In Situ Cosmogenic 10Be Dating of Laurentide Ice Sheet Retreat from Central New England, USA
Abstract
:1. Introduction
Location | Map Code | Latitude (°N) | Longitude (°W) | Elevation (m) | Material Type | 14C Age and Uncertainty (14C yr BP) * | Calibrated Age and Uncertainty (yr BP) ** | Reference and Sample ID |
---|---|---|---|---|---|---|---|---|
Amherst, MA | APF | 42.360 | 72.510 | 43 | Terrestrial plant fragments | 12,370 ± 120 | 14,500 ± 120 | Rittenour [19], Beta-124780 |
Black Gum Swamp, MA | BGS | 42.480 | 72.167 | 357 | Bulk Sediment | 12,400 ± 80 | 14,520 ± 270 | Anderson et al. [23], AA-40809 |
Black Gum Swamp, MA | BGS | 42.480 | 72.167 | 357 | Bulk Sediment | 12,610 ± 80 | 15,000 ± 150 | Anderson et al. [23], AA-40812 |
Black Gum Swamp, MA | BGS | 42.480 | 72.167 | 357 | Bulk Sediment | 11,690 ± 140 | 13,560 ± 160 | Foster and Zebryk [24], Beta-31366 |
Black Gum Swamp, MA | BGS | 42.480 | 72.167 | 357 | Bulk Sediment | 12,240 ± 110 | 14,240 ± 380 | Anderson et al. [23], Beta-42117 |
Black Gum Swamp, MA | BGSM | 42.542 | 72.192 | 358 | Picea fragments | 12,190 ± 60 | 14,100 ± 70 | Lindbladh et al. [18], Beta-192020 |
Berry Pond, MA | BPW | 42.506 | 73.319 | 631 | Bulk Sediment | 12,680 ± 480 | 15,040 ± 750 | Whitehead [25], OWU-481 |
Davis Pond, MA | DP | 42.136 | 73.408 | 213 | Bulk Sediment | 12,500 ± 50 | 14,700 ± 210 | Newby et al. [26,27], OS-55125 |
Granby Bog, MA | GBN | 42.250 | 72.500 | 110 | Bulk Sediment | 10,300 + 370 | 12,020 ± 610 | Valastro et al. [26], TX-2946 |
Gross Bog, CT | GBS | 41.800 | 73.491 | 330 | Bulk Sediment | 12,750 ± 230 | 15,160 ± 500 | Newman et al. [28], RL-245 |
Hawley Bog, MA | HB | 42.567 | 72.883 | 549 | Bulk Sediment | 14,000 ± 130 | 17,020 ± 220 | Bender et al. [29], WIS-1122 |
Hitchcock Varve Outcrop, CT | HVO | 41.845 | 72.598 | 0 | Terrestrial plant leaves, mostly Dryas integrifolia | 14,300 ± 60 | 17,390 ± 150 | Ridge et al. [12], OS-77140 |
Ivory Pond, MA | IP | 42.117 | 73.250 | 0 | Picea glauca cones | 11,630 ± 470 | 13,640 ± 570 | Moeller [17], GX-9259 |
Little Royalston Pond, MA | LRP | 42.675 | 72.192 | 362 | Bulk Sediment | 12,910 ± 80 | 15,440 ± 130 | Oswald et al. [30], AA-58099 |
Mohawk Pond, CT | MP | 41.817 | 73.283 | 360 | Bulk Sediment | 12,460 ± 110 | 14,630 ± 300 | Steventon and Kutzbach [31], WIS-1405 |
North Pond, MA | NP | 42.650 | 73.053 | 586 | Bulk Sediment | 11,600 ± 280 | 13,500 ± 290 | Huvane and Whitehead [32], GX-4490 |
Queechy Lake, NY | QL | 42.408 | 73.417 | 311 | Bulk Sediment | 12,680 ± 200 | 15,040 ± 450 | Stuiver [33], Y-2247 |
Suffield Peat Bog, CT | SPB | 41.980 | 72.650 | 47 | Bulk Sediment | 12,200 ± 350 | 14,340 ± 540 | Rubin and Alexander [34], W-828 |
Tom Swamp, MA | TS | 42.517 | 72.217 | 232 | Vascular plant macrofossils | 12,830 ± 120 | 15,330 ± 180 | Miller [35], WIS-1210 |
Unnamed Swamp, MA | US | 42.601 | 72.215 | 212 | Bulk Sediment | 10,800 ± 250 | 12,740 ± 300 | Rubin and Alexander [36], W-361 |
