Natural H2 Emissions in Colombian Ophiolites: First Findings
Abstract
:1. Introduction
1.1. Natural H2 within the New Energy Mix
1.2. Natural H2 a New Resource Recognized by the Law in Colombia
2. Natural H2 Systems within the Colombian Geological Context
2.1. H2 Prospectivity in Colombia
2.2. Serpentinization and H2 Generation
Orthopyroxene + water => serpentine + magnetite + H2 + silicon dioxide
2.3. H2 Exploration Workflow
3. Pre-Field Trip: Colombian Ophiolites of the Cauca Valley
3.1. The Accreted Ophiolites of the Western Part of Colombia
3.2. Remote Sensing Approach of the Cauca-Paita Valley
4. Soil Gas Measurements
4.1. Zones of Vegetation Anomalies
4.2. Soil Gas Measurement on the Fault Zones
5. Discussions and Conclusions
5.1. Sub Circular Depressions and Gas Escape
5.2. Potential of the Cauca-Paita Valley
5.3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rigollet, C.; Prinzhofer, A. Natural Hydrogen: A New Source of Carbon-Free and Renewable Energy That Can Compete With Hydrocarbons. First Break 2022, 40, 78–84. [Google Scholar] [CrossRef]
- Diallo, A.; Cissé, C.S.T.; Lemay, J.; Brière, D.J. La découverte de l’hydrogène naturel par Hydroma, un «Game Changer» pour la transition énergétique. Ann. Mines-Réalités Ind. 2022, 2022, 154–160. [Google Scholar] [CrossRef]
- Brandt, A. Greenhouse gas intensity of natural hydrogen produced from subsurface geologic accumulations. Joule 2023, 7, 1818–1831. [Google Scholar] [CrossRef]
- Lévy, D.; Roche, V.; Pasquet, G.; Combaudon, V.; Geymond, U.; Loiseau, K.; Moretti, I. Natural H2 exploration: Tools and workflows to characterize a play. Sci. Technol. Energy Transit. 2023, 78, 27. [Google Scholar] [CrossRef]
- Vacquand, C.; Deville, E.; Beaumont, V.; Guyot, F.; Sissmann, O.; Pillot, D.; Arcilla, C.; Prinzhofer, A. Reduced gas seepages in ophiolitic complexes: Evidences for multiple origins of the H2-CH4-N2 gas mixtures. Geochim. Cosmochim. Acta 2018, 223, 437–461. [Google Scholar] [CrossRef]
- Moretti, I.; Prinzhofer, A.; Françolin, J.; Pacheco, C.; Rosanne, M.; Rupin, F.; Mertens, J. Long term monitoring of natural hydrogen superficial emissions in a Brazilian cratonic environment. Sporadic large pulses versus daily periodic emissions. Int. J. Hydrogen Energy 2021, 46, 3615–3628. [Google Scholar] [CrossRef]
- Geymond, U.; Ramanaidou, E.; Lévy, D.; Ouaya, A.; Moretti, I. Can Weathering of Banded Iron Formations Generate Natural Hydrogen? Evidence from Australia, Brazil and South Africa. Minerals 2022, 12, 163. [Google Scholar] [CrossRef]
- Sherwood Lollar, B.; Onstott, T.C.; Lacrampe-Couloume, G.; Ballentine, C.J. The contribution of the Precambrian continental lithosphere to global H2 production. Nature 2014, 516, 379–382. [Google Scholar] [CrossRef]
- Truche, L.; Joubert, G.; Dargent, M.; Martz, P.; Cathelineau, M.; Rigaudier, T.; Quirt, D. Clay minerals trap hydrogen in the Earth’s crust: Evidence from the Cigar Lake uranium deposit, Athabasca. Earth Planet. Sci. Lett. 2018, 493, 186–197. [Google Scholar] [CrossRef]
- Horsfield, B.; Mahlstedt, N.; Weniger, P.; Misch, D.; Vranjes-Wessely, S.; Han, S.; Wang, C. Molecular hydrogen from organic sources in the deep Songliao Basin, P.R. China. Int. J. Hydrogen Energy 2022, 47, 16750–16774. [Google Scholar] [CrossRef]
