Richards, D.A. Chronology and paleoenvironment of Marine Isotope Stage 3 from two high-elevation speleothems, Austrian Alps. Quat. Sci. Rev. 2006, 25, 1127–1136. [Google Scholar] [CrossRef]
- Boch, R.; Cheng, H.; Spötl, C.; Edwards, R.L.; Wang, X.; Häuselmann, P. NALPS: A precisely dated European climate record 120–60 ka. Clim. Past 2011, 7, 1247–1259. [Google Scholar] [CrossRef] [Green Version]
- Luetscher, M.; Lismonde, B.; Jeannin, P.-Y. Heat exchanges in the heterothermic zone of a karst system: Monlesi cave, Swiss Jura Mountains. J. Geophys. Res. 2008, 113, F02025. [Google Scholar] [CrossRef] [Green Version]
- Moseley, G.E.; Spötl, C.; Svensson, A.; Cheng, H.; Brandstätter, S.; Edwards, R.L. Multi-speleothem record reveals tightly coupled climate between central Europe and Greenland during Marine Isotope Stage 3. Geology 2014, 42, 1043–1046. [Google Scholar] [CrossRef] [Green Version]
- Moseley, G.E.; Spötl, C.; Cheng, H.; Boch, R.; Min, A.; Edwards, R.L. Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps. Quat. Sci. Rev. 2015, 127, 229–239. [Google Scholar] [CrossRef] [Green Version]
- Fleitmann, D.; Cheng, H.; Badertscher, S.; Edwards, R.L.; Mudelsee, M.; Göktürk, O.M.; Fankhauser, A.; Pickering, R.; Raible, C.C.; Matter, A.; et al. Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys. Res. Lett. 2009, 36, L19707. [Google Scholar] [CrossRef] [Green Version]
- McDermott, F.; Mattey, D.P.; Hawkesworth, C. Centennial-Scale Holocene Climate Variability Revealed by a High-Resolution Speleothem δ18O Record from SW Ireland. Science 2001, 294, 1328–1331. [Google Scholar] [CrossRef]
- Vansteenberge, S.; Verheyden, S.; Cheng, H.; Edwards, R.L.; Keppens, E.; Claeys, P. Paleoclimate in continental northwestern Europe during the Eemian and early Weichselian (125–97 ka): Insights from a Belgian speleothem. Clim. Past 2016, 12, 1445–1458. [Google Scholar] [CrossRef] [Green Version]
- McDermott, F. Palaeo-Climate Reconstruction from Stable Isotope Variations in Speleothems: A Review. Quat. Sci. Rev. 2004, 23, 901–918. [Google Scholar] [CrossRef]
- Fohlmeister, J.; Voarintsoa, N.R.G.; Lechleitner, F.A.; Boyd, M.; Brandtstätter, S.; Jacobson, M.J.; Oster, J.L. Main Controls on the Stable Carbon Isotope Composition of Speleothems. Geochim. Cosmochim. Acta 2020, 279, 67–87. [Google Scholar] [CrossRef]
- Surić, M.; Juračić, M. Late Pleistocene—Holocene environmental changes—records from submerged speleothems along the Eastern Adriatic coast (Croatia). Geol. Croat. 2010, 63, 155–169. [Google Scholar] [CrossRef]
- Surić, M.; Juračić, M.; Horvatinčić, N.; Bronić, I.K. Late Pleistocene-Holocene sea-level rise and the pattern of coastal karst inundation: Records from submerged speleothems along the Eastern Adriatic Coast (Croatia). Mar. Geol. 2005, 214, 163–175. [Google Scholar] [CrossRef]
- Surić, M.; Horvatinčić, N.; Suckow, A.; Juračić, M.; Barešić, J. Isotope records in submarine speleothems from the Adriatic coast, Croatia. Bull. Soc. Geol. Fr. 2005, 176, 363–373. [Google Scholar] [CrossRef]
- Surić, M.; Roller-Lutz, Z.; Mandić, M.; Bronić, I.K.; Juračić, M. Modern C, O, and H Isotope Composition of Speleothem and Dripwater from Modrič Cave, Eastern Adriatic Coast (Croatia). Int. J. Speleol. 2010, 39, 91–97. [Google Scholar] [CrossRef]
