Bridging the Gap between Long–Term Orogenic Evolution (>10 Ma Scale) and Geomorphological Processes That Shape the Western Alps: Insights from Combined Dating Approaches
Abstract
:1. Introduction
1.1. Recent (<20 Ma) and Active Tectonic Motions along the Penninic Line
1.2. U–Pb on Calcite Dating of Post–5 Ma Activity along the Penninic Line
1.3. Western Alpine Foreland Deformation
1.3.1. Po Depression
1.3.2. Jura Mountains
1.3.3. Digne Nappe and SW Alpine Foreland
2. Origin of the Alpine Relief: The Imprint of Repeated Glacial Cycles
3. Uplift after the Würm Glaciation: The Constraints Provided by Cosmogenic Nuclide Dating of Incision
4. Conclusions: ‘Bridging the Gap’ between the Long–Term (>10 Ma Scale) and Current Evolution of Orogens
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vernant, P.; Hivert, F.; Chery, J.; Steer, P.; Cattin, R.; Rigo, A. Erosion–Induced Isostatic Rebound Triggers Extension in Low Convergent Mountain Ranges. Geology 2013, 41, 467–470. [Google Scholar] [CrossRef]
- Nouibat, A.; Stehly, L.; Paul, A.; Schwartz, S.; Bodin, T.; Dumont, T.; Rolland, Y.; Brossier, R.; Team, C.; Group, A.W. Lithospheric Transdimensional Ambient–Noise Tomography of W–Europe: Implications for Crustal–Scale Geometry of the W–Alps. Geophys. J. Int. 2022, 229, 862–879. [Google Scholar] [CrossRef]
- Mathey, M.; Sue, C.; Pagani, C.; Baize, S.; Walpersdorf, A.; Bodin, T.; Husson, L.; Hannouz, E.; Potin, B. Present–Day Geodynamics of the Western Alps: New Insights from Earthquake Mechanisms. Solid Earth 2021, 12, 1661–1681. [Google Scholar] [CrossRef]
- Schwartz, S.; Lardeaux, J.M.; Tricart, P.; Guillot, S.; Labrin, E. Diachronous exhumation of HP–LT rocks from southwestern Alps: Evidence from fission–track analysis. Terra Nova 2007, 19, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Tricart, P.; Van Der Beek, P.; Schwartz, S.; Labrin, E. Diachronous Late–Stage Exhumation across the Western Alpine Arc: Constraints from Apatite Fission–Track Thermochronology between the Pelvoux and Dora–Maira Massifs. J. Geol. Soc. 2007, 164, 163–174. [Google Scholar] [CrossRef]
- Beucher, R.; van der Beek, P.; Braun, J.; Batt, G.E. Exhumation and Relief Development in the Pelvoux and Dora–Maira Massifs (Western Alps) Assessed by Spectral Analysis and Inversion of Thermochronological Age Transects. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Glotzbach, C.; Reinecker, J.; Danišík, M.; Rahn, M.; Frisch, W.; Spiegel, C. Thermal History of the Central Gotthard and Aar Massifs, European Alps: Evidence for Steady State, Long–Term Exhumation. J. Geophys. Res. Earth Surf. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Reinecker, J.; Danišík, M.; Schmid, C.; Glotzbach, C.; Rahn, M.; Frisch, W.; Spiegel, C. Tectonic Control on the Late Stage Exhumation of the Aar Massif (Switzerland): Constraints from Apatite Fission Track and (U–Th)/He Data. Tectonics 2008, 27. [Google Scholar] [CrossRef]
- Girault, J.B.; Bellahsen, N.; Bernet, M.; Pik, R.; Loget, N.; Lasseur, E.; Rosenberg, C.L.; Balvay, M.; Sonnet, M. Exhumation of the Western Alpine Collisional Wedge: New Thermochronological Data. Tectonophysics 2022, 822, 229155. [Google Scholar] [CrossRef]
- Schildgen, T.F.; van der Beek, P.A.; Sinclair, H.D.; Thiede, R.C. Spatial Correlation Bias in Late–Cenozoic Erosion Histories Derived from Thermochronology. Nature 2018, 559, 89–93. [Google Scholar] [CrossRef]
- Willett, S.D.; Herman, F.; Fox, M.; Stalder, N.; Ehlers, T.A.; Jiao, R.; Yang, R. Bias and Error in Modelling Thermochronometric Data: Resolving a Potential Increase in Plio–Pleistocene Erosion Rate. Earth Surf. Dyn. 2021, 9, 1153–1221. [Google Scholar] [CrossRef]