- Boreham, C.J.; Edwards, D.S.; Feitz, A.J.; Murray, A.P.; Mahlstedt, N.; Horsfield, B.; Boreham, C.J.; Edwards, D.S.; Feitz, A.J.; Murray, A.P.; et al. Modelling of hydrogen gas generation from overmature organic matter in the Cooper Basin, Australia. APPEA J. 2023, 63, S351–S356. [Google Scholar] [CrossRef]
- Restrepo, J.J.; Toussaint, J.F. The geology of Colombia. Chapter 3: Tectonostratigraphic terranes in colombia: An update first part: Continental terranes. In The Geology of Colombia, Volume 1 Proterozoic—Paleozoic; Gómez, J., Mateus–Zabala, D., Eds.; Servicio Geológico Colombiano: Bogotá, Colombia, 2020. [Google Scholar] [CrossRef]
- Gonzalez-penagos, F.; Moretti, I.; Guichet, X. Fluid Flow Modeling in the Llanos Basin, Colombia. In Petroleum Systems Analysis—Case Studies: AAPG Memoir; AbuAli, M.A., Moretti, I., Bolås, H.M.N., Eds.; The American Association of Petroleum Geologists: Washington, DC, USA, 2017; Volume 114, pp. 191–217. [Google Scholar]
- Moretti, I.; Charry, G.R.; Morales, M.M.; Mondragon, J.C. Integrated exploration workflow in the South Middle Magdalena Valley (Colombia). J. S. Am. Earth Sci. 2010, 29, 187–197. [Google Scholar] [CrossRef]
- Lopez-Ramos, E. Origin of a Double Forearc Basin: The Example of the Tumaco—Manglares Basin, Northwestern Southamerica. CT&F—Cienc. Tecnol. Futuro 2020, 10, 67–92. [Google Scholar] [CrossRef]
- Bayona, G.; Cortés, M.; Jaramillo, C.; Ojeda, G.; Aristizabal, J.J.; Reyes-Harker, A. An integrated analysis of an orogen– sedimentary basin pair: Latest Cretaceous—Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos Foreland Basin of Colombia. Geol. Soc. Am. Bull. 2008, 120, 1171–1197. [Google Scholar] [CrossRef]
- Marcaillou, C.; Muñoz, M.; Vidal, O.; Parra, T.; Harfouche, M. Mineralogical evidence for H2 degassing during serpentinization at 300 °C/300 bar. Earth Planet. Sci. Lett. 2011, 303, 281–290. [Google Scholar] [CrossRef]
- McCollom, T.M.; Klein, F.; Moskowitz, B.; Berquó, T.S.; Bach, W.; Templeton, A.S. Hydrogen generation and iron partitioning during experimental serpentinization of an olivinepyroxene mixture. Geochim. Cosmochim. Acta 2020, 282, 55–75. [Google Scholar] [CrossRef]
- Charlou, J.L.; Donval, J.P.; Fouquet, Y.; Jean-baptiste, P.; Holm, N. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′ N, MAR). Chem. Geol. 2002, 191, 345–359. [Google Scholar] [CrossRef]
- Klein, F.; Bach, W.; McCollom, T.M. Compositional controls on hydrogen generation during serpentinization of ultramafic rocks. Lithos 2013, 178, 55–69. [Google Scholar] [CrossRef]
- Cannat, M.; Rommevaux-Jestin, C.; Fujimoto, H. Melt supply variations to a magma-poor ultra-slow spreading ridge (Southwest Indian Ridge 61° to 69° E): Melt supply variations. Geochem. Geophys. Geosyst. 2003, 4. [Google Scholar] [CrossRef]
- Lévy, D.; Callot, J.P.; Moretti, I.; Duttine, M.; Dubreuil, B.; de Parseval, P.; Boudouma, O. Successive phases of serpentinization recorded in the ophiolite of Sivas (Turkey), from oceanic crust accretion to post-obduction alteration. BSGF 2022, 193, 12. [Google Scholar] [CrossRef]
- Zgonnik, V.; Beaumont, V.; Larin, N.; Pillot, D.; Deville, E. Diffused flow of molecular hydrogen through the Western Hajar mountains, Northern Oman. Arab. J. Geosci. 2019, 12, 71. [Google Scholar] [CrossRef]
- Deville, E.; Prinzhofer, A. The origin of N2-H2-CH4-rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia. Chem. Geol. 2016, 440, 139–147. [Google Scholar] [CrossRef]