Unnamed Pond, CT | USW | 41.850 | 72.700 | 0 | Salix wood fragments | 14,330 ± 430 | 174,70 ± 560 | Stone and Ashley [37], Beta-35211 |
2. Background
2.1. Geographic Setting: Connecticut River and Hudson River Valleys
2.2. In Situ Cosmogenic Nuclide Exposure Dating
2.3. Previous Work: LIS Retreat Timing in New England
2.4. Paleoclimate during LIS Retreat through New England
3. Study Sites
3.1. Connecticut River Valley, Northern Connecticut (Site 1)
3.2. Housatonic Valley, Western Massachusetts (Site 2)
3.3. Hudson River Valley Drainage Divide, Western Massachusetts (Site 3)
3.4. Connecticut River Valley, Central Massachusetts (Site 4)
4. Methods
4.1. Field Sampling
4.2. Sample Preparation and Measurement
4.3. Age Calculation
5. Results
6. Discussion
6.1. Regional Significance of Exposure Ages
6.2. Comparison to Other Regional LIS Retreat Chronologies
6.3. Possible Paleoclimate Forcings on LIS retreat
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balco, G.; Schaefer, J.M. Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England. Quat. Geochronol. 2006, 1, 15–28. [Google Scholar] [CrossRef]
- Clark, P.U.; Tarasov, L. Closing the sea level budget at the Last Glacial Maximum. Proc. Natl. Acad. Sci. USA 2014, 111, 15861–15862. [Google Scholar] [CrossRef]
- Lambeck, K.; Rouby, H.; Purcell, A.; Sun, Y.; Sambridge, M. Sea level and global ice volumes from the Last Glacial Maximum to the Holocene. Proc. Natl. Acad. Sci. USA 2014, 111, 15296–15303. [Google Scholar] [CrossRef] [PubMed]
- Stone, B.D.; Borns, H.W. Pleistocene glacial and interglacial stratigraphy of New England, Long Island, and adjacent Georges Bank and Gulf of Maine. Quat. Sci. Rev. 1986, 5, 39–52. [Google Scholar] [CrossRef]
- Dalton, A.S.; Margold, M.; Stokes, C.R.; Tarasov, L.; Dyke, A.S.; Adams, R.S.; Allard, S.; Arends, H.E.; Atkinson, N.; Attig, J.W.; et al. An updated radiocarbon-based ice margin chronology for the last deglaciation of the North American Ice Sheet Complex. Quat. Sci. Rev. 2020, 234, 106223. [Google Scholar] [CrossRef]
- Sirkin, L.; Stuckenrath, R. The Portwashingtonian warm interval in the northern Atlantic coastal plain. GSA Bull. 1980, 91, 332–336. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Stone, B.D.; Caffee, M.W.; Larsen, P.L. Cosmogenic nuclide age estimate for Laurentide Ice Sheet recession from the terminal moraine, New Jersey, USA, and constraints on latest Pleistocene ice sheet history. Quat. Res. 2017, 87, 482–498. [Google Scholar] [CrossRef]
- Stanford, S.D.; Stone, B.D.; Ridge, J.C.; Witte, R.W.; Pardi, R.R.; Reimer, G.E. Chronology of Laurentide glaciation in New Jersey and the New York City area, United States. Quat. Res. 2021, 99, 142–167. [Google Scholar] [CrossRef]
- Munroe, J.S.; Perzan, Z.M.; Amidon, W.H. Cave sediments constrain the latest Pleistocene advance of the Laurentide Ice Sheet in the Champlain Valley, Vermont, USA. J. Quat. Sci. 2016, 31, 893–904. [Google Scholar] [CrossRef]