- Surić, M.; Lončarić, R.; Lončar, N.; Buzjak, N.; Bajo, P.; Drysdale, R.N. Isotopic Characterization of Cave Environments at Varying Altitudes on the Eastern Adriatic Coast (Croatia)—Implications for Future Speleothem-Based Studies. J. Hydrol. 2017, 545, 367–380. [Google Scholar] [CrossRef]
- Surić, M.; Lončarić, R.; Bočić, N.; Lončar, N.; Buzjak, N. Monitoring of Selected Caves as a Prerequisite for the Speleothem-Based Reconstruction of the Quaternary Environment in Croatia. Quat. Int. 2018, 494, 263–274. [Google Scholar] [CrossRef]
- Bakrač, K.; Ilijanić, N.; Miko, S.; Hasan, O. Evidence of Sapropel S1 Formation from Holocene Lacustrine Sequences in Lake Vrana in Dalmatia (Croatia). Quat. Int. 2018, 494, 5–18. [Google Scholar] [CrossRef]
- Ilijanić, N.; Miko, S.; Hasan, O.; Bakrač, K. Holocene Environmental Record from Lake Sediments in the Bokanjačko Blato Karst Polje (Dalmatia, Croatia). Quat. Int. 2018, 494, 66–79. [Google Scholar] [CrossRef]
- Galović, I.; Mihalić, K.C.; Ilijanić, N.; Miko, S.; Hasan, O. Diatom Responses to Holocene Environmental Changes in a Karstic Lake Vrana in Dalmatia (Croatia). Quat. Int. 2018, 494, 167–179. [Google Scholar] [CrossRef]
- Brunović, D.; Miko, S.; Ilijanić, N.; Peh, Z.; Hasan, O.; Kolar, T.; Miko, M.Š.; Razum, I. Holocene Foraminiferal and Geochemical Records in the Coastal Karst Dolines of Cres Island, Croatia. Geol. Croat. 2019, 72, 19–42. [Google Scholar] [CrossRef]
- Brunović, D.; Miko, S.; Hasan, O.; Papatheodorou, G.; Ilijanić, N.; Miserocchi, S.; Correggiari, A.; Geraga, M. Late Pleistocene and Holocene paleoenvironmental reconstruction of a drowned karst isolation basin (Lošinj Channel, NE Adriatic Sea). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 544, 109587. [Google Scholar] [CrossRef]
- Razum, I.; Miko, S.; Ilijanić, N.; Hasan, O.; Miko, M.Š.; Brunović, D.; Pawlowsky-Glahn, V. A compositional approach to the reconstruction of geochemical processes involved in the evolution of Holocene marine flooded coastal karst basins (Mljet Island, Croatia). Appl. Geochem. 2020, 116, 104574. [Google Scholar] [CrossRef]
- Razum, I.; Miko, M.S.; Ilijanić, N.; Petrelli, M.; Röhl, U.; Hasan, O.; Giaccio, B. Holocene tephra record of Lake Veliko jezero, Croatia: Implications for the central Mediterranean tephrostratigraphy and sea level rise. Boreas 2020, 49, 653–673. [Google Scholar] [CrossRef]
- Antonioli, F.; Furlani, S.; Montagna, P.; Stocchi, P. The Use of Submerged Speleothems for Sea Level Studies in the Mediterranean Sea: A New Perspective Using Glacial Isostatic Adjustment (GIA). Geosciences 2021, 11, 77. [Google Scholar] [CrossRef]
- Toucanne, S.; Minto’o, C.M.A.; Fontanier, C.; Bassetti, M.-A.; Jorry, S.J.; Jouet, G. Tracking rainfall in the northern Mediterranean borderlands during sapropel deposition. Quat. Sci. Rev. 2015, 129, 178–195. [Google Scholar] [CrossRef] [Green Version]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated World Map of the Köppen-Geiger Climate Classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Luetscher, M.; Boch, R.; Sodemann, H.; Spötl, C.; Cheng, H.; Edwards, R.L.; Frisia, S.; Hof, F.; Müller, W. North Atlantic Storm Track Changes during the Last Glacial Maximum Recorded by Alpine Speleothems. Nat. Commun. 2015, 6, 6344. [Google Scholar] [CrossRef] [Green Version]
- CMHS (2021); Croatian Meteorological and Hydrological Service: Zagreb, Croatia, 2021.