- Combaudon, V.; Moretti, I.; Kleine, B.I.; Stefánsson, A. Natural hydrogen emissions in Iceland and comparison with the Mid-Atlantic Ridge. Int. J. Hydrogen Energy 2022, 47, 10217–10227. [Google Scholar] [CrossRef]
- Pasquet, G.; Hassan, R.H.; Sissmann, O.; Varet, J.; Moretti, I. An Attempt to Study Natural H2 Resources across an Oceanic Ridge Penetrating a Continent: The Asal–Ghoubbet Rift (Republic of Djibouti). Geosciences 2021, 12, 16. [Google Scholar] [CrossRef]
- Geymond, U.; Briolet, T.; Combaudon, V.; Sissmann, O.; Martinez, I.; Duttine, M.; Moretti, I. Reassessing the role of magnetite during natural hydrogen generation. Front. Earth Sci. 2023, 11, 1169356. [Google Scholar] [CrossRef]
- Larin, N.; Zgonnik, V.; Rodina, S.; Deville, E.; Prinzhofer, A.; Larin, V.N. Natural Molecular Hydrogen Seepage Associated with Surficial, Rounded Depressions on the European Craton in Russia. Nat. Resour. Res. 2015, 24, 369–383. [Google Scholar] [CrossRef]
- Zgonnik, V.; Beaumont, V.; Deville, E.; Larin, N.; Pillot, D.; Farrell, K.M. Evidence for natural molecular hydrogen seepage associated with Carolina bays (surficial, ovoid depressions on the Atlantic Coastal Plain, Province of the USA). Prog. Earth Planet. Sci. 2015, 2, 31. [Google Scholar] [CrossRef]
- Moretti, I.; Brouilly, E.; Loiseau, K.; Prinzhofer, A.; Deville, E. Hydrogen Emanations in Intracratonic Areas: New Guide Lines for Early Exploration Basin Screening. Geosciences 2021, 11, 145. [Google Scholar] [CrossRef]
- Moretti, I.; Geymond, U.; Pasquet, G.; Aimar, L.; Rabaute, A. Natural hydrogen emanations in Namibia: Field acquisition and vegetation indexes from multispectral satellite image analysis. Int. J. Hydrogen Energy 2022, 47, 35588–35607. [Google Scholar] [CrossRef]
- Toussaint, J.F.; Restrepo, J.J. The geology of Colombia. Chapter 7: Tectonostratigraphic terranes in colombia: An update second part: Oceanic terranes. In The Geology of Colombia, Volume 2 Mesozoic; Gómez, J., Pinilla–Pachon, A.O., Eds.; Servicio Geológico Colombiano: Bogotá, Colombia, 2020. [Google Scholar] [CrossRef]
- Weber, M.; Cardona, A.; Paniagua, F.; Cordani, U.; Sepúlveda, L.; Wilson, R. The Cabo de la Vela Mafic-Ultramafic Complex, Northeastern Colombian Caribbean region: A record of multistage evolution of a Late Cretaceous intra-oceanic arc. Geol. Soc. London, Spéc. Publ. 2009, 328, 549–568. [Google Scholar] [CrossRef]
- Nivia, A. Geología y Geocronología del Batolito de buga y el Macizo Ofiolítico de Ginebra, Colombia. 2017. Conference: XVI Congreso Colombiano de Geología at: Santa Marta—Magdalena (Colombia). Available online: https://www.researchgate.net/publication/319631780 (accessed on 20 September 2023).
- Moreno, M.; Pardo, A. Stratigraphical and sedimentological constraints on western colombia: Implications on the evolution of the Caribbean plate. Am. Assoc. Pet. Geol. Mem. 2003, 79, 891–924. [Google Scholar]
- McCourt, W.J.; Aspden, J.A.; Brook, M. New geological and geochronological data from the colombian andes: Continental growth by multiple accretion. J. Geol. Soc. Lond. 1984, 141, 831–845. [Google Scholar] [CrossRef]
- Nivia, A. Mapa geológico departamento del Valle del Cauca escala 1:250000, memoria explicativa 2001. 2001. Available online: https://www.researchgate.net/publication/275971711_Mapa_Geologico_Departamento_del_Valle_del_Cauca_Escala_1250000_Memoria_Explicativa_2001 (accessed on 20 September 2023).