- Van der Beek, P.; Schildgen, T.; Thiede, R.; Sinclair, H. Bias and error in modelling thermochronology data: A comment on Willett et al. Earth Surf. Dynam. Dis. 2020, 9, 1153–1221. [Google Scholar] [CrossRef]
- Rolland, Y.; Rossi, M.; Cox, S.; Corsini, M.; Mancktelow, N.; Pennacchioni, G.; Fornari, M.; Boullier, A.-M. 40Ar/39Ar Dating of Synkinematic White Mica: Insights from Fluid–Rock Reaction in Low–Grade Shear Zones (Mont Blanc Massif) and Constraints on Timing of Deformation in the NW External Alps. Geol. Soc. Lond. Spec. Publ. 2008, 299, 293–315. [Google Scholar] [CrossRef]
- Simon-Labric, T.; Rolland, Y.; Dumont, T.; Heymes, T.; Authemayou, C.; Corsini, M.; Fornari, M. 40Ar/39Ar Dating of Penninic Front Tectonic Displacement (W Alps) during the Lower Oligocene (31–34 Ma). Terra Nova 2009, 21, 127–136. [Google Scholar] [CrossRef]
- Campani, M.; Mancktelow, N.; Seward, D.; Rolland, Y.; Müller, W.; Guerra, I. Geochronological Evidence for Continuous Exhumation through the Ductile–Brittle Transition along a Crustal–Scale Low–Angle Normal Fault: Simplon Fault Zone, Central Alps. Tectonics 2010, 29. [Google Scholar] [CrossRef]
- Wiederkehr, M.; Sudo, M.; Bousquet, R.; Berger, A.; Schmid, S.M. Alpine Orogenic Evolution from Subduction to Collisional Thermal Overprint: The 40Ar/39Ar Age Constraints from the Valaisan Ocean, Central Alps. Tectonics 2009, 28. [Google Scholar] [CrossRef] [Green Version]
- Bellanger, M.; Augier, R.; Bellahsen, N.; Jolivet, L.; Monié, P.; Baudin, T.; Beyssac, O. Shortening of the European Dauphinois Margin (Oisans Massif, Western Alps): New Insights from RSCM Maximum Temperature Estimates and 40Ar/39Ar in Situ Dating. J. Geodyn. 2015, 83, 37–64. [Google Scholar] [CrossRef] [Green Version]
- Bergemann, C.; Gnos, E.; Berger, A.; Whitehouse, M.; Mullis, J.; Wehrens, P.; Pettke, T.; Janots, E. Th–Pb Ion Probe Dating of Zoned Hydrothermal Monazite and Its Implications for Repeated Shear Zone Activity: An Example from the Central Alps, Switzerland. Tectonics 2017, 36, 671–689. [Google Scholar] [CrossRef] [Green Version]
- Berger, A.; Gnos, E.; Janots, E.; Whitehouse, M.; Soom, M.; Frei, R.; Waight, T.E. Dating Brittle Tectonic Movements with Cleft Monazite: Fluid–Rock Interaction and Formation of REE Minerals. Tectonics 2013, 32, 1176–1189. [Google Scholar] [CrossRef] [Green Version]
- Gasquet, D.; Bertrand, J.-M.; Paquette, J.-L.; Lehmann, J.; Ratzov, G.; de Ascencao Guedes, R.; Tiepolo, M.; Boullier, A.-M.; Scaillet, S.; Nomade, S. Miocene to Messinian Deformation and Hydrothermal Activity in a Pre–Alpine Basement Massif of the French Western Alps: New U–Th–Pb and Argon Ages from the Lauzière Massif. Bull. Soc. Géolog. Fr. 2010, 181, 227–241. [Google Scholar] [CrossRef]
- Gnos, E.; Janots, E.; Berger, A.; Whitehouse, M.; Walter, F.; Pettke, T.; Bergemann, C. Age of Cleft Monazites in the Eastern Tauern Window: Constraints on Crystallization Conditions of Hydrothermal Monazite. Swiss J. Geosci. 2015, 108, 55–74. [Google Scholar] [CrossRef]
- Grand’Homme, A.; Janots, E.; Seydoux-Guillaume, A.-M.; Guillaume, D.; Bosse, V.; Magnin, V. Partial Resetting of the U–Th–Pb Systems in Experimentally Altered Monazite: Nanoscale Evidence of Incomplete Replacement. Geology 2016, 44, 431–434. [Google Scholar] [CrossRef]
- Janots, E.; Grand’Homme, A.; Bernet, M.; Guillaume, D.; Gnos, E.; Boiron, M.-C.; Rossi, M.; Seydoux-Guillaume, A.-M.; De Ascenção Guedes, R. Geochronological and Thermometric Evidence of Unusually Hot Fluids in an Alpine Fissure of Lauzière Granite (Belledonne, Western Alps). Solid Earth 2019, 10, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Herman, F.; Seward, D.; Valla, P.G.; Carter, A.; Kohn, B.; Willett, S.D.; Ehlers, T.A. Worldwide Acceleration of Mountain Erosion under a Cooling Climate. Nature 2013, 504, 423–426. [Google Scholar] [CrossRef] [PubMed]