- Surić, M.; Czuppon, G.; Lončarić, R.; Bočić, N.; Lončar, N.; Bajo, P.; Drysdale, R.N. Stable Isotope Hydrology of Cave Groundwater and Its Relevance for Speleothem-Based Paleoenvironmental Reconstruction in Croatia. Water 2020, 12, 2386. [Google Scholar] [CrossRef]
- Hellstrom, J. Rapid and accurate U/Th dating using parallel ion-counting multi-collector ICP-MS. J. Anal. At. Spectrom. 2003, 18, 1346–1351. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Paul, B.T.; Hellstrom, J.C.; Couchoud, I.; Greig, A.; Bajo, P.; Zanchetta, G.; Isola, I.; Spötl, C.; Baneschi, I.; et al. Precise microsampling of poorly laminated speleothems for U-series dating. Quat. Geochronol 2012, 14, 38–47. [Google Scholar] [CrossRef]
- Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 2006, 1, 289–295. [Google Scholar] [CrossRef]
- Hua, Q.; Jacobsen, G.E.; Zoppi, U.; Lawson, E.M.; Williams, A.A.; Smith, A.M.; McGann, M.J. Progress in radiocarbon target preparation at the ANTARES AMS centre. Radiocarbon 2001, 43, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Fink, D.; Hotchkis, M.; Hua, Q.; Jacobsen, G.; Smith, A.M.; Zoppi, U.; Child, D.; Mifsud, C.; van der Gaast, H.; Williams, A.; et al. The Antares AMS facility at ANSTO. Nucl. Instrum. Methods Phys. Res. B 2004, 223, 109–115. [Google Scholar] [CrossRef]
- Tremaine, D.M.; Froelich, P.N.; Wang, Y. Speleothem calcite farmed in situ: Modern calibration of δ18O and δ13C paleoclimate proxies in a continuously-monitored natural cave system. Geochim. Cosmochim. Acta 2011, 75, 4929–4950. [Google Scholar] [CrossRef]
- Cheng, H.; Edwards, R.L.; Shen, C.-C.; Polyak, V.J.; Asmerom, Y.; Woodhead, J.; Hellstrom, J.; Wang, Y.; Kong, X.; Spötl, C.; et al. Improvements in 230Th dating, 230Th and 234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planet. Sci. Lett. 2013, 371–372, 82–91. [Google Scholar] [CrossRef]
- Hendy, E.J.; Tomiak, P.J.; Collins, M.J.; Hellstrom, J.; Tudhope, A.W.; Lough, J.M.; Penkman, K.E.H. Assessing amino acid racemization variability in coral intra-crystalline protein for geochronological applications. Geochim. Cosmochim. Acta 2012, 86, 338–353. [Google Scholar] [CrossRef] [Green Version]
- Scholz, D.; Hoffmann, D.L.; Hellstrom, J.; Ramsey, C.B. A comparison of different methods for speleothem age modelling. Quat. Geochronol. 2012, 14, 94–104. [Google Scholar] [CrossRef]
- Bajo, P.; Drysdale, R.N.; Woodhead, J.D.; Hellstrom, J.C.; Hodell, D.; Ferretti, P.; Voelker, A.H.L.; Zanchetta, G.; Rodrigues, T.; Wolff, E.; et al. Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 2020, 367, 1235–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bajo, P.; Hellstrom, J.; Frisia, S.; Drysdale, R.; Black, J.; Woodhead, J.; Borsato, A.; Zanchetta, G.; Wallace, M.W.; Regattieri, E.; et al. “Cryptic” diagenesis and its implications for speleothem geochronologies. Quat. Sci. Rev. 2016, 148, 17–28. [Google Scholar] [CrossRef]