- Ossa, C.; Concha, A.H. Petrogénesis de las rocas del macizo ofiolítico de Ginebra entre las veredas la honda (Ginebra) y el diamante (Buga) en el departamento del Valle del Cauca. 2007. Available online: https://dialnet.unirioja.es/servlet/revista?codigo=19929 (accessed on 20 September 2023).
- Tapias, J.G.; Ramírez, N.E.M.; Gutiérrez, F.A.A.; Hernández, J.A.C. Catálogo de dataciones radiométricas de colombia en arcgis y google earth. 2015. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales. Available online: https://www2.sgc.gov.co/MGC/Documents/Compilando/04_Gomez-et-al-2015_Catalogo-de-dataciones-radiometricas.pdf (accessed on 20 September 2023).
- Palomino, M. Caracterización petrográfica del Batolito de Buga en la Cordillera Central, Valle del Cauca. 2017. Available online: https://repositorio.uniandes.edu.co/server/api/core/bitstreams/3d70fc54-a922-4b8a-baa4-14d11eae79bf/content (accessed on 20 September 2023).
- McCourt, W.J.; Verdugo, G. Mapa Geológico de Colombia, Plancha 300, Cali; Bogotá Ingeominas: Ingeominas, Bogotá, 1985. [Google Scholar]
- Barbosa, G. República de Colombia, Ministerio de Minas y Energía. Instituto de investigación e información geocientífica, minero-ambiental y nuclear ingeominas. Memorias mapa geológico del departamento del Cauca. 2003. Available online: https://recordcenter.sgc.gov.co/B4/13010040019624/documento/pdf/0101196241101000.pdf (accessed on 20 September 2023).
- ANH. Available online: https://www.anh.gov.co/en/hidrocarburos/informacion-geologica-y-geofisica/estudios-integrados-y-modelamientos/ (accessed on 20 September 2023).
- Prinzhofer, A.; Moretti, I.; Françolin, J.; Pacheco, C.; D’Agostino, A.; Werly, J.; Rupin, F. Natural hydrogen continuous emission from sedimentary basins: The example of a Brazilian H2-emitting structure. Int. J. Hydrogen Energy 2019, 44, 5676–5685. [Google Scholar] [CrossRef]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Yang, G.; Reynolds, M.; Xia, X.; Xiao, Y.; He, Z. A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform. Plant Sci. 2019, 282, 95–103. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Posada-Asprilla, W.; Medina-Sierra, M.; Cerón-Muñoz, M. Estimación de la calidad y cantidad de pasto kikuyo (Cenchrus clandestinum (Hochst. ex Chiov.) Morrone) usando imágenes multiespectrales. Rev. UDCA Actual. Divulg. Científica 2019, 22. [Google Scholar] [CrossRef]
- Ávila Vélez, E.F. Propuesta metodológica para cuantificar áreas afectadas por incendios forestales utilizando imágenes satelitales sentinel-2. caso de studio páramo del almorzadero, Colombia. 2019. Available online: https://www.academia.edu/44443374/Propuesta_metodol%C3%B3gica_para_cuantificar_%C3%A1reas_afectadas_por_incendios_forestales_utilizando_im%C3%A1genes_satelitales_Sentinel_2_Caso_de_estudio_p%C3%A1ramo_del_Almorzadero_Colombia (accessed on 20 September 2023).