- Champagnac, J.D.; Molnar, P.; Anderson, R.S.; Sue, C.; Delacou, B. Quaternary Erosion–Induced Isostatic Rebound in the Western Alps. Geology 2007, 35, 195–198. [Google Scholar] [CrossRef] [Green Version]
- Nocquet, J. –M.; Sue, C.; Walpersdorf, A.; Tran, T.; Lenôtre, N.; Vernant, P.; Cushing, M.; Jouanne, F.; Masson, F.; Baize, S.; et al. Present–Day Uplift of the Western Alps. Sci. Rep. 2016, 6, 28404. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, G.; Rolland, Y.; Corsini, M.; Braucher, R.; Bourlès, D.; Arnold, M.; Aumaître, G. Relationships between Tectonics, Slope Instability and Climate Change: Cosmic Ray Exposure Dating of Active Faults, Landslides and Glacial Surfaces in the SW Alps. Geomorphology 2010, 117, 1–13. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Schreiber, D.; Giannerini, G.; Corsini, M.; Lardeaux, J.-M. The Active Fault System of SW Alps. J. Geodyn. 2010, 49, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Jomard, H.; Cushing, E.M.; Palumbo, L.; Baize, S.; David, C.; Chartier, T. Transposing an Active Fault Database into a Seismic Hazard Fault Model for Nuclear Facilities–Part 1: Building a Database of Potentially Active Faults (BDFA) for Metropolitan France. Nat. Hazards Earth Syst. Sci. 2017, 17, 1573–1584. [Google Scholar] [CrossRef] [Green Version]
- Bauve, V.; Rolland, Y.; Sanchez, G.; Giannerini, G.; Schreiber, D.; Corsini, M.; Perez, J.-L.; Romagny, A. Pliocene to Quaternary Deformation in the Var Basin (Nice, SE France) and Its Interpretation in Terms of “Slow–Active” Faulting. Swiss J. Geosci. 2012, 105, 361–376. [Google Scholar] [CrossRef]
- Thomas, F.; Rizza, M.; Bellier, O.; Billant, J.; Dussouillez, P.; Fleury, J.; Delanghe, D.; Ollivier, V.; Godard, V.; Talon, B. Assessing Post–Pliocene Deformation in a Context of Slow Tectonic Deformation: Insights from Paleoseismology, Remote Sensing and Shallow Geophysics in Provence, France. Nat. Hazards 2021, 105, 1453–1490. [Google Scholar] [CrossRef]
- Walpersdorf, A.; Pinget, L.; Vernant, P.; Sue, C.; Deprez, A.; The RENAG team. Does Long–Term GPS in the Western Alps Finally Confirm Earthquake Mechanisms? Tectonics 2018, 37, 3721–3737. [Google Scholar] [CrossRef]
- Mathey, M.; Walpersdorf, A.; Sue, C.; Baize, S.; Deprez, A. Seismogenic Potential of the High Durance Fault Constrained by 20 Yr of GNSS Measurements in the Western European Alps. Geophys. J. Int. 2020, 222, 2136–2146. [Google Scholar] [CrossRef]
- Piña-Valdés, J.; Socquet, A.; Beauval, C.; Doin, M.-P.; D’Agostino, N.; Shen, Z.-K. 3D GNSS Velocity Field Sheds Light on the Deformation Mechanisms in Europe: Effects of the Vertical Crustal Motion on the Distribution of Seismicity. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023451. [Google Scholar] [CrossRef]
- Tricart, P.; Schwartz, S.; Sue, C.; Poupeau, G.; Lardeaux, J.M. The tectonic denudation of the Ultradauphiné Zone and the inversion of the Briançonnais frontal thrust to the southeast of the Pelvoux massif (western Alps): A Miocene to present–day dynamics. Bull. Soc. Géol. Fr. 2001, 1, 49–58. [Google Scholar] [CrossRef]
- Bilau, A.; Rolland, Y.; Schwartz, S.; Godeau, N.; Guihou, A.; Deschamps, P.; Brigaud, B.; Noret, A.; Dumont, T.; Gautheron, C. Extensional Reactivation of the Penninic Frontal Thrust 3 Myr Ago as Evidenced by U–Pb Dating on Calcite in Fault Zone Cataclasite. Solid Earth 2021, 12, 237–251. [Google Scholar] [CrossRef]
- Sue, C.; Tricart, P. Late Alpine Brittle Extension above the Frontal Pennine Thrust near Briançon, Western Alps. Eclogae Geol. Helv. 1999, 92, 171–181. [Google Scholar]
- Delacou, B.; Sue, C.; Champagnac, J.-D.; Burkhard, M. Present–Day Geodynamics in the Bend of the Western and Central Alps as Constrained by Earthquake Analysis. Geophys. J. Int. 2004, 158, 753–774. [Google Scholar] [CrossRef]
