Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological and Vegetational Framework of the Study Area
2.2. Input Data
2.3. Fieldwork and Outputs
2.4. Statistical Analysis
3. Results
4. Assimilating the Contribution of Root Reinforcement into the Infinite Slope Model and Limit Equilibrium Approach
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Murgia, I.; Giadrossich, F.; Mao, Z.; Cohen, D.; Capra, G.F.; Schwarz, M. Modeling shallow landslides and root reinforcement: A review. Ecol. Eng. 2022, 181, 106671. [Google Scholar] [CrossRef]
- Giannecchini, R.; Galanti, Y.; D’Amato Avanzi, G. Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy). Nat. Hazards Earth Syst. Sci. 2012, 12, 829–842. [Google Scholar] [CrossRef]
- Meisina, C.; Scarabelli, S. A comparative analysis of terrain stability models for predicting shallow landslides in colluvial soils. Geomorphology 2007, 87, 207–223. [Google Scholar] [CrossRef]
- Persichillo, M.G.; Bordoni, M.; Meisina, C.; Bartelletti, C.; Barsanti, M.; Giannecchini, R.; D’Amato Avanzi, G.; Galanti, Y.; Cevasco, A.; Brandolini, P.; et al. Shallow landslides susceptibility assessment in different environments. Geomat. Nat. Hazards Risk 2017, 8, 748–771. [Google Scholar] [CrossRef]
- Tofani, V.; Bicocchi, G.; Rossi, G.; Segoni, S.; D’Ambrosio, M.; Casagli, N.; Catani, F. Soil characterization for shallow landslides modeling: A case study in the Northern Apennines (Central Italy). Landslides 2017, 14, 755–770. [Google Scholar] [CrossRef]
- Marzini, L.; Ciofini, D.; Agresti, J.; Ciaccheri, L.; D’Addario, E.; Disperati, L.; Siano, S.; Osticioli, I. Exploring the Potential of Portable Spectroscopic Techniques for the Biochemical Characterization of Roots in Shallow Landslides. Forests 2023, 14, 825. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Assessment Report 6 of the Intergovernmental Panel on Climate Change; 2022: Synthesis Report; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Amaddii, M.; Rosatti, G.; Zugliani, D.; Marzini, L.; Disperati, L. Back-Analysis of the Abbadia San Salvatore (Mt. Amiata, Italy) Debris Flow of 27–28 July 2019: An Integrated Multidisciplinary Approach to a Challenging Case Study. Geosciences 2022, 12, 385. [Google Scholar] [CrossRef]
- Masi, E.B.; Tofani, V.; Rossi, G.; Cuomo, S.; Wu, W.; Salciarini, D.; Caporali, E.; Catani, F. Effects of roots cohesion on regional distributed slope stability modelling. Catena 2023, 222, 106853. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; van den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Skempton, A.W.; Delory, F.A. Stability of natural slopes in London clay. In Selected Papers on Soil Mechanics; Thomas Telford Publishing: London, UK, 1957; pp. 378–381. [Google Scholar] [CrossRef]
- Bischetti, G.B.; Chiaradia, E.A.; Simonato, T.; Spaziali, B.; Vitali, B.; Vullo, P.; Zocco, A. Root strength and root area ratio of forest species in Lombardy (Northern Italy). Plant Soil 2005, 278, 11–22. [Google Scholar] [CrossRef]
- Pisano, M.; Cardile, G. Probabilistic Analyses of Root-Reinforced Slopes Using Monte Carlo Simulation. Geosciences 2023, 13, 75. [Google Scholar] [CrossRef]
- Giadrossich, F.; Schwarz, M.; Cohen, D.; Cislaghi, A.; Vergani, C.; Hubble, T.; Phillips, C.; Stokes, A. Methods to measure the mechanical behavior of tree roots: A review. Ecol. Eng. 2017, 109, 256–271. [Google Scholar] [CrossRef]
- Greenwood, J.R.; Norris, J.E.; Wint, J. Assessing the contribution of vegetation to slope stability. Proc. Inst. Civ. Eng.-Geotech. Eng. 2004, 157, 199–207. [Google Scholar] [CrossRef]