- Becker, T.; Nelsen, T.S.; Leinfelder-Miles, M.; Lundy, M.E. Differentiating between nitrogen and water deficiency in irrigated maize using a uav-based multi-spectral camera. Agronomy 2020, 10, 1671. [Google Scholar] [CrossRef]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.; Jensen, N.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Frery, E.; Langhi, L.; Maison, M.; Moretti, I. Natural hydrogen seeps identified in the North Perth Basin, Western Australia. Int. J. Hydrogen Energy 2021, 46, 31158–31173. [Google Scholar] [CrossRef]
- McMahon, C.J.; Roberts, J.J.; Johnson, G.; Edlmann, K.; Flude, S.; Shipton, Z.K. Natural hydrogen seeps as analogues to inform monitoring of engineered geological hydrogen storage. In Enabling Secure Subsurface Storage in Future Energy Systems; Miocic, J.M., Heinemann, N., Alcalde, J., Edlmann, K., Schultz, R.A., Eds.; Special Publications, 528; Geological Society: London, UK, 2022. [Google Scholar] [CrossRef]
- Frery, E.; Langhi, L.; Markov, J. Natural hydrogen exploration in Australia—State of knowledge and presentation of a case study. APPEA J. 2022, 62, 223–234. [Google Scholar] [CrossRef]
- Murray, J.; Clément, A.; Fritz, B.; Schmittbuhl, J.; Bordmann, V.; Fleury, J.M. Abiotic hydrogen generation from biotite-rich granite: A case study of the Soultz-sous-Forêts geothermal site. France. Appl. Geochem. 2020, 119, 104631. [Google Scholar] [CrossRef]
- Lefeuvre, N.; Truche, L.; Donzé, F.V.; Ducoux, M.; Barré, G.; Fakoury, R.A.; Calassou, S.; Gaucher, E.C. Native H2 exploration in the western Pyrenean foothills. G-Cubed 2021, 22, e2021GC009917. [Google Scholar] [CrossRef]
- Caballero, V.M.; Rodríguez, G.; Naranjo, J.F.; Mora, A.; De La Parra, F. From facies analysis, stratigraphic surfaces, and depositional sequences to stratigraphic traps in the Eocene—Oligocene record of the southern Llanos and northern Magdalena Basin. In The Geology of Colombia, Volume 3 Paleogene—Neogene; Gómez, J., Mateus–Zabala, D., Eds.; Publicaciones Geológicas Especiales 37; Servicio Geológico Colombiano: Bogotá, Colombia, 2020; 48p. [Google Scholar] [CrossRef]
- Maiga, O.; Deville, E.; Laval, J.; Prinzhofer, A.; Diallo, A.B. Trapping processes of large volumes of natural hydrogen in the subsurface: The emblematic case of the Bourakebougou H2 field in Mali. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
Vegetation Index | Spectral Bands | Calculation | Range of Values | Interpretation |
---|---|---|---|---|