- Halsted, C.T.; Bierman, P.R.; Shakun, J.D.; Davis, P.T.; Corbett, L.B.; Drebber, J.D.; Ridge, J.C. A Critical Re-Analysis of Constraints on the Timing and Rate of Laurentide Ice Sheet Recession in the Northeastern United States. J. Quat. Sci. 2023; in review. [Google Scholar]
- Dyke, A.S.; Moore, A.; Robertson, L. Deglaciation of North America; Geological Survey of Canada: Ottawa, ON, Canada, 2003. [Google Scholar]
- Ridge, J.C.; Balco, G.; Bayless, R.L.; Beck, C.C.; Carter, L.B.; Dean, J.L.; Voytek, E.B.; Wei, J.H. The new North American Varve Chronology: A precise record of southeastern Laurentide Ice Sheet deglaciation and climate, 18.2–12.5 kyr BP, and correlations with Greenland ice core records. Am. J. Sci. 2012, 312, 685–722. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.B.; Tierney, J.E.; Zhu, J.; Tardif, R.; Hakim, G.J.; King, J.; Poulsen, C.J. Globally resolved surface temperatures since the Last Glacial Maximum. Nature 2021, 599, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Balco, G.; Stone, J.O.; Porter, S.C.; Caffee, M.W. Cosmogenic-nuclide ages for New England coastal moraines, Martha’s Vineyard and Cape Cod, Massachusetts, USA. Quat. Sci. Rev. 2002, 21, 2127–2135. [Google Scholar] [CrossRef]
- Peteet, D.M.; Beh, M.; Orr, C.; Kurdyla, D.; Nichols, J.; Guilderson, T. Delayed deglaciation or extreme Arctic conditions 21–16 cal. kyr at southeastern Laurentide Ice Sheet margin? Geophys. Res. Lett. 2012, 39, L11706. [Google Scholar] [CrossRef] [Green Version]
- Halsted, C.T.; Bierman, P.R.; Shakun, J.D.; Davis, P.T.; Corbett, L.B.; Caffee, M.W.; Hodgdon, T.S.; Licciardi, J.M. Rapid southeastern Laurentide Ice Sheet thinning during the last deglaciation revealed by elevation profiles of in situ cosmogenic 10Be. GSA Bull. 2022, 135, 2075–2087. [Google Scholar] [CrossRef]
- Moeller, R.W. The Ivory Pond Mastodon Project. North Am. Archaeol. 1984, 5, 1–12. [Google Scholar] [CrossRef]
- Lindbladh, M.; Oswald, W.W.; Foster, D.R.; Faison, E.K.; Hou, J.; Huang, Y. A late-glacial transition from Picea glauca to Picea mariana in southern New England. Quat. Res. 2007, 67, 502–508. [Google Scholar] [CrossRef]
- Rittenour, T.M. Drainage History of Glacial Lake Hitchcock, Northeastern USA. Master’s Thesis, University of Massachusetts, Amherst, MA, USA, 1999. [Google Scholar]
- Jacobson, G.L.; Webb, T.; Grimm, E.C. Patterns and Rates of Vegetation Change during the Deglaciation of Eastern North America. In North America and Adjacent Oceans during the Last Deglaciation; Ruddiman, W.F., Wright, H.E., Jr., Eds.; Geological Society of America: Boulder, CO, USA, 1987; Volume K-3, pp. 277–288. ISBN 9780813754628. [Google Scholar]
- Davis, M.B. Climatic Changes in Southern Connecticut Recorded by Pollen Deposition at Rogers Lake. Ecology 1969, 50, 409–422. [Google Scholar] [CrossRef]
- Carlson, A.E.; Clark, P.U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 2012, 50, RG4007. [Google Scholar] [CrossRef]