- Kokutse, N.K.; Temgoua AG, T.; Kavazović, Z. Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecol. Eng. 2016, 86, 146–153. [Google Scholar] [CrossRef]
- Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Canadian Geotech. J. 2003, 40, 237–253. [Google Scholar] [CrossRef]
- Tosi, M. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy). Geomorphology 2007, 87, 268–283. [Google Scholar] [CrossRef]
- Masi, E.B.; Segoni, S.; Tofani, V. Root Reinforcement in Slope Stability Models: A Review. Geosciences 2021, 11, 212. [Google Scholar] [CrossRef]
- Schwarz, M.; Rist, A.; Cohen, D.; Giadrossich, F.; Egorov, P.; Büttner, D.; Stolz, M.; Thormann, J.J. Root reinforcement of soils under compression. J. Geophys. Res. Earth Surf. 2015, 120, 2103–2120. [Google Scholar] [CrossRef]
- Waldron, L.J.; Dakessian, S. Soil reinforcement by roots: Calculation of increased soil shear resistance from root properties. Soil Sci. 1981, 132, 427–435. [Google Scholar] [CrossRef]
- Wu, T.H.; McKinnell, W.P., III; Swanston, D.N. Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 1979, 16, 19–33. [Google Scholar] [CrossRef]
- Bischetti, G.B.; Chiaradia, E.A.; Epis, T.; Morlotti, E. Root cohesion of forest species in the Italian Alps. Plant Soil 2009, 324, 71–89. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Ma, C.; Zhang, H.; Wang, Y.; Song, S.; Zhu, J. Influence of the spatial layout of plant roots on slope stability. Ecol. Eng. 2016, 91, 477–486. [Google Scholar] [CrossRef]
- Ni, J.J.; Leung, A.K.; Ng CW, W.; Shao, W. Modelling hydro-mechanical reinforcements of plants to slope stability. Comput. Geotech. 2018, 95, 99–109. [Google Scholar] [CrossRef]
- Reubens, B.; Poesen, J.; Danjon, F.; Geudens, G.; Muis, B. The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: A review. Trees 2007, 21, 385–402. [Google Scholar] [CrossRef]
- Simon, A.; Collison AJ, C. Quantifying the mechanical and hydrologic effects of riparian vegetation on streambank stability. Earth Surf. Process. Landf. 2002, 27, 527–546. [Google Scholar] [CrossRef]
- Vergani, C.; Chiaradia, E.A.; Bischetti, G.B. Variability in the tensile resistance of roots in Alpine forest tree species. Ecol. Eng. 2012, 46, 43–56. [Google Scholar] [CrossRef]
- Wilkinson, P.L.; Anderson, M.G.; Lloyd, D.M. An integrated hydrological model for rain-induced landslide prediction. Earth Surf. Process. Landf. 2002, 27, 1285–1297. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Sidle, R.C.; Ziegler, A.D. The canopy interception-landslide initiation conundrum: Insight from a tropical secondary forest in northern Thailand. Hydrol. Earth Syst. Sci. 2017, 21, 651–667. [Google Scholar] [CrossRef]
- Stokes, A.; Norris, J.E.; van Beek, L.P.H.; Bogaard, T.; Cammeraat, E.; Mickovski, S.B.; Jenner, A.; Di Iorio, A.; Fourcaud, T. How Vegetation Reinforces Soil on Slopes. In Slope Stability and Erosion Control: Ecotechnological Solutions; Norris, J.E., Stokes, A., Mickovski, S.B., Cammeraat, E., van Beek, R., Nicoli, B.C., Achim, A., et al., Eds.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Preti, F. Forest protection and protection forest: Tree root degradation over hydrological shallow landslides triggering. Ecol. Eng. 2013, 61, 633–645. [Google Scholar] [CrossRef]
- Chirico, G.B.; Dani, A.; Preti, F. Coupling Root Reinforcement and Subsurface Flow Modeling in Shallow Landslides Triggering Assessment. In Landslide Science and Practice; Margottini, C., Canuti, P., Sassa, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Ngo, H.M.; van Zadelhoff, F.B.; Gasparini, I.; Plaschy, J.; Flepp, G.; Dorren, L.; Phillips, C.; Giadrossich, F.; Schwarz, M. Analysis of Poplar’s (Populus nigra ita.) Root Systems for Quantifying Bio-Engineering Measures in New Zealand Pastoral Hill Country. Forests 2023, 14, 1240. [Google Scholar] [CrossRef]