NDVI (Normalized Difference Vegetation Index) | NIR and R | (NIR − R)/(NIR + R) | −1 to 1 | High values indicate the presence of vegetation |
SAVI (Soil-Adjusted Vegetation Index) | NIR and R | (NIR − R)/(NIR + R + L) × (1 + L) | −1 to 1 | High values indicate the presence of vegetation, even on soils with high reflectance |
NDWI (Normalized Difference Water Index) | NIR and SWIR | (NIR − SWIR)/(NIR + SWIR) | 0 to 1 | High values indicate the presence of water |
GLI (Green Leaf Index) | B, G, and R | (NIR + R + B + G)/4 | 0 to 1 | High values indicate the presence of chlorophyll |
EVI (Enhanced Vegetation Index) | NIR, R, B, and G | 2.5 × (NIR − R)/(NIR + 6 × R − 7.5 × B + 1) | −1 to 1 | High values indicate the presence of leaf biomass |
ARVI (Atmospherically Resistant Vegetation Index) | NIR and R | (NIR − R)/(NIR + R) − (NIR − SWIR)/(NIR + SWIR) | −1 to 1 | High values indicate the presence of vegetation, even under adverse atmospheric conditions |
GNDVI (Greenness Normalized Difference Vegetation Index) | G and R | (G − R)/(G + R) | −1 to 1 | High values indicate the presence of vegetation, even under adverse atmospheric conditions |
NBRI (Near-Infrared and Shortwave Infrared Burned Area Index) | NIR and SWIR | (NIR − SWIR)/(NIR + SWIR) | 0 to 1 | High values indicate the presence of burned areas |
Station | Sample | Date 2022 | Hour | Depth (cm) | O2 (%) | CH4 (%) | CO2 (%) | H2 ppm | CO ppm | H2S ppm | BAL (%) |
---|---|---|---|---|---|---|---|---|---|---|---|
H2_ST1 scd | 1 | 12/10 | 10:10 | 40 | 20.2 | 0 | 0.1 | 1 | 1 | 1 | 79.7 |
2 | 12/10 | 10:22 | 40 | 19.9 | 0 | 0.3 | 22 | 1 | 1 | 79.9 | |
3 | 12/10 | 10:25 | 80 | 19.7 | 0 | 0.4 | 14 | 1 | 2 | 80 | |
4 | 12/10 | 10:35 | 80 | 8.5 | 0 | 15.4 | 18 | 3 | 2 | 76 | |
5 | 12/10 | 10:36 | 80 | 0.2 | 0 | 25.6 | 33 | 1 | 2 | 74.2 | |
6 | 12/10 | 10:47 | 80 | 18.6 | 0 | 3.4 | 137 | 17 | 2 | 79.8 | |
7 | 12/10 | 10:51 | 80 | 19.4 | 0 | 1.3 | 320 | 8 | 7 | 79.6 | |
8 | 12/10 | 10:56 | 80 | 17 | 0 | 12.8 | 289 | 7 | 2 | 79.3 | |
9 | 12/10 | 11:00 | 60 | 19.9 | 0 | 0.7 | 54 | 2 | 1 | 79.7 | |
10 | 12/10 | 11:07 | 80 | 19 | 0 | 8.3 | 255 | 5 | 2 | 79.3 | |
11 | 12/10 | 11:14 | 80 | 19.9 | 0 | 1.8 | 40 | 3 | 1 | 79.4 | |
12 | 12/10 | 11:18 | 75 | 7 | 0 | 15.7 | 140 | 8 | 2 | 78 | |
13 | 12/10 | 11:23 | 80 | 19 | 0 | 3.8 | 300 | 11 | 2 | 79.2 | |
14 | 12/10 | 11:27 | 80 | 19 | 0 | 2.5 | 112 | 4 | 1 | 78.9 | |
15 | 12/10 | 11:31 | 30 | 20.5 | 0 | 0.4 | 40 | 11 | 1 | 79.2 | |
H2_ST2 scd | 1 | 12/10 | 16:11 | 40 | 21.1 | 0 | 0.4 | 29 | 8 | 0 | 78.5 |
2 | 12/10 | 16:17 | 50 | 20.6 | 0 | 6 | 250 | 4 | 1 | 78.4 | |