- Anderson, R.L.; Foster, D.R.; Motzkin, G. Integrating lateral expansion into models of peatland development in temperate New England. J. Ecol. 2003, 91, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.R.; Zebryk, T.M. Long-Term Vegetation Dynamics and Disturbance History of a Tsuga-Dominated Forest in New England. Ecology 1993, 74, 982–998. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, D.R. Late-Glacial and Postglacial Vegetational History of the Berkshires, Western Massachusetts. Quat. Res. 1979, 12, 333–357. [Google Scholar] [CrossRef]
- Valastro, S.; Davis, E.M.; Varela, A.G.; Ekland-Olson, C. University of Texas at Austin Radiocarbon Dates XIV. Radiocarbon 1980, 22, 1090–1115. [Google Scholar] [CrossRef] [Green Version]
- Newby, P.E.; Shuman, B.N.; Donnelly, J.P.; MacDonald, D. Repeated century-scale droughts over the past 13,000 yr near the Hudson River watershed, USA. Quat. Res. 2011, 75, 523–530. [Google Scholar] [CrossRef]
- Newman, W.S. Late Quaternary Paleoenvironmental Reconstruction: Some Contradictions from Northwestern Long Island, New York. Ann. N. Y. Acad. Sci. 1977, 288, 545–570. [Google Scholar] [CrossRef]
- Bender, M.M.; Baerreis, D.A.; Bryson, R.A.; Steventon, R.L. University of Wisconsin Radiocarbon Dates XVIII. Radiocarbon 1981, 23, 145–161. [Google Scholar] [CrossRef] [Green Version]
- Oswald, W.W.; Faison, E.K.; Foster, D.R.; Doughty, E.D.; Hall, B.R.; Hansen, B.C.S. Post-glacial changes in spatial patterns of vegetation across southern New England. J. Biogeogr. 2007, 34, 900–913. [Google Scholar] [CrossRef]
- Steventon, R.L.; Kutzbach, J.E. University of Wisconsin Radiocarbon Dates XX. Radiocarbon 1983, 25, 152–168. [Google Scholar] [CrossRef] [Green Version]
- Huvane, J.K.; Whitehead, D.R. The paleolimnology of North Pond: Watershed-lake interactions. J. Paleolimnol. 1996, 16, 323–354. [Google Scholar] [CrossRef]
- Stuiver, M. Climate Versus Changes in 13C Content of the Organic Component of Lake Sediments During the Late Quarternary. Quat. Res. 1975, 5, 251–262. [Google Scholar] [CrossRef]
- Rubin, M.; Alexander, C.U.S. Geological Survey Radiocarbon Dates V. Radiocarbon 1960, 2, 129–185. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.G. Pleistocene and Holocene Floras of New England as a Framework for Interpreting Aspects of Plant Rarity. Rhodora 1989, 91, 49–69. [Google Scholar]
- Rubin, M.; Alexander, C.U.S. Geological Survey Radiocarbon Dates IV. Science 1958, 127, 1476–1487. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.R.; Ashley, G.M. Ice-Wedge Casts, Pingo Scars, and the Drainage of Glacial Lake Hitchcock; University of Massachusetts: Amherst, MA, USA, 1992. [Google Scholar]
- Lougheed, B.C.; Obrochta, S.P. MatCal: Open Source Bayesian 14C Age Calibration in Matlab. J. Open Res. Softw. 2016, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Reimer, P.J.; Austin, W.E.N.; Bard, E.; Bayliss, A.; Blackwell, P.G.; Ramsey, C.B.; Butzin, M.; Cheng, H.; Edwards, R.L.; Friedrich, M.; et al. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0–55 cal kBP). Radiocarbon 2020, 62, 725–757. [Google Scholar] [CrossRef]