- Griffiths, M.L.; Fohlmeister, J.; Drysdale, R.N.; Hua, Q.; Johnson, K.R.; Hellstrom, J.C.; Gagan, M.K.; Zhao, J.-X. Hydrological control of the dead carbon fraction in a Holocene tropical speleothem. Quat. Geochronol. 2012, 14, 81–93. [Google Scholar] [CrossRef] [Green Version]
- Bajo, P.; Borsato, A.; Drysdale, R.; Hua, Q.; Frisia, S.; Zanchetta, G.; Hellstrom, J.; Woodhead, J. Stalagmite carbon isotopes and dead carbon proportion (DCP) in a near-closed-system situation: An interplay between sulphuric and carbonic acid dissolution. Geochim. Cosmochim. Acta 2017, 210, 208–227. [Google Scholar] [CrossRef]
- Hua, Q.; Cook, D.; Fohlmeister, J.; Penny, D.; Bishop, P.; Buckmann, S. Radiocarbon dating of a speleothem record of paleoclimate for Angkor, Cambodia. Radiocarbon 2017, 59, 1873–1890. [Google Scholar] [CrossRef] [Green Version]
- Frisia, S.; Borsato, A.; Fairchild, I.J.; Susini, J. Variations in atmospheric sulphate recorded in stalagmites by synchrotron micro XRF and XANES analyses. Earth Planet. Sci. Lett. 2005, 235, 729–740. [Google Scholar] [CrossRef]
- Scholz, D.; Frisia, S.; Borsato, A.; Spötl, C.; Fohlmeister, J.; Mudelsee, M.; Miorandi, R.; Mangini, A. Holocene climate variability in north-eastern Italy: Potential influence of the NAO and solar activity recorded by speleothem data. Clim. Past 2012, 8, 1367–1383. [Google Scholar] [CrossRef] [Green Version]
- Regattieri, E.; Zanchetta, G.; Isola, I.; Bajo, P.; Perchiazzi, N.; Drysdale, R.N.; Boschi, C.; Hellstrom, J.C.; Francke, A.; Wagner, B. A MIS 9/MIS 8 speleothem record of hydrological variability from Macedonia (F.Y.R.O.M.). Glob. Planet. Chang. 2018, 162, 39–52. [Google Scholar] [CrossRef]
- Fairchild, I.J.; Borsato, A.; Tooth, A.F.; Frisia, S.; Hawkesworth, C.J.; Huang, Y.; McDermott, F.P.; Spiro, B. Controls on trace element (Sr-Mg) compositions of carbonate cave waters: Implications for speleothem climatic records. Chem. Geol. 2000, 166, 255–269. [Google Scholar] [CrossRef]
- Martín-Chivelet, J.; Muñoz-García, M.B.; Cruz, J.A.; Ortega, A.I.; Turrero, M.J. Speleothem Architectural Analysis: Integrated approach for stalagmite-based paleoclimate research. Sediment. Geol. 2017, 353, 28–45. [Google Scholar] [CrossRef]
- Dreybrodt, W. Chemical kinetics, speleothem growth and climate. Boreas 1999, 28, 347–356. [Google Scholar] [CrossRef]
- Railsback, L.B.; Liang, F.Y.; Romani, J.R.V.; Grandal-d’Anglade, A.; Rodríguez, M.V.; Fidalgo, L.S.; Mosquera, D.F.; Cheng, H.; Edwards, R.L. Petrographic and isotopic evidence for Holocene long-term climate change and shorter-term environmental shifts from a stalagmite from the Serra do Courel of northwestern Spain, and implications for climatic history across Europe and the Mediterranean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 305, 172–184. [Google Scholar] [CrossRef]
- Genty, D.; Quinif, Y. Annually laminated sequences in the internal structure of some Belgian stalagmites—importance for paleoclimatology. J. Sediment. Res. 1996, 66, 275–288. [Google Scholar] [CrossRef]