- Collombet, M.; Thomas, J.C.; Chauvin, A.; Tricart, P.; Bouillin, J.P.; Gratier, J.P. Counterclockwise Rotation of the Western Alps since the Oligocene: New Insights from Paleomagnetic Data. Tectonics 2002, 21, 11–15. [Google Scholar] [CrossRef]
- Rolland, Y.; Lardeaux, J.-M.; Jolivet, L. Deciphering Orogenic Evolution. J. Geodyn. 2012, 56, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Bertrand, A.; Sue, C. Reconciling Late Faulting over the Whole Alpine Belt: From Structural Analysis to Geochronological Constrains. Swiss J. Geosci. 2017, 110, 565–580. [Google Scholar] [CrossRef]
- Herwegh, M.; Berger, A.; Bellahsen, N.; Rolland, Y.; Kissling, E. Evolution of the External Crystalline Massifs of the European Alps: From Massif to Lithosphere Scale. ISTE Ed. 2022, in press. [Google Scholar]
- Jenatton, L.; Guiguet, R.; Thouvenot, F.; Daix, N. The 16,000–Event 2003–2004 Earthquake Swarm in Ubaye (French Alps). J. Geophys. Res. Solid Earth 2007, 112. [Google Scholar] [CrossRef]
- Sue, C.; Thouvenot, F.; Fréchet, J.; Tricart, P. Widespread Extension in the Core of the Western Alps Revealed by Earthquake Analysis. J. Geophys. Res.Solid Earth 1999, 104, 25611–25622. [Google Scholar] [CrossRef]
- Seward, D.; Mancktelow, N.S. Neogene Kinematics of the Central and Western Alps: Evidence from Fission–Track Dating. Geology 1994, 22, 803–806. [Google Scholar] [CrossRef]
- Malusà, M.G.; Polino, R.; Zattin, M.; Bigazzi, G.; Martin, S.; Piana, F. Miocene to Present Differential Exhumation in the Western Alps: Insights from Fission Track Thermochronology. Tectonics 2005, 24. [Google Scholar] [CrossRef]
- Fox, M.; Herman, F.; Kissling, E.; Willett, S.D. Rapid Exhumation in the Western Alps Driven by Slab Detachment and Glacial Erosion. Geology 2015, 43, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.; Herman, F.; Willett, S.D.; Schmid, S.M. The Exhumation History of the European Alps Inferred from Linear Inversion of Thermochronometric Data. Am. J. Sci. 2016, 316, 505–541. [Google Scholar] [CrossRef]
- Persaud, M.; Pfiffner, O.-A. Active Deformation in the Eastern Swiss Alps: Post–Glacial Faults, Seismicity and Surface Uplift. Tectonophysics 2004, 385, 59–84. [Google Scholar] [CrossRef]
- Egli, D.; Mancktelow, N. The Structural History of the Mont Blanc Massif with Regard to Models for Its Recent Exhumation. Swiss J. Geosci. 2013, 106, 469–489. [Google Scholar] [CrossRef] [Green Version]
- Bauve, V.; Plateaux, R.; Rolland, Y.; Sanchez, G.; Bethoux, N.; Delouis, B.; Darnault, R. Long–Lasting Transcurrent Tectonics in SW Alps Evidenced by Neogene to Present–Day Stress Fields. Tectonophysics 2014, 621, 85–100. [Google Scholar] [CrossRef]
- Darnault, R.; Rolland, Y.; Braucher, R.; Bourlès, D.; Revel, M.; Sanchez, G.; Bouissou, S. Timing of the Last Deglaciation Revealed by Receding Glaciers at the Alpine–Scale: Impact on Mountain Geomorphology. Quat. Sci. Rev. 2012, 31, 127–142. [Google Scholar] [CrossRef]
- Leclère, H.; Cappa, F.; Faulkner, D.; Fabbri, O.; Armitage, P.; Blake, O. Development and Maintenance of Fluid Overpressures in Crustal Fault Zones by Elastic Compaction and Implications for Earthquake Swarms. J. Geophys. Res. Solid Earth 2015, 120, 4450–4473. [Google Scholar] [CrossRef]
- Ricchi, E.; Bergemann, C.; Gnos, E.; Berger, A.; Rubatto, D.; Whitehouse, M. Constraining Deformation Phases in the Aar Massif and the Gotthard Nappe (Switzerland) Using Th–Pb Crystallization Ages of Fissure Monazite–(Ce). Lithos 2019, 342, 223–238. [Google Scholar] [CrossRef] [Green Version]