- Ridge, J.C. The Quaternary glaciation of western New England with correlations to surrounding areas. Dev. Quat. Sci. 2004, 2, 169–199. [Google Scholar] [CrossRef]
- Stanley, R.S.; Hatch, N.L., Jr. The Bedrock Geology of Massachusetts—A. The Pre-Silurian Geology of the Rowe-Hawley Zone; United States Government Printing Office: Washington, DC, USA, 1988. [Google Scholar]
- Jahns, R.H. Geologic Features of the Connecticut Valley, Massachusetts as Related to Recent Floods; United States Geological Survey: Washington, DC, USA, 1947. [Google Scholar]
- Bierman, P.R.; Dethier, D.P. Lake Bascom and the Deglaciation of Northwestern Massachusetts. Northeast. Geol. 1986, 8, 32–43. [Google Scholar]
- Antevs, E. The Recession of the Last Ice Sheet in New England; No. 11.; American Geographical Society: New York, NY, USA, 1922. [Google Scholar]
- Ernst, A. The Last Glaciation, with Special Reference to the Ice Sheet in Northeastern North America; American Geographical Society: New York, NY, USA, 1928. [Google Scholar]
- Lal, D. Cosmic ray labeling of erosion surfaces: In situ nuclide production rates and erosion models. Earth Planet. Sci. Lett. 1991, 104, 424–439. [Google Scholar] [CrossRef]
- von Blanckenburg, F.; Willenbring, J. Cosmogenic Nuclides: Dates and Rates of Earth-Surface Change. Elements 2014, 10, 341–346. [Google Scholar] [CrossRef]
- Gosse, J.C.; Phillips, F.M. Terrestrial in situ cosmogenic nuclides: Theory and application. Quat. Sci. Rev. 2001, 20, 1475–1560. [Google Scholar] [CrossRef]
- Ivy-Ochs, S.; Briner, J.P. Dating Disappearing Ice with Cosmogenic Nuclides. Elements 2014, 10, 351–356. [Google Scholar] [CrossRef]
- Balco, G. Glacier Change and Paleoclimate Applications of Cosmogenic-Nuclide Exposure Dating. Annu. Rev. Earth Planet. Sci. 2020, 48, 21–48. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Wright, S.F.; Shakun, J.D.; Davis, P.T.; Goehring, B.M.; Halsted, C.T.; Koester, A.J.; Caffee, M.W.; Zimmerman, S.R. Analysis of multiple cosmogenic nuclides constrains Laurentide Ice Sheet history and process on Mt. Mansfield, Vermont’s highest peak. Quat. Sci. Rev. 2019, 205, 234–246. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Winterer, E.L.; Kohl, C.P.; Klein, J.; Middleton, R.; Lal, D.; Arnold, J.R. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks. J. Geophys. Res. 1989, 94, 17907–17915. [Google Scholar] [CrossRef]
- Balco, G. Contributions and unrealized potential contributions of cosmogenic-nuclide exposure dating to glacier chronology, 1990–2010. Quat. Sci. Rev. 2011, 30, 3–27. [Google Scholar] [CrossRef]
- Briner, J.P.; Goehring, B.M.; Mangerud, J.; Svendsen, J.I. The deep accumulation of 10Be at Utsira, southwestern Norway: Implications for cosmogenic nuclide exposure dating in peripheral ice sheet landscapes. Geophys. Res. Lett. 2016, 43, 9121–9129. [Google Scholar] [CrossRef] [Green Version]