- Muñoz-García, M.B.; Cruz, J.; Martín-Chivelet, J.; Ortega, A.I.; Turrero, M.J.; López-Elorza, M. Comparison of speleothem fabrics and microstratigraphic stacking patterns in calcite stalagmites as indicators of paleoenvironmental change. Quat. Int. 2016, 407, 74–85. [Google Scholar] [CrossRef]
- Regattieri, E.; Isola, I.; Zanchetta, G.; Drysdale, R.N.; Hellstrom, J.C.; Baneschi, I. Stratigraphy, petrography and chronology of speleothem deposition at Tana che Urla (Lucca, Italy): Paleoclimatic implications. Geogr. Fis. Din. Quat. 2012, 35, 141–152. [Google Scholar] [CrossRef]
- Keith, M.L.; Weber, J.N. Carbon and oxygen isotopic composition of selected limestones and fossils. Geochim. Cosmochim. Acta 1964, 28, 1787–1816. [Google Scholar] [CrossRef]
- Spötl, C.; Fohlmeister, J.; Cheng, H.; Boch, R. Modern aragonite formation at near-freezing conditions in an alpine cave, Carnic Alps, Austria. Chem. Geol. 2016, 435, 60–70. [Google Scholar] [CrossRef]
- Sarıkaya, M.A.; Stepišnik, U.; Žebre, M.; Çiner, A.; Yıldırım, C.; Vlahović, I.; Tomljenović, B.; Matoš, B.; Wilcken, K.M. Last glacial maximum deglaciation of the Southern Velebit Mt. (Croatia): Insights from cosmogenic 36Cl dating of Rujanska Kosa. Mediterr. Geosci. Rev. 2020, 2, 53–64. [Google Scholar] [CrossRef]
- Krklec, K.; Domínguez-Villar, D.; Perica, D. Depositional environments and diagenesis of a carbonate till from a Quaternary paleoglacier sequence in the Southern Velebit Mountain (Croatia). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2015, 436, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Štefanec, N. Trgovina drvetom na Triplex Confiniumu ili kako izvući novac iz senjskih šuma (1600–1630)? (Wood Trade on the Triplex Confinium or How to Extract Money from Senj Woodlands (1600–1630)?). In Triplex Confinium (1500.–1800.): Ekohistorija; Zavod za Hrvatsku Povijest Filozofskog Fakulteta Sveučilišta u Zagrebu: Zadar, Croatia, 2000; pp. 337–365. (In Croatian) [Google Scholar]
- Kaser, K. Uništenje šuma na obalnom kraškom području hrvatske Vojne krajine u prvoj polovici 18. stoljeća. Njegovi demografski, privredni i socijalni uzroci. (Destruction of forests in the coastal karst area of the Croatian Military Border in the first half of the 18th century. Its demographic, economic and social causes). In Historijski Zbornik 40; Kampuš, I., Ed.; Savez Povijesnih Društava Hrvatske: Zagreb, Croatia, 1987; pp. 121–137. (In Croatian) [Google Scholar]
- Dumitru, O.A.; Onac, B.P.; Polyak, V.J.; Wynn, J.G.; Asmerom, Y.; Fornós, J.J. Climate variability in the western Mediterranean between 121 and 67 ka derived from a Mallorcan speleothem record. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 506, 128–138. [Google Scholar] [CrossRef]