- Bergemann, C.A.; Gnos, E.; Berger, A.; Janots, E.; Whitehouse, M.J. Dating Tectonic Activity in the Lepontine Dome and Rhone–Simplon Fault Regions through Hydrothermal Monazite–(Ce). Solid Earth 2020, 11, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Ricchi, E.; Gnos, E.; Rubatto, D.; Whitehouse, M.J.; Pettke, T. Ion Microprobe Dating of Fissure Monazite in the Western Alps: Insights from the Argentera Massif and the Piemontais and Briançonnais Zones. Swiss J. Geosci. 2020, 113, 15. [Google Scholar] [CrossRef]
- Challandes, N.; Marquer, D.; Villa, I.M. PTt Modelling, Fluid Circulation, and 39Ar–40Ar and Rb–Sr Mica Ages in the Aar Massif Shear Zones (Swiss Alps). Swiss J. Geosci. 2008, 101, 269–288. [Google Scholar] [CrossRef]
- Rolland, Y.; Cox, S.F.; Corsini, M. Constraining Deformation Stages in Brittle–Ductile Shear Zones from Combined Field Mapping and 40Ar/39Ar Dating: The Structural Evolution of the Grimsel Pass Area (Aar Massif, Swiss Alps). J. Struct. Geol. 2009, 31, 1377–1394. [Google Scholar] [CrossRef]
- Peverelli, V.; Ewing, T.; Rubatto, D.; Wille, M.; Berger, A.; Villa, I.M.; Lanari, P.; Pettke, T.; Herwegh, M. U– Pb Geochronology of Epidote by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA–ICP–MS) as a Tool for Dating Hydrothermal–Vein Formation. Geochronology 2021, 3, 123–147. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Schneider, J.; Corsini, M.; Oliot, E.; Goncalves, P.; Verati, C.; Lardeaux, J.-M.; Marquer, D. Dating Low–Temperature Deformation by 40Ar/39Ar on White Mica, Insights from the Argentera–Mercantour Massif (SW Alps). Lithos 2011, 125, 521–536. [Google Scholar] [CrossRef]
- Cenki-Tok, B.; Darling, J.R.; Rolland, Y.; Dhuime, B.; Storey, C.D. Direct dating of mid-crustal shear zones with synkinematic allanite: New in situ U-Th-Pb geochronological approaches applied to the Mont Blanc massif. Terra Nova 2014, 26, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Bergemann, C.A.; Gnos, E.; Whitehouse, M.J. Insights into the tectonic history of the Western Alps through dating of fissure monazite in the Mont Blanc and Aiguilles Rouges Massifs. Tectonophysics 2019, 750, 203–212. [Google Scholar] [CrossRef]
- Gnos, E.; Mullis, J.; Ricchi, E.; Bergemann, C.A.; Janots, E.; Berger, A. Episodes of Fissure Formation in the Alps: Connecting Quartz Fluid Inclusion, Fissure Monazite Age, and Fissure Orientation Data. Swiss J. Geosci. 2021, 114, 14. [Google Scholar] [CrossRef] [PubMed]
- Valla, P.G.; Shuster, D.L.; Van Der Beek, P.A. Significant Increase in Relief of the European Alps during Mid–Pleistocene Glaciations. Nat. Geosci. 2011, 4, 688–692. [Google Scholar] [CrossRef]
- Nibourel, L.; Rahn, M.; Dunkl, I.; Berger, A.; Herman, F.; Diehl, T.; Heuberger, M. Orogen-Parallel Migration of Exhumation in the Eastern Aar Massif Revealed by Low-T Thermochronometry. J. Geophys. Res. Solid Earth 2021, 126, e2020JB020799. [Google Scholar] [CrossRef]
- Sanchez, G.; Rolland, Y.; Jolivet, M.; Brichau, S.; Corsini, M.; Carter, A. Exhumation Controlled by Transcurrent Tectonics: The Argentera–Mercantour Massif (SW Alps). Terra Nova 2011, 23, 116–126. [Google Scholar] [CrossRef]
- Schwartz, S.; Gautheron, C.; Audin, L.; Dumont, T.; Nomade, J.; Barbarand, J.; Pinna–Jamme, R.; van der Beek, P. Foreland Exhumation Controlled by Crustal Thickening in the Western Alps. Geology 2017, 45, 139–142. [Google Scholar] [CrossRef]
- Bernet, M. Detrital Zircon Fission–Track Thermochronology of the Present–Day Isère River Drainage System in the Western Alps: No Evidence for Increasing Erosion Rates at 5 Ma. Geosciences 2013, 3, 528–542. [Google Scholar] [CrossRef] [Green Version]
- Roberts, N.M.; Holdsworth, R.E. Timescales of Faulting through Calcite Geochronology: A Review. J. Struct. Geol. 2022, 104578. [Google Scholar] [CrossRef]
- Bilau, A. Ph.D. Thesis, University of Savoie Mont Blanc, Chambéry, Francuska. in press.