3 | 12/10 | 16:19 | 40 | 21.2 | 0 | 0.2 | 30 | 1 | 0 | 78.6 | |
4 | 12/10 | 16:27 | 30 | 21.2 | 0 | 1.1 | 14 | 3 | 1 | 78.6 | |
5 | 12/10 | 16:30 | 30 | 21.1 | 0 | 0.1 | 8 | 2 | 1 | 78.7 | |
6 | 12/10 | 16:34 | 30 | 21.1 | 0 | 0,2 | 7 | 1 | 1 | 78.8 | |
7 | 12/10 | 16:38 | 25 | 20.6 | 0 | 1.1 | 2 | 1 | 1 | 78.4 | |
H2_ST3 scd | 1 | 12/10 | 13:52 | 80 | 20.7 | 0 | 0.9 | 19 | 5 | 0 | 78.4 |
2 | 12/10 | 13:56 | 80 | 20.2 | 0 | 0.9 | 24 | 15 | 1 | 78.6 | |
3 | 12/10 | 14:00 | 50 | 20.5 | 0 | 1 | 13 | 1 | 0 | 78.5 | |
4 | 12/10 | 14:03 | 80 | 20.5 | 0 | 1 | 10 | 1 | 0 | 78.5 | |
5 | 12/10 | 14:06 | 40 | 20.7 | 0 | 0.7 | 11 | 1 | 0 | 78.6 | |
6 | 12/10 | 14:09 | 50 | 20.1 | 0 | 1.2 | 60 | 17 | 1 | 78.7 | |
7 | 12/10 | 14:13 | 70 | 20 | 0 | 1.4 | 7 | 3 | 1 | 78.6 | |
8 | 12/10 | 14:16 | 80 | 19.6 | 0 | 2 | 9 | 4 | 1 | 78.4 | |
9 | 12/10 | 14:19 | 80 | 20.5 | 0 | 1.7 | 64 | 7 | 1 | 78.6 | |
10 | 12/10 | 14:23 | 80 | 20.3 | 0 | 1 | 10 | 1 | 1 | 78.6 | |
H2_ST4 | 1 | 13/10 | 9:30 | 40 | 16.2 | 0.1 | 3.2 | 220 | 10 | 1 | 80.5 |
2 | 13/10 | 9:40 | 40 | 19.4 | 1 | 1.3 | 239 | 4 | 1 | 79.3 | |
3 | 13/10 | 9:41 | 40 | 19 | 0 | 1.2 | 22 | 2 | 1 | 79.8 | |
4 | 13/10 | 9:48 | 20 | 18.5 | 0 | 1.8 | 42 | 6 | 1 | 79.6 | |
5 | 13/10 | 9:55 | 10 | 20.6 | 0 | 0.2 | 7 | 2 | 1 | 79.3 | |
6 | 13/10 | 10:00 | 15 | 20.3 | 0 | 0.2 | 22 | 8 | 1 | 79.4 | |
7 | 13/10 | 10:04 | 15 | 20 | 0 | 0.8 | 29 | 16 | 1 | 79.3 | |
8 | 13/10 | 10:09 | 80 | 18.6 | 0 | 2.2 | 18 | 7 | 1 | 79.3 | |
9 | 13/10 | 10:16 | 25 | 20 | 0 | 0.7 | 22 | 5 | 1 | 79.3 | |
H2_ST5 | 1 | 13/10 | 10:54 | 40 | 20.3 | 0 | 0.6 | 15 | 3 | 1 | 79.1 |
2 | 13/10 | 10:59 | 40 | 18.7 | 0 | 2.6 | 10 | 3 | 1 | 78.8 | |
H2_ST6 | 1 | 13/10 | 11:12 | 40 | 20.6 | 0 | 0.5 | 29 | 5 | 1 | 79 |
2 | 13/10 | 11:16 | 25 | 20.7 | 0 | 0.2 | 12 | 1 | 1 | 79.1 | |
3 | 13/10 | 11:19 | 30 | 20.5 | 0 | 0.8 | 35 | 13 | 1 | 79 | |
H2_ST7 | 1 | 13/10 | 11:27 | 70 | 19.3 | 0 | 2.2 | 88 | 22 | 1 | 78.9 |
2 | 13/10 | 11:30 | 50 | 20.6 | 0 | 0.7 | 142 | 10 | 1 | 79 | |
H2_ST8 | 1 | 13/10 | 11:42 | 25 | 17.6 | 0 | 3.6 | 72 | 4 | 1 | 78.8 |
2 | 13/10 | 11:44 | 25 | 17.5 | 0 | 4 | 87 | 16 | 1 | 78.8 | |
3 | 13/10 | 11:47 | 40 | 19.8 | 0 | 1.7 | 90 | 7 | 1 | 78.9 | |
4 | 13/10 | 11:51 | 45 | 17.8 | 0 | 3.1 | 52 | 4 | 1 | 78.8 | |
H2_ST9 | 1 | 13/10 | 13:21 | 20 | 21.1 | 0 | 0.1 | 20 | 2 | 0 | 78.9 |
2 | 13/10 | 13:24 | 20 | 20.9 | 0 | 0.5 | 330 | 9 | 1 | 78.8 | |
3 | 13/10 | 13:28 | 30 | 20.8 | 0 | 0.5 | >1000 | 11 | 2 | 78.9 | |
4 | 13/10 | 13:36 | 40 | 20.6 | 0 | 0.7 | 22 | 3 | 1 | 78.8 | |