- Rogerson, M.; Dublyansky, Y.; Hoffmann, D.L.; Luetscher, M.; Töchterle, P.; Spötl, C. Enhanced Mediterranean water cycle explains increased humidity during MIS 3 in North Africa. Clim. Past 2019, 15, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Horvatinčić, N.; Bronić, I.K.; Barešić, J.; Obelić, B.; Vidič, S. Tritium and stable isotope distribution in the atmosphere at the coastal region of Croatia. In Isotopic Composition of Precipitation in the Mediterranean Basin in Relation to Air Circulation Patterns and Climate; IAEA-TECDOC-1453; Gourcy, L., Ed.; IAEA: Vienna, Austria, 2005; pp. 37–50. [Google Scholar]
- Krajcar Bronić, I.; Vreča, P.; Horvatinčić, N.; Barešić, N.; Obelić, N. Distribution of hydrogen, oxygen and carbon isotopes in the atmosphere of Croatia and Slovenia. Arh. Hig. Rada Toksiko. 2006, 57, 23–29. [Google Scholar]
- Vreča, P.; Bronić, I.K.; Horvatinčić, N.; Barešić, J. Isotopic Characteristics of Precipitation in Slovenia and Croatia: Comparison of Continental and Maritime Stations. J. Hydrol. 2006, 330, 457–469. [Google Scholar] [CrossRef]
- Barešić, J.; Horvatinčić, N.; Bronić, I.K.; Obelić, B.; Vreča, P. Stable Isotope Composition of Daily and Monthly Precipitation in Zagreb. Isot. Environ. Health Stud. 2006, 42, 239–249. [Google Scholar] [CrossRef]
- Drysdale, R.N.; Zanchetta, G.; Hellstrom, J.C.; Fallick, A.E.; McDonald, J.; Cartwright, I. Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial. Geology 2007, 35. [Google Scholar] [CrossRef]
- Surić, M.; Richards, D.A.; Hoffmann, D.L.; Tibljaš, D.; Juračić, M. Sea-level change during MIS 5a based on submerged speleothems from the eastern Adriatic Sea (Croatia). Mar. Geol. 2009, 262, 62–67. [Google Scholar] [CrossRef]
- Waelbroeck, C.; Labeyrie, L.; Michel, E.; Duplessy, J.C.; McManus, J.F.; Lambeck, K.; Balbon, E.; Labracherie, M. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quat. Sci. Rev. 2002, 21, 295–305. [Google Scholar] [CrossRef]
- Goni, M.S.; Eynaud, F.; Turon, J.L.; Shackleton, N.J. High resolution palynological record off the Iberian margin: Direct land-sea correlation for the Last Interglacial complex. Earth Planet. Sci. Lett. 1999, 171, 123–137. [Google Scholar] [CrossRef]
- Dorale, J.A.; Liu, Z. Limitations of Hendy Test criteria in judging the paleoclimatic suitability of speleothems and the need for replication. J. Cave Karst Stud. 2009, 71, 73–80. [Google Scholar]
- Mickler, P.J.; Banner, J.L.; Stern, L.; Asmerom, Y.; Edwards, R.L.; Ito, E. Stable isotope variations in modern tropical speleothems: Evaluating equilibrium vs. kinetic isotope effects. Geochim. Cosmochim. Acta 2004, 68, 4381–4393. [Google Scholar] [CrossRef]
- Gascoyne, M. Palaeoclimate determination from cave calcite deposits. Quat. Sci. Rev. 1992, 11, 609–632. [Google Scholar] [CrossRef]
Sample Name | Mass (g) | U (ppb) | Depth from Top (mm) (±100% Error) | MP3 on MP2 Depth (mm) (±100% Error Estimated) | [230Th/238U] (±95% c.i.) | [234U/238U] (±95% c.i.) | Uncorrected Age (ky) (±95% c.i.) | [232Th/238U] (±95% c.i.) | [230Th/232Th] | Age (ky) (±2 σ unc.) | [234U/238U]i (±95% c.i.) |