- Gasser, E.; Perona, P.; Dorren, L.; Phillips, C.; Hübl, J.; Schwarz, M. A New Framework to Model Hydraulic Bank Erosion Considering the Effects of Roots. Water 2020, 12, 893. [Google Scholar] [CrossRef]
- Abernethy, B.; Rutherfurd, I.D. The distribution and strength of riparian tree roots in relation to riverbank reinforcement. Hydrol. Process. 2001, 15, 63–79. [Google Scholar] [CrossRef]
- De Baets, S.; Poesen, J.; Reubens, B.; Wemans, K.; de Baerdemaekers, J.; Muys, B. Root tensile strength and root distribution of typical Mediterranean plant species and their contribution to soil shear strength. Plant Soil 2008, 305, 207–226. [Google Scholar] [CrossRef]
- Coppin, N.J.; Richards, I.G. Use of Vegetation in Civil Engineering; Butterworth-Heinemann: Oxford, UK, 1990. [Google Scholar]
- Danjon, F.; Barker, D.H.; Drexhage, M.; Stokes, A. Using three-dimensional Plant Root Architecture in Models of Shallow-slope Stability. Ann. Bot. 2008, 101, 1281–1293. [Google Scholar] [CrossRef] [PubMed]
- Ennos, A.R. The anchorage of leek seedlings: The effect of root length and soil strength. Ann. Bot. 1990, 65, 409–416. [Google Scholar] [CrossRef]
- Gonzalez-Oullari, A.; Mickovski, S.B. Hydrological effect of vegetation against rainfall-induced landslides. J. Hydrol. 2017, 549, 374–387. [Google Scholar] [CrossRef]
- Zimmermann, A.; Zimmermann, B. Requirements for throughfall monitoring: The roles of temporal scale and canopy complexity. Agric. For. Meteorol. 2014, 189–190, 125–139. [Google Scholar] [CrossRef]
- Luo, Z.; Niu, J.; Xie, B.; Zhang, L.; Chen, X.; Berndtsson, R.; Du, J.; Ao, J.; Yang, L.; Zhu, S. Influence of Root Distribution on Preferential Flow in Deciduous and Coniferous Forest Soils. Forests 2019, 10, 986. [Google Scholar] [CrossRef]
- D’Addario, E. A New Approach to Assess the Susceptibility to Shallow Landslides at Regional Scale as Influenced by Bedrock Geo-Mechanical Properties. Ph.D. Thesis, University of Siena, Siena, Italy, 2021. [Google Scholar]
- Boschetti, T.; Toscani, L.; Barbieri, M.; Mucchino, C.; Marino, T. Low entalphy Na-chlorine waters from the Lunigiana and Garfagnana grabens: Northern Apenninnes, Italy: Tracing fluid connections and basement interaction via chemical and isotopic composition. J. Volcanol. Geotherm. Res. 2017, 348, 12–25. [Google Scholar] [CrossRef]
- Di Naccio, D.; Boncio, P.; Brozzetti, F.; Pazzaglia, F.J.; Lavecchia, G. Morphotectonic analysis of the Lunigiana and Garfagnana grabens (northern Apennines, Italy): Implication for active normal faulting. Geomorphology 2013, 201, 293–311. [Google Scholar] [CrossRef]
- Eva, E.; Solarino, S.; Boncio, P. HypoDD relocated seismicity in northern Apennines (Italy) preceding the 2013 seismic unrest: Seismotectonic implications for the Lunigiana-Garfagnana area. Boll. Geofis. Teor. Appl. 2014, 55, 739–754. [Google Scholar] [CrossRef]
- Maracchi, G.; Genesio, L.; Magno, R.; Ferrari, R.; Crisci, A.; Bottai, L. I Diagrammi del Clima in Toscana; Stampa: Florence, Italy, 2005. [Google Scholar]
- Lavorini, G.; Villoresi, C.; Bottai, L.; Perna, M.; Manetti, F.; Capecchi, V.; Betti, G.; Bartolini, G.; Crisci, A.; Corongiu, M. Analisi dei dissesti associati ad alcuni fenomeni di precipitazione intensa in Toscana attraverso l’analisi di immagini satellitari multi-spettrali. Il Geol. 2015, n.98. [Google Scholar]
- Regione Toscana–DB Geologico. Available online: http://www502.regione.toscana.it/geoscopio/geologia.html (accessed on 10 August 2023).