- Sue, C.; Tricart, P. Widespread Post–Nappe Normal Faulting in the Internal Western Alps: A New Constraint on Arc Dynamics. J. Geol. Soc. 2002, 159, 61–70. [Google Scholar] [CrossRef]
- Sue, C.; Tricart, P. Neogene to Ongoing Normal Faulting in the Inner Western Alps: A Major Evolution of the Late Alpine Tectonics. Tectonics 2003, 22. [Google Scholar] [CrossRef]
- Mathey, M.; Doin, M.-P.; André, P.; Walpersdorf, A.; Baize, S.; Sue, C. Spatial Heterogeneity of Uplift Pattern in the Western European Alps Revealed by InSAR Time–Series Analysis. Geophys. Res. Lett. 2022, 49, e2021GL095744. [Google Scholar] [CrossRef]
- Champagnac, J. –D.; Schlunegger, F.; Norton, K.; von Blanckenburg, F.; Abbühl, L.M.; Schwab, M. Erosion–Driven Uplift of the Modern Central Alps. Tectonophysics 2009, 474, 236–249. [Google Scholar] [CrossRef] [Green Version]
- Fantoni, R.; Massari, F.; Minervini, M.; Rogledi, S.; Rossi, M. Il Messiniano Del Margine Sudalpino–Padano: Relazioni Tra Contesto Strutturale e Stratigrafico–Deposizionale. Geol. Insubr. 2001, 6, 95–108. [Google Scholar]
- Cazzini, F.; Zotto, O.D.; Fantoni, R.; Ghielmi, M.; Ronchi, P.; Scotti, P. Oil and gas in the Adriatic foreland, Italy. J. Pet. Geol. 2015, 38, 255–279. [Google Scholar] [CrossRef]
- Serpelloni, E.; Faccenna, C.; Spada, G.; Dong, D.; Williams, S.D. Vertical GPS Ground Motion Rates in the Euro–Mediterranean Region: New Evidence of Velocity Gradients at Different Spatial Scales along the Nubia–Eurasia Plate Boundary. J. Geophys. Res. Solid Earth 2013, 118, 6003–6024. [Google Scholar] [CrossRef] [Green Version]
- Becker, A. The Jura Mountains—An Active Foreland Fold–and–Thrust Belt? Tectonophysics 2000, 321, 381–406. [Google Scholar] [CrossRef]
- Bolliger, T.; Engesser, B.; Weidmann, M. Première Découverte de Mammifères Pliocènes Dans Le Jura Neuchâtelois. Eclogae Geol. Helv. 1993, 86, 1031–1068. [Google Scholar]
- Looser, N.; Madritsch, H.; Guillong, M.; Laurent, O.; Wohlwend, S.; Bernasconi, S. Absolute Age and Temperature Constraints on Deformation Along the Basal Décollement of the Jura Fold–and–Thrust Belt from Carbonate U–Pb Dating and Clumped Isotopes. Tectonics 2021, 40, e2020TC006439. [Google Scholar] [CrossRef]
- Smeraglia, L.; Looser, N.; Fabbri, O.; Choulet, F.; Guillong, M.; Bernasconi, S.M. U–Pb Dating of Middle Eocene–Pliocene Multiple Tectonic Pulses in the Alpine Foreland. Solid Earth 2021, 12, 2539–2551. [Google Scholar] [CrossRef]
- Thouvenot, F.; Fréchet, J.; Tapponnier, P.; Thomas, J.-C.; Le Brun, B.; Ménard, G.; Lacassin, R.; Jenatton, L.; Grasso, J.-R.; Coutant, O.; et al. The ML 5.3 Epagny (French Alps) Earthquake of 1996 July 15: A Long–Awaited Event on the Vuache Fault. Geophys. J. Int. 1998, 135, 876–892. [Google Scholar] [CrossRef] [Green Version]
- Baer, M.; Deichmann, N.; Braunmiller, J.; Husen, S.; Fäh, D.; Giardini, D.; Kästli, P.; KRadolfer, U.; Wiemer, S. Earthquakes in Switzerland and Surrounding Regions during 2004. Eclogae Geol. Helv. 2005, 98, 407–418. [Google Scholar] [CrossRef]
- Madritsch, H.; Schmid, S.M.; Fabbri, O. Interactions between Thin– and Thick–Skinned Tectonics at the Northwestern Front of the Jura Fold–and–Thrust Belt (Eastern France). Tectonics 2008, 27. [Google Scholar] [CrossRef] [Green Version]
- Walpersdorf, A.; Hatzfeld, D.; Nankali, H.; Tavakoli, F.; Nilforoushan, F.; Tatar, M.; Vernant, P.; Chéry, J.; Masson, F. Difference in the GPS Deformation Pattern of North and Central Zagros (Iran). Geophys. J. Int. 2006, 167, 1077–1088. [Google Scholar] [CrossRef]
- Ziegler, P.A.; Fraefel, M. Response of Drainage Systems to Neogene Evolution of the Jura Fold–Thrust Belt and Upper Rhine Graben. Swiss J. Geosci. 2009, 102, 57–75. [Google Scholar] [CrossRef] [Green Version]