---|---|---|---|---|---|---|---|---|---|---|---|
MP-2 | |||||||||||
MP2-1 | 0.0770 | 57 | 8.5 (1.5) | 0.2598 (0.0036) | 1.0909 (0.0034) | 29.471 (0.451) | 0.15122 (0.00325) | 1.7 | 6.677 (4.906) | 1.0926 (0.0037) | |
MP2-239 * | 0.1521 | 127 | 13.5 (2.0) | 0.7608 (0.0038) | 0.8804 (0.0027) | 0.55274 (0.02425) | 1.4 | ||||
MP2-221 | 0.1628 | 101 | 31.5 (1.5) | 0.1638 (0.0013) | 1.0578 (0.0034) | 18.266 (0.161) | 0.07769 (0.00021) | 2.1 | 6.769 (2.311) | 1.0589 (0.0035) | |
MP2-136 | 0.1393 | 67 | 33.5 (4.0) | 0.2671 (0.0021) | 1.0600 (0.0036) | 31.477 (0.292) | 0.18759 (0.00071) | 1.4 | 1.324 (6.608) | 1.0602 (0.0038) | |
MP2-2 | 0.0720 | 52 | 41.5 (2.0) | 0.1352 (0.0023) | 1.1035 (0.0034) | 14.184 (0.254) | 0.03957 (0.00041) | 3.4 | 8.746 (1.100) | 1.1061 (0.0035) | |
MP2-127 | 0.1273 | 91 | 44.5 (4.0) | 0.1551 (0.0015) | 1.0912 (0.0037) | 16.633 (0.172) | 0.05686 (0.00141) | 2.7 | 8.625 (1.613) | 1.0935 (0.0038) | |
MP2-118 | 0.2193 | 44 | 61.5 (4.0) | 0.1410 (0.0021) | 1.1001 (0.0036) | 14.891 (0.234) | 0.04407 (0.00136) | 3.2 | 8.794 (1.238) | 1.1026 (0.0037) | |
MP2-105 | 0.2194 | 56 | 73.5 (4.0) | 0.1618 (0.0014) | 1.1122 (0.0038) | 17.056 (0.159) | 0.04848 (0.00129) | 3.3 | 10.410 (1.334) | 1.1155 (0.0039) | |
MP2-86 | 0.0710 | 17 | 91.5 (3.0) | 0.1704 (0.0024) | 1.1308 (0.0038) | 17.706 (0.269) | 0.03533 (0.00008) | 4.8 | 13.008 (0.966) | 1.1357 (0.0039) | |
MP2-71 | 0.1572 | 38 | 106.5 (2.5) | 0.5148 (0.0043) | 1.0919 (0.0034) | 68.594 (0.784) | 0.12053 (0.00230) | 4.3 | 51.196 (3.737) | 1.1062 (0.0040) | |
MP2-61 | 0.1546 | 42 | 116.5 (2.5) | 0.5269 (0.0047) | 1.0993 (0.0035) | 70.124 (0.859) | 0.11444 (0.00210) | 4.6 | 53.833 (3.527) | 1.1156 (0.0042) | |
MP2-26 | 0.0690 | 42 | 137.5 (2.5) | 0.5115 (0.0044) | 1.1530 (0.0032) | 62.792 (0.704) | 0.02274 (0.00005) | 22.5 | 60.054 (0.949) | 1.1813 (0.0037) | |
MP2-35 | 0.0807 | 99 | 142.5 (2.5) | 0.5433 (0.0046) | 1.0916 (0.0036) | 73.999 (0.893) | 0.04078 (0.00010) | 13.3 | 68.580 (1.456) | 1.1112 (0.0043) | |
MP2-26SI | 0.0866 | 62 | 151.5 (2.5) | 0.6348 (0.0053) | 1.0685 (0.0037) | 96.767 (1.296) | 0.09431 (0.00072) | 6.7 | 83.239 (3.134) | 1.0866 (0.0046) | |
MP2-23 | 0.0661 | 97 | 154.5 (1.5) | 0.6882 (0.0037) | 1.0617 (0.0044) | 111.940 (1.230) | 0.15346 (0.00465) | 4.5 | 88.659 (5.237) | 1.0793 (0.0056) | |
MP2-3 | 0.0930 | 56 | 172.5 (2.0) | 0.6294 (0.0037) | 1.0709 (0.0026) | 95.087 (0.903) | 0.04027 (0.00065) | 15.6 | 89.698 (1.465) | 1.0913 (0.0032) | |
MP-3 | |||||||||||
MP3-263 * | 0.1240 | 37 | 2.5 (1.5) | 125.64 (2.0) | 1.3352 (0.0085) | 1.0351 (0.0029) | 0.55785 (0.00117) | 2.4 | |||
MP3-257 * | 0.1380 | 59 | 8.5 (1.5) | 129.6 (2.0) | 1.1518 (0.0064) | 1.0092 (0.0033) | 0.35997 (0.00595) | 3.2 | |||
MP3-1 | 0.0930 | 30 | 23.5 (2.0) | 139.5 (2.5) | 0.5078 (0.0059) | 1.0498 (0.0029) | 71.423 (1.139) | 0.05260 (0.00066) | 9.7 | 63.951 (1.931) | 1.0596 (0.0034) |