- Puccinelli, A.; D’Amato Avanzi, G.; Perilli, N. Note illustrative della carta geologica d’Italia alla scala 1:50.000. In Foglio 250 Castelnuovo di Garfagnana; The University of Pisa: Pisa, Italy, 2014. [Google Scholar]
- Regione Toscana-Fototeca. Available online: https://www502.regione.toscana.it/geoscopio/fototeca.html (accessed on 10 August 2023).
- Tou, J.T.; Gonzalez, R.C. Pattern Recognition Principles; Addison-Wesley Publishing: Boston MA, USA, 1974. [Google Scholar]
- Böhm, W. Methods of Studying Root System; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar] [CrossRef]
- Amanti, M.; Bertolini, G.; Ceccone, G.; Chiessi, V.; de Nardo, M.T.; Ercolani, L.; Gasparo, F.; Guzzetti, F.; Landrini, C.; Martini, M.G.; et al. Scheda di Censimento dei Fenomeni Franosi Versione 2.33. In Guida al Censimento dei Fenomeni Franosi ed Alla Loro Archiviazione; Miscellanea VI; Servizio Geologico d’Italia: Rome, Italy, 1998. [Google Scholar]
- Pergalani, F.; Padovan, N.; Agostoni, A.; Belloni, A.; Costantini, R.; Crosta, G.; de Andrea, S.; Laffi, R.; Luzi, L.; Sterlacchini, S. Valutazione della Stabilità dei Versanti in Condizioni Statiche e Dinamiche Nella Zona Campione Dell’oltrepo Pavese; Regione Lombardia Settore Tutela Ambientale Servizio Geologico e Tutela delle Acque e Consiglio Nazionale Ricerche; Istituto di Ricerca sul Rischio Sismico: Milano, Italy, 1998; p. 80. [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Giambastiani, A.; Errico, F.; Preti, E.; Guastini, G. Censini Indirect root distribution characterization using electrical resistivity tomography in different soil conditions. Urban For. Urban Green. 2021, 67, 127442. [Google Scholar] [CrossRef]
- Lateh, H.; Avani, N.; Bibalani, G.H. Investigation of root distribution and tensile strength of Acacia mangium Willd (Fabaceae) in the rainforest. Greener J. Biol. Sci. 2014, 4, 45–52. [Google Scholar] [CrossRef]
- Preti, F.; Giadrossich, F. Root reinforcement and slope bioengineering stabilization by Spanish broom (Spartium junceum L.). Hydrol. Earth Syst. Sci. 2009, 13, 1713–1726. [Google Scholar] [CrossRef]
- Dias, A.S.; Pirone, M.; Urciuoli, G. Review of the Methods for Evaluation of Root Reinforcement in Shallow Landslides. In Advancing Culture of Living with Landslides; WLF2017; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Mickovski, S.B.; Bengough, A.C.; Bransby, M.F.; Davies MC, R.; Hallett, P.D.; Sonnenberg, R. Material stiffness, branching pattern and soil matric potential affect the pullout resistance of model root systems. Eur. J. Soil Sci. 2007, 58, 1471–1481. [Google Scholar] [CrossRef]
- Schwarz, M.; Cohen, D.; Or, D. Root-soil mechanical interactions during pullout and failure of root bundles. J. Geophys. Res. 2010, 115, F04035. [Google Scholar] [CrossRef]
- Bassanelli, C.; Bischetti, G.B.; Chiaradia, E.A.; Rossi, L.; Vergani, C. The contribution of chestnut coppice forest on slope stability in abandoned territory: A case study. J. Agric. Eng. 2013, 44, 254. [Google Scholar] [CrossRef]