H2_ST10 | 1 | 13/10 | 13:59 | 25 | 21.1 | 0 | 0.1 | 50 | 15 | 1 | 78.8 |
2 | 13/10 | 14:05 | 30 | 19.2 | 0 | 1.6 | 17 | 4 | 1 | 79.2 | |
H2_ST11 | 1 | 13/10 | 14:26 | 30 | 20 | 0 | 1.4 | 72 | 8 | 1 | 78.8 |
2 | 13/10 | 14:49 | 20 | 21.1 | 0 | 0.3 | 86 | 2 | 1 | 78 | |
3 | 13/10 | 14:59 | 35 | 21.5 | 0 | 0 | 110 | 2 | 0 | 78.5 | |
H2_ST12 | 1 | 14/10 | 9:08 | 40 | 20.8 | 0.1 | 0.3 | 47 | 13 | 1 | 79 |
2 | 14/10 | 9:12 | 30 | 20.2 | 0.1 | 0.9 | 38 | 13 | 1 | 79 | |
3 | 14/10 | 9:18 | 40 | 20.7 | 0 | 0.3 | 33 | 2 | 1 | 79.1 | |
4 | 14/10 | 9:20 | 35 | 20.3 | 0 | 0.5 | 13 | 9 | 1 | 79.2 | |
H2_ST13 | 1 | 14/10 | 9:36 | 30 | 18.7 | 0.1 | 2.6 | 4 | 1 | 1 | 78.8 |
2 | 14/10 | 9:39 | 35 | 20.1 | 0 | 0.8 | 17 | 7 | 1 | 79 | |
H2_ST14 | 1 | 14/10 | 9:47 | 15 | 20.5 | 0 | 0.3 | 10 | 1 | 1 | 79.2 |
2 | 14/10 | 9:52 | 20 | 20.6 | 0 | 0.4 | 4 | 2 | 1 | 79.1 | |
3 | 14/10 | 9:54 | 30 | 19.3 | 0 | 1.1 | 4 | 1 | 1 | 79.6 | |
H2_ST15 | 1 | 14/10 | 10:30 | 35 | 16 | 0.1 | 3.2 | 77 | 10 | 1 | 81.9 |
2 | 14/10 | 10:35 | 30 | 16.6 | 0 | 2.8 | 58 | 4 | 1 | 80.4 | |
3 | 14/10 | 10:39 | 30 | 18.6 | 0 | 1.8 | 38 | 5 | 1 | 79.5 | |
4 | 14/10 | 10:39 | 30 | 12.6 | 0 | 6.9 | 74 | 5 | 1 | 80.4 | |
5 | 14/10 | 10:41 | 45 | 8 | 0 | 13.3 | 17 | 3 | 1 | 79.4 | |
6 | 14/10 | 10:49 | 35 | 20.1 | 0 | 1 | 60 | 7 | 1 | 78.9 | |
7 | 14/10 | 10:52 | 40 | 19.7 | 0 | 1.2 | 8 | 2 | 1 | 79.1 | |
H2_ST16 | 1 | 14/10 | 12:19 | 40 | 20.3 | 0.1 | 0.7 | 65 | 7 | 1 | 79 |
2 | 14/10 | 12:22 | 80 | 11.2 | 0 | 9 | 6 | 0 | 1 | 79.8 | |
3 | 14/10 | 12:25 | 70 | 20 | 0 | 0.7 | 33 | 3 | 1 | 79.1 | |
4 | 14/10 | 12:28 | 50 | 20.4 | 0 | 0.3 | 31 | 2 | 1 | 79.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo Ramirez, A.; Gonzalez Penagos, F.; Rodriguez, G.; Moretti, I. Natural H2 Emissions in Colombian Ophiolites: First Findings. Geosciences 2023, 13, 358. https://doi.org/10.3390/geosciences13120358
Carrillo Ramirez A, Gonzalez Penagos F, Rodriguez G, Moretti I. Natural H2 Emissions in Colombian Ophiolites: First Findings. Geosciences. 2023; 13(12):358. https://doi.org/10.3390/geosciences13120358
Chicago/Turabian StyleCarrillo Ramirez, Alejandra, Felipe Gonzalez Penagos, German Rodriguez, and Isabelle Moretti. 2023. "Natural H2 Emissions in Colombian Ophiolites: First Findings" Geosciences 13, no. 12: 358. https://doi.org/10.3390/geosciences13120358
APA StyleCarrillo Ramirez, A., Gonzalez Penagos, F., Rodriguez, G., & Moretti, I. (2023). Natural H2 Emissions in Colombian Ophiolites: First Findings. Geosciences, 13(12), 358. https://doi.org/10.3390/geosciences13120358