MP3-241 * | 0.2135 | 55 | 24.5 (2.0) | 140.16 (2.5) | 0.6120 (0.0040) | 1.0397 (0.0030) | 95.841 (1.008) | 0.10631 (0.00139) | 5.8 | 79.826 (3.531) | 1.0497 (0.0037) |
MP3-226 * | 0.1498 | 97 | 36.5 (1.5) | 145.26 (2.0) | 1.8502 (0.0088) | 0.9255 (0.0026) | 0.59074 (0.00587) | 3.1 | |||
MP3-201 * | 0.2330 | 77 | 51.5 (1.5) | 147.03 (2.0) | 1.6433 (0.0072) | 0.9453 (0.0028) | 0.53569 (0.00378) | 3.1 | |||
MP3-183 * | 0.1284 | 80 | 69.5 (1.5) | 149.01 (2.0) | 0.7178 (0.0049) | 1.0162 (0.0032) | 132.579 (1.816) | 0.10063 (0.00141) | 7.1 | 117.137 (3.804) | 1.0225 (0.0044) |
MP3-176 | 0.2929 | 77 | 76.5 (2.0) | 149.78 (2.5) | 0.5746 (0.0028) | 1.0275 (0.0030) | 88.667 (0.723) | 0.02693 (0.00020) | 21.3 | 84.942 (1.104) | 1.0350 (0.0038) |
MP3-117 | 0.0550 | 49 | 135.5 (1.5) | 158.5 (2.0) | 0.6002 (0.0047) | 1.0354 (0.0037) | 93.629 (1.189) | 0.04577 (0.00007) | 13.1 | 87.134 (1.847) | 1.0453 (0.0046) |
MP3-2 | 0.0430 | 42 | 196.5 (2.0) | 173.1 (2.5) | 0.6161 (0.0033) | 1.0357 (0.0036) | 97.552 (0.925) | 0.03587 (0.00023) | 17.2 | 92.581 (1.450) | 1.0464 (0.0046) |
MP3-27 | 0.2356 | 68 | 225.5 (2.0) | 178.9 (2.5) | 0.6246 (0.0035) | 1.0331 (0.0028) | 100.205 (0.941) | 0.04232 (0.00076) | 14.8 | 94.244 (1.604) | 1.0432 (0.0036) |
MP3-2SI | 0.0730 | 51 | 248.5 (1.5) | 183.5 (2.5) | 0.7009 (0.0065) | 1.0421 (0.0023) | 120.047 (1.966) | 0.08974 (0.00022) | 7.8 | 106.894 (3.425) | 1.0569 (0.0031) |
Lab ID | Sample ID | δ13C (‰ VPDB) | 14C Activity (pMC) | Conventional 14C Age (BP) |
---|---|---|---|---|
OZR670 | MP3-14C-1 | −1.0 | 0.25 ± 0.03 | 48,000 ± 1000 |
OZR671 | MP3-14C-2 | 0.6 | 0.22 ± 0.02 | 49,040 ± 660 |
OZR672 | MP3-14C-3 | −1.4 | 0.51 ± 0.03 | 42,360 ± 410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Surić, M.; Bajo, P.; Lončarić, R.; Lončar, N.; Drysdale, R.N.; Hellstrom, J.C.; Hua, Q. Speleothem Records of the Hydroclimate Variability throughout the Last Glacial Cycle from Manita peć Cave (Velebit Mountain, Croatia). Geosciences 2021, 11, 347. https://doi.org/10.3390/geosciences11080347
Surić M, Bajo P, Lončarić R, Lončar N, Drysdale RN, Hellstrom JC, Hua Q. Speleothem Records of the Hydroclimate Variability throughout the Last Glacial Cycle from Manita peć Cave (Velebit Mountain, Croatia). Geosciences. 2021; 11(8):347. https://doi.org/10.3390/geosciences11080347
Chicago/Turabian StyleSurić, Maša, Petra Bajo, Robert Lončarić, Nina Lončar, Russell N. Drysdale, John C. Hellstrom, and Quan Hua. 2021. "Speleothem Records of the Hydroclimate Variability throughout the Last Glacial Cycle from Manita peć Cave (Velebit Mountain, Croatia)" Geosciences 11, no. 8: 347. https://doi.org/10.3390/geosciences11080347
APA StyleSurić, M., Bajo, P., Lončarić, R., Lončar, N., Drysdale, R. N., Hellstrom, J. C., & Hua, Q. (2021). Speleothem Records of the Hydroclimate Variability throughout the Last Glacial Cycle from Manita peć Cave (Velebit Mountain, Croatia). Geosciences, 11(8), 347. https://doi.org/10.3390/geosciences11080347