- Vergani, C.; Schwarz, M.; Soldati, M.; Corda, A.; Giadrossich, F.; Chiaradia, E.A.; Morando, P.; Bassanelli, C. Root reinforcement dynamics in subalpine spruce forests following timber harvest: A case study in Canton Schwyz, Switzerland. Catena 2016, 143, 275–288. [Google Scholar] [CrossRef]
- Epis, T. Valutazione del Rinforzo Radicale del Suolo Operato dalle Radici delle Principali Specie Forestali della Lombardia; Università degli Studi di Milano: Milano, Italy, 2010. [Google Scholar]
- Thomas, R.E.; Pollen-Bankhead, N. Modelling root-reinforcement with a fiber-bundle model and Monte Carlo Simulation. Ecol. Eng. 2010, 36, 47–61. [Google Scholar] [CrossRef]
- Mao, Z. Root reinforcement models: Classification, criticism and perspectives. Plant Soil 2022, 472, 17–28. [Google Scholar] [CrossRef]
- Wu, T.H. Investigations of Landslides on Prince of Wales Island; Geotechnical Engineering Report 5; Ohio State University: Columbus, OH, USA, 1976. [Google Scholar]
- Gray, D.H.; Leiser, A.T. Biotechnical Slope Protection and Erosion Control; Krieger Publishing Company: Malabar, FL, USA, 1982. [Google Scholar]
- Riestenberg, M.M.; Sovonik-Dunford, S. The role of woody vegetation in stabilizing slopes in the Cincinnati area, Ohio. Geol. Soc. Am. Bull. 1983, 94, 506–518. [Google Scholar] [CrossRef]
- Greenway, D. Vegetation and Slope Stability, Slope Stability; Anderson, M.G., Richards, K.S., Eds.; John Wiley & Sons: Chichester, UK, 1987; pp. 187–230. [Google Scholar]
- Docker, B.B.; Hubble, T.C.T. Quantifying root-reinforcement of river bank soils by four Australian tree species. Geomorphology 2008, 100, 401–418. [Google Scholar] [CrossRef]
- Preti, F. Stabilità dei Versanti Vegetati, Manuale di Ingegneria Naturalistica; Stampa: Rome, Italy, 2006; 3–Versanti: Capitolo 10. [Google Scholar]
- Pollen, N.; Simon, A. Estimating the mechanical effects of riparian vegetation on stream bank stability using a fiber bundle model. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef]
- Hammond, C.; Hall, D.; Miller, S.; Swetik, P. Level I. Stability Analysis (LISA) Documentation for Version 2.0; General Technical Report Int-285; USDA: Washington, DC, USA, 1992. [Google Scholar]
- Preti, A.D.; Noto, L.V.; Arnone, E. On the Leonardo’s rule for the assessment of root profile. Ecol. Eng. 2022, 179, 106620. [Google Scholar] [CrossRef]
- Potter, P.E.; Bower, M.; Maynard, J.B.; Crawford, M.W.; Weisenfluh, G.A.; Agnello, T. Landslides and Your Property; Indiana Geological Survey Miscellaneous Item 111; Duke Energy: Charlotte, NC, USA, 2013. [Google Scholar]
- Zhou, Y.; Watts, D.; Cheng, X.; Li, Y.; Luo, H.; Xiu, Q. The traction effect of lateral roots of Pinus yunnanensis on soil reinforcement: A direct in situ test. Plant Soil 1997, 190, 77–86. [Google Scholar] [CrossRef]
- Giadrossich, F.; Cohen, D.; Schwarz, M.; Ganga, A.; Marrosu, R.; Pirastru, M.; Capra, G.F. Large roots dominate the contribution of trees to slope stability. Earth Surf. Process. Landf. 2019, 44, 1602–1609. [Google Scholar] [CrossRef]