- Madritsch, H.; Fabbri, O.; Hagedorn, E.-M.; Preusser, F.; Schmid, S.M.; Ziegler, P.A. Feedback between Erosion and Active Deformation: Geomorphic Constraints from the Frontal Jura Fold–and–Thrust Belt (Eastern France). Int. J. Earth Sci. 2010, 99, 103–122. [Google Scholar] [CrossRef] [Green Version]
- Mazzotti, S.; Jomard, H.; Masson, F. Processes and Deformation Rates Generating Seismicity in Metropolitan France and Conterminous Western Europe. Bull. Soc. Géol. Fr. 2020, 191, 19. [Google Scholar] [CrossRef]
- Siame, L.; Bellier, O.; Braucher, R.; Sébrier, M.; Cushing, M.; Bourlès, D.; Hamelin, B.; Baroux, E.; de Voogd, B.; Raisbeck, G.; et al. Local Erosion Rates versus Active Tectonics: Cosmic Ray Exposure Modelling in Provence (South–East France). Earth Planet. Sci. Lett. 2004, 220, 345–364. [Google Scholar] [CrossRef] [Green Version]
- Chardon, D.; Hermitte, D.; Nguyen, F.; Bellier, O. First Paleoseismological Constraints on the Strongest Earthquake in France (Provence) in the Twentieth Century. Geology 2005, 33, 901–904. [Google Scholar] [CrossRef]
- Godard, V.; Hippolyte, J.-C.; Cushing, E.; Espurt, N.; Fleury, J.; Bellier, O.; Ollivier, V.; ASTER Team. Hillslope Denudation and Morphologic Response to a Rock Uplift Gradient. Earth Surf. Dynam. 2020, 8, 221–243. [Google Scholar] [CrossRef] [Green Version]
- Molliex, S.; Bellier, O.; Terrier, M.; Lamarche, J.; Martelet, G.; Espurt, N. Tectonic and Sedimentary Inheritance on the Structural Framework of Provence (SE France): Importance of the Salon–Cavaillon Fault. Tectonophysics 2011, 501, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Thomas, F.; Godard, V.; Bellier, O.; Benedetti, L.; Ollivier, V.; Rizza, M.; Guillou, V.; Hollender, F.; Aumaitre, G.; Bourlès, D.L.; et al. Limited Influence of Climatic Gradients on the Denudation of a Mediterranean Carbonate Landscape. Geomorphology 2018, 316, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Willett, S.D. Late Neogene Erosion of the Alps: A Climate Driver? Annu. Rev. Earth Planet. Sci. 2010, 38, 411–437. [Google Scholar] [CrossRef] [Green Version]
- Sternai, P.; Sue, C.; Husson, L.; Serpelloni, E.; Becker, T.W.; Willett, S.D.; Faccenna, C.; Di Giulio, A.; Spada, G.; Jolivet, L.; et al. Present–Day Uplift of the European Alps: Evaluating Mechanisms and Models of Their Relative Contributions. Earth-Sci. Rev. 2019, 190, 589–604. [Google Scholar] [CrossRef]
- Cederbom, C.E.; van der Beek, P.; Schlunegger, F.; Sinclair, H.D.; Oncken, O. Rapid extensive erosion of the North Alpine foreland basin at 5–4 Ma. Basin Res. 2011, 23, 528–550. [Google Scholar] [CrossRef]
- Glotzbach, C.; Beek, P.; Spiegel, C. Episodic Exhumation and Relief Growth in the Mont Blanc Massif, Western Alps from Numerical Modelling of Thermochronology Data. Earth Planet. Sci. Lett. 2011, 304, 417–430. [Google Scholar] [CrossRef]
- Saillard, M.; Petit, C.; Rolland, Y.; Braucher, R.; Bourlès, D.L.; Zerathe, S.; Revel, M.; Jourdon, A. Late Quaternary Incision Rates in the Vésubie Catchment Area (Southern French Alps) from in Situ–Produced 36Cl Cosmogenic Nuclide Dating: Tectonic and Climatic Implications. J. Geophys. Res. Earth Surf. 2014, 119, 1121–1135. [Google Scholar] [CrossRef]
- Rolland, Y.; Petit, C.; Saillard, M.; Braucher, R.; Bourlès, D.; Darnault, R.; Cassol, D.; Team, A.; ASTER Team. Inner Gorges Incision History: A Proxy for Deglaciation? Insights from Cosmic Ray Exposure Dating (10Be and 36Cl) of River–Polished Surfaces (Tinée River, SW Alps, France). Earth Planet. Sci. Lett. 2017, 457, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Petit, C.; Goren, L.; Rolland, Y.; Bourlès, D.; Braucher, R.; Saillard, M.; Cassol, D. Recent, Climate–Driven River Incision Rate Fluctuations in the Mercantour Crystalline Massif, Southern French Alps. Quat. Sci. Rev. 2017, 165, 73–87. [Google Scholar] [CrossRef]