- Putkonen, J.; Swanson, T. Accuracy of cosmogenic ages for moraines. Quat. Res. 2003, 59, 255–261. [Google Scholar] [CrossRef]
- Hitchcock, E.; Hitchcock, E., Jr.; Hager, A.D.; Hitchcock, C.H. Report on the Geology of Vermont: Descriptive, Theoretical, Economical, and Scenographical; Claremont Manufacturing Company: Claremont, NH, USA, 1861; Volume I. [Google Scholar]
- Hitchcock, E. Final Report on the Geology of Masachusetts: Vol. 1; Columbia University Library: New York, NY, USA, 1841. [Google Scholar]
- Emerson, B.K. Geology of Old Hampshire County, Massachusetts Comprising Franklin, Hampshire, and Hampden Counties; United States Government Printing Office: Washington, DC, USA, 1898. [Google Scholar]
- Goldthwait, J.W. The Sand Plains of Glacial Lake Sudbury. Bull. Mus. Comp. Zool. 1905, 42, 263–301. [Google Scholar]
- Bryson, R.A.; Wendland, W.M.; Ives, J.D.; Andrews, J.T. Radiocarbon Isochrones on the Disintegration of the Laurentide Ice Sheet. Arct. Alp. Res. 1969, 1, 1–13. [Google Scholar] [CrossRef]
- Grimm, E.C.; Maher, L.J.; Nelson, D.M. The magnitude of error in conventional bulk-sediment radiocarbon dates from central North America. Quat. Res. 2009, 72, 301–308. [Google Scholar] [CrossRef]
- Bromley, G.R.; Hall, B.L.; Thompson, W.B.; Kaplan, M.R.; Garcia, J.L.; Schaefer, J.M. Late glacial fluctuations of the Laurentide Ice Sheet in the White Mountains of Maine and New Hampshire, U.S.A. Quat. Res. 2015, 83, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.L.; Borns, H.W.; Bromley, G.R.; Lowell, T.V. Age of the Pineo Ridge System: Implications for behavior of the Laurentide Ice Sheet in eastern Maine, U.S.A., during the last deglaciation. Quat. Sci. Rev. 2017, 169, 344–356. [Google Scholar] [CrossRef]
- Koester, A.J.; Shakun, J.D.; Bierman, P.R.; Davis, P.T.; Corbett, L.B.; Braun, D.; Zimmerman, S.R. Rapid thinning of the Laurentide Ice Sheet in coastal Maine, USA, during late Heinrich Stadial 1. Quat. Sci. Rev. 2017, 163, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Laskar, J.; Fienga, A.; Gastineau, M.; Manche, H. La2010: A new orbital solution for the long-term motion of the Earth. Astron. Astrophys. 2011, 532, A89. [Google Scholar] [CrossRef] [Green Version]
- Ullman, D.J.; Carlson, A.E.; LeGrande, A.N.; Anslow, F.S.; Moore, A.K.; Caffee, M.; Syverson, K.M.; Licciardi, J.M. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology 2015, 43, 23–26. [Google Scholar] [CrossRef] [Green Version]
- McManus, J.F.; Francois, R.; Gherardi, J.-M.; Keigwin, L.D.; Brown-Leger, S. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 2004, 428, 834–837. [Google Scholar] [CrossRef]
- Shakun, J.D.; Clark, P.U.; He, F.; Marcott, S.A.; Mix, A.C.; Liu, Z.; Otto-Bliesner, B.; Schmittner, A.; Bard, E. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 2012, 484, 49–54. [Google Scholar] [CrossRef]