- Schwarz, M.; Preti, F.; Giadrossich, F.; Lehmann, P.; Or, D. Quantifying the role of vegetation in slope stability: A case study in Tuscany (Italy). Ecol. Eng. 2010, 36, 285–291. [Google Scholar] [CrossRef]
- Van Zadelhoff, F.B.; Albaba, A.; Cohen, D.; Phillips, C.; Schaefli, B.; Dorren, L.; Schwarz, M. Introducing SlideforMAP: A probabilistic finite slope approach for modelling shallow-landslide probability in forested situations. Nat. Hazards Earth Syst. Sci. 2022, 22, 2611–2635. [Google Scholar] [CrossRef]
- Gariano, S.L.; Guzzetti, F. Landslides in a changing climate. Earth Sci. Rev. 2016, 162, 227–252. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Moos, C.; Bebi, P.; Graf, F.; Mattli, J.; Rickli, C.; Schwarz, M. How does forest structure affect root reinforcement and susceptibility to shallow landslides? Earth Surf. Process. Landf. 2016, 41, 951–960. [Google Scholar] [CrossRef]
- Hales, T.C.; Ford, C.R.; Hwang, T.; Vose, J.M.; Band, L.E. Topographic and ecologic controls on root reinforcement. J. Geophys. Res. Earth Surf. 2009, 114. [Google Scholar] [CrossRef]
- Dietrich, W.E.; Wilson, C.J.; Reneau, S.L. Hollows, colluvium, and landslides in soil-mantled landscapes. Hillslope Process. 1986, 27, 362–368. [Google Scholar] [CrossRef]
- Arnone, E.; Caracciolo, D.; Noto, L.V.; Preti, F.; Bras, L.R. Modeling the hydrological and mechanical effect of roots on shallow landslides. Water Resour. Res. 2016, 52, 8590–8612. [Google Scholar] [CrossRef]
- Tron, S.; Dani, A.; Laio, F.; Preti, F.; Ridolfi, L. Mean root depth estimation at landslide slopes. Ecol. Eng. 2014, 69, 118–125. [Google Scholar] [CrossRef]
- Flepp, G.; Robyr, R.; Scotti, R.; Giadrossich, F.; Conedera, M.; Vacchiano, G.; Fischer, C.; Ammann, P.; May, D.; Schwarz, M. Temporal Dynamics of Root Reinforcement in European Spruce Forests. Forests 2021, 12, 815. [Google Scholar] [CrossRef]
- D’ Addario, E.; Trefolini, E.; Mammoliti, E.; Papasidero, M.P.; Vacca, V.; Viti, F.; Disperati, L. A new shallow landslides inventory for Southern Lunigiana (Tuscany, Italy) and analysis of predisposing factors. Rend. Online Soc. Geol. Ital. 2018, 46, 149–154. [Google Scholar] [CrossRef]
- Hahm, W.J.; Riebe, C.S.; Lukens, C.E.; Araki, S. Bedrock composition regulates mountain ecosystems and landscape evolution. Proc. Natl. Acad. Sci. USA 2014, 111, 3338–3343. [Google Scholar] [CrossRef] [PubMed]
- Istanbulluoglu, E.; Bras, R.L. Vegetation-modulated landscape evolution: Effects of vegetation on landscape processes, drainage density, and topography. J. Geophys. Res. Earth Surf. 2005, 110, 249. [Google Scholar] [CrossRef]
- Preti, F.; Dani, A.; Laio, F. Root profile assessment by means of hydrological, pedological and above-ground vegetation information for bio-engineering purposes. Ecol. Eng. 2010, 36, 305–316. [Google Scholar] [CrossRef]
- Laio, F.; D’Odorico, P.; Ridolfi, L. An analytical model to relate the vertical root distribution to climate and soil properties. Geophys. Res. Lett. 2006, 33, 7331. [Google Scholar] [CrossRef]
Lithologic Class | Description | Number of Sites | % Area |
---|---|---|---|
L1 | Arenaceous and meta-arenaceous flysch | 59 | 45 |