- Petit, C.; Rolland, Y.; Braucher, R.; Bourlès, D.; Guillou, V.; Petitperrin, V. River Incision and Migration Deduced from 36Cl Cosmic–Ray Exposure Durations: The Clue de La Cerise Gorge in Southern French Alps. Geomorphology 2019, 330, 81–88. [Google Scholar] [CrossRef]
- Mariotti, A.; Blard, P.-H.; Charreau, J.; Petit, C.; Molliex, S.; ASTER Team. Denudation Systematics Inferred from in Situ Cosmogenic 10 Be Concentrations in Fine (50–100 Μm) and Medium (100–250 Μm) Sediments of the Var River Basin, Southern French Alps. Earth Surf. Dyn. 2019, 7, 1059–1074. [Google Scholar] [CrossRef] [Green Version]
- Cardinal, T.; Audin, L.; Rolland, Y.; Schwartz, S.; Petit, C.; Zerathe, S.; Borgniet, L.; Braucher, R.; Nomade, J.; Dumont, T. Interplay of Fluvial Incision and Rockfalls in Shaping Periglacial Mountain Gorges. Geomorphology 2021, 381, 107665. [Google Scholar] [CrossRef]
- Cardinal, T.; Petit, C.; Rolland, Y.; Audin, L.; Schwartz, S.; Valla, P.G.; Zerathe, S.; Braucher, R.; Aster Team. Fluvial bedrock gorges as markers for Late–Quaternary tectonic and climatic forcing in the Southwestern Alps. Geomorphology 2022, 418, 108476. [Google Scholar] [CrossRef]
- Rolland, Y.; Darnault, R.; Braucher, R.; Bourlès, D.; Petit, C.; Bouissou, S.; Team, A. Deglaciation History at the Alpine–Mediterranean Transition (Argentera–Mercantour, SW Alps) from 10Be Dating of Moraines and Glacially Polished Bedrock. Earth Surf. Processes Landf. 2020, 45, 393–410. [Google Scholar] [CrossRef]
- Delunel, R.; Schlunegger, F.; Valla, P.G.; Dixon, J.; Glotzbach, C.; Hippe, K.; Kober, F.; Molliex, S.; Norton, K.P.; Salcher, B. Late–Pleistocene Catchment–Wide Denudation Patterns across the European Alps. Earth-Sci. Rev. 2020, 211, 103407. [Google Scholar] [CrossRef]
- Barruol, G.; Bonnin, M.; Pedersen, H.; Bokelmann, G.H.; Tiberi, C. Belt–parallel mantle flow beneath a halted continental collision: The Western Alps. Earth Planet. Sci. Lett. 2011, 302, 429–438. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolland, Y.; Bilau, A.; Cardinal, T.; Nouibat, A.; Bienveignant, D.; Boschetti, L.; Schwartz, S.; Bernet, M. Bridging the Gap between Long–Term Orogenic Evolution (>10 Ma Scale) and Geomorphological Processes That Shape the Western Alps: Insights from Combined Dating Approaches. Geosciences 2022, 12, 393. https://doi.org/10.3390/geosciences12110393
Rolland Y, Bilau A, Cardinal T, Nouibat A, Bienveignant D, Boschetti L, Schwartz S, Bernet M. Bridging the Gap between Long–Term Orogenic Evolution (>10 Ma Scale) and Geomorphological Processes That Shape the Western Alps: Insights from Combined Dating Approaches. Geosciences. 2022; 12(11):393. https://doi.org/10.3390/geosciences12110393
Chicago/Turabian StyleRolland, Yann, Antonin Bilau, Thibaut Cardinal, Ahmed Nouibat, Dorian Bienveignant, Louise Boschetti, Stéphane Schwartz, and Matthias Bernet. 2022. "Bridging the Gap between Long–Term Orogenic Evolution (>10 Ma Scale) and Geomorphological Processes That Shape the Western Alps: Insights from Combined Dating Approaches" Geosciences 12, no. 11: 393. https://doi.org/10.3390/geosciences12110393
APA StyleRolland, Y., Bilau, A., Cardinal, T., Nouibat, A., Bienveignant, D., Boschetti, L., Schwartz, S., & Bernet, M. (2022). Bridging the Gap between Long–Term Orogenic Evolution (>10 Ma Scale) and Geomorphological Processes That Shape the Western Alps: Insights from Combined Dating Approaches. Geosciences, 12(11), 393. https://doi.org/10.3390/geosciences12110393