- Simpson, H.E. Bedrock Geology of the Bristol Quadrangle, Hartford Litchfield, and New Haven Counties, Connecticut; US Geological Survey Bulletin: Reston, VA, USA, 1990. [Google Scholar]
- Kelley, G.C.; Newman, W.S. Boulder Trains in Western Massachusetts—Revisited; NEIGC Trips: New York, NY, USA, 1975. [Google Scholar]
- Zen, E.; Goldsmith, R.; Ratcliffe, N.M.; Robinson, P.; Stanley, R.S.; Hatch, N.L.; Shride, A.F.; Weed, E.G.A.; Wones, D.R. Bedrock Geologic Map of Massachusetts; US Geological Survey: Reston, VA, USA, 1983. [Google Scholar]
- Balco, G.; Stone, J.O.; Lifton, N.A.; Dunai, T.J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 2008, 3, 174–195. [Google Scholar] [CrossRef]
- Kohl, C.; Nishiizumi, K. Chemical isolation of quartz for measurement of in-situ -produced cosmogenic nuclides. Geochim. Cosmochim. Acta 1992, 56, 3583–3587. [Google Scholar] [CrossRef]
- Corbett, L.B.; Bierman, P.R.; Rood, D.H. An approach for optimizing in situ cosmogenic 10Be sample preparation. Quat. Geochronol. 2016, 33, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Corbett, L.B.; Bierman, P.R.; Woodruff, T.E.; Caffee, M.W. A homogeneous liquid reference material for monitoring the quality and reproducibility of in situ cosmogenic 10Be and 26Al analyses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 456, 180–185. [Google Scholar] [CrossRef]
- Nishiizumi, K.; Imamura, M.; Caffee, M.W.; Southon, J.R.; Finkel, R.C.; McAninch, J. Absolute calibration of 10Be AMS standards. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2007, 258, 403–413. [Google Scholar] [CrossRef]
- Borchers, B.; Marrero, S.; Balco, G.; Caffee, M.; Goehring, B.; Lifton, N.; Nishiizumi, K.; Phillips, F.; Schaefer, J.; Stone, J. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 2015, 31, 188–198. [Google Scholar] [CrossRef] [Green Version]
- Lifton, N.; Sato, T.; Dunai, T.J. Scaling in situ cosmogenic nuclide production rates using analytical approximations to atmospheric cosmic-ray fluxes. Earth Planet. Sci. Lett. 2014, 386, 149–160. [Google Scholar] [CrossRef]
- Balco, G.; Briner, J.; Finkel, R.C.; Rayburn, J.A.; Ridge, J.C.; Schaefer, J.M. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quat. Geochronol. 2009, 4, 93–107. [Google Scholar] [CrossRef]
- Jones, R.; Small, D.; Cahill, N.; Bentley, M.; Whitehouse, P. iceTEA: Tools for plotting and analysing cosmogenic-nuclide surface-exposure data from former ice margins. Quat. Geochronol. 2019, 51, 72–86. [Google Scholar] [CrossRef]
- Thompson, W.B.; Dorion, C.C.; Ridge, J.C.; Balco, G.; Fowler, B.K.; Svendsen, K.M. Deglaciation and late-glacial climate change in the White Mountains, New Hampshire, USA. Quat. Res. 2017, 87, 96–120. [Google Scholar] [CrossRef]
- Bromley, G.R.; Hall, B.L.; Thompson, W.B.; Lowell, T.V. Age of the Berlin moraine complex, New Hampshire, USA, and implications for ice sheet dynamics and climate during Termination 1. Quat. Res. 2020, 94, 80–93. [Google Scholar] [CrossRef]