L2 | Limestone, calcareous flysch, dolostone, marble | 35 | 21 |
L3 | Marl, claystone, siltstone, [basalt and ultramaphites] | 25 | 10 |
L4 | Lacustrine shale, sandy shale, terraced alluvial deposits | 31 | 24 |
Morphometric Units | Description | Number of Sites | % Area |
---|---|---|---|
A | Gentle ridges and alluvial areas (<200 m a.s.l.) | 7 | 4 |
B | Steep ridges (>600 m a.s.l.) | 43 | 20 |
C | Gentle slopes and gentle ridges (200–600 m a.s.l.) | 21 | 10 |
D | Flat to convex slopes | 36 | 29 |
E | Upper portion of slopes | 43 | 37 |
Location Types | Description | Number of Measurement Sites |
---|---|---|
IN | Inside a shallow landslide | 40 |
NEAR | In the neighbor of a shallow landslide (within 10 m) | 40 |
FAR | Far from shallow landslides (i.e., stable areas) | 70 |
Vegetation Types | Description | Number of Measurement Sites |
---|---|---|
1 | Grass, shrubs and isolated trees | 17 |
2 | Black locust, Common ash, Field helm, Turkey oak | 21 |
3 | Sweet chestnut, Common hornbeam | 82 |
4 | Norway spruce | 9 |
5 | European beech | 21 |
Vegetation Types | Mobilized Resistance Mechanism | a | b | Measurement Units of the Regression Relationship | Source |
---|---|---|---|---|---|
Sweet chestnut | Laboratory tests | 10.80 | 1.57 | N, mm | [65] |
Norway spruce, maple, beech | Laboratory tests | 7.38 | 2.19 | N, mm | [66] |
Black locust | Laboratory tests | 16.05 | −0.36 | MPa, mm | [67] |
Common hornbeam | Laboratory tests | 23.27 | −0.48 | MPa, mm | [67] |
Norway spruce | Field pullout tests | 16.91 | 1.89 | N, mm | [66] |
Source | ϕ′ (Friction Angle) (°) | k′ (-) (Adopted Values in Brackets) |
---|---|---|
[70] | 20–40 | 0.92–1.31 (1.20) |
[21] | 30 | 0.58–1.16 (1.00) |
[71] | 20–40 | 1–1.30 (1.15) |
[72] | 12 | 1.01–1.06 |
[73] | >35 | 1.20 |
[37] | 16 | 1.00 |
[27] | 20–40 | 1.20 |
[26] | - | 1.15 |
[40] | ~ 40 | 1.20 |
[74] | 27–39.6 | 0.62–0.98 (0.75) |
Lithologic Class | Abs. Freq. | Morphometric Units | Abs. Freq. | Vegetation Types | Abs. Freq. |
---|---|---|---|---|---|
L1 | 16 | A | 1 | 1 | 3 |
L2 | 9 | B | 7 | 2 | 5 |
L3 | 1 | C | 8 | 3 | 27 |
L4 | 14 | D | 7 | 4 | 2 |
E | 17 | 5 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marzini, L.; D’Addario, E.; Papasidero, M.P.; Chianucci, F.; Disperati, L. Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy). Geosciences 2023, 13, 326. https://doi.org/10.3390/geosciences13110326
Marzini L, D’Addario E, Papasidero MP, Chianucci F, Disperati L. Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy). Geosciences. 2023; 13(11):326. https://doi.org/10.3390/geosciences13110326
Chicago/Turabian StyleMarzini, Lorenzo, Enrico D’Addario, Michele Pio Papasidero, Francesco Chianucci, and Leonardo Disperati. 2023. "Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy)" Geosciences 13, no. 11: 326. https://doi.org/10.3390/geosciences13110326
APA StyleMarzini, L., D’Addario, E., Papasidero, M. P., Chianucci, F., & Disperati, L. (2023). Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy). Geosciences, 13(11), 326. https://doi.org/10.3390/geosciences13110326