- Koester, A.J.; Shakun, J.D.; Bierman, P.R.; Davis, P.T.; Corbett, L.B.; Goehring, B.M.; Vickers, A.C.; Zimmerman, S.R. Laurentide Ice Sheet Thinning and Erosive Regimes at Mount Washington, New Hampshire, Inferred from Multiple Cosmogenic Nuclides. In Untangling the Quaternary Period—A Legacy of Stephen C. Porter: Geological Society of America Special Paper 548; Geological Society of America: Boulder, CO, USA, 2021; Volume 548, pp. 299–314. [Google Scholar]
- Johnson, K.M.; Ouimet, W.B. Physical properties and spatial controls of stone walls in the northeastern USA: Implications for Anthropocene studies of 17th to early 20th century agriculture. Anthropocene 2016, 15, 22–36. [Google Scholar] [CrossRef]
Sample Name | Type | Site | Drainage Basin | Latitude (°N) * | Longitude (°W) * | Elevation (m a.s.l.) * | Sample Thickness (cm) ** | Shielding Factor † | Rock Type | Boulder Dimensions (m) †† |
---|---|---|---|---|---|---|---|---|---|---|
JSD-21-01 | Bedrock | 1 | Connecticut | 41.94922 | 72.84601 | 181 | 2.5 | 0.999 | Schist | N/A |
JSD-21-02 | Boulder | 1 | Connecticut | 41.95058 | 72.84819 | 199 | 4.0 | 0.981 | Schist | 2 × 0.75 × 1.25 |
JSD-21-03 | Bedrock | 1 | Connecticut | 41.95093 | 72.84751 | 210 | 2.5 | 1.000 | Schist | N/A |
JSD-21-04 | Boulder | 1 | Connecticut | 41.95080 | 72.84513 | 155 | 4.0 | 0.902 | Granite | 2.2 × 1.5 × 1.5 |
JSD-21-05 | Boulder | 2 | Hudson | 42.20230 | 73.36130 | 281 | 1.0 | 1.000 | Quartz Vein | 4 × 2 × 0.75 |
JSD-21-06 | Bedrock | 3 | Hudson | 42.41372 | 73.37952 | 582 | 3.0 | 0.996 | Phyllite | N/A |
JSD-21-07 | Boulder | 3 | Hudson | 42.41576 | 73.38173 | 581 | 3.0 | 0.997 | Quartz Vein | 2.5 × 2 × 2.25 |
JSD-21-08 | Boulder | 3 | Hudson | 42.41084 | 73.37003 | 495 | 1.5 | 0.997 | Phyllite | 2.25 × 1.25 × 1 |
JSD-21-09 | Boulder | 3 | Hudson | 42.40790 | 73.37010 | 463 | 5.5 | 0.948 | Quartz Vein | 1 × 0.5 × 0.75 |
JSD-21-10 | Boulder | 4 | Connecticut | 42.45786 | 72.41156 | 374 | 4.0 | 0.999 | Gneiss | 2.5 d × 2 × 1.5 |
JSD-21-11 | Boulder | 4 | Connecticut | 42.45801 | 72.41139 | 374 | 3.0 | 0.991 | Gneiss | 2 × 1.5 × 1.5 |
JSD-21-12 | Boulder | 4 | Connecticut | 42.45805 | 72.41141 | 371 | 1.5 | 0.999 | Gneiss | 3 × 1.75 × 1 |
JSD-21-13 | Boulder | 4 | Connecticut | 42.45845 | 72.41609 | 348 | 1.0 | 0.996 | Gneiss | 2.75 × 1.25 × 2 |
JSD-21-14 | Boulder | 4 | Connecticut | 42.45902 | 72.41552 | 354 | 2.0 | 0.997 | Gneiss | 2 × 1 × 1 |
Sample Name | Quartz Mass (g) | Mass of 9Be Added (μg) * | AMS Cathode Number | Measured 10Be/9Be Ratio ** | Measured 10Be/9Be Ratio Uncertainty ** | Background-Corrected 10Be/9Be Ratio † | Background-Corrected 10Be/9Be Ratio Uncertainty † | 10Be Concentration (104 atoms g−1) | 10Be Concentration Uncertainty (103 atoms g−1) |
---|---|---|---|---|---|---|---|---|---|
JSD-21-01 | 21.118 | 250.5 | 163707 | 1.01 × 10−13 | 5.54 × 10−15 | 9.79 × 10−14 | 5.59 × 10−15 | 7.76 | 4.43 |
JSD-21-02 | 21.082 | 250.6 | 163708 | 9.90 × 10−14 | 4.70 × 10−15 | 9.56 × 10−14 | 4.75 × 10−15 | 7.59 | 3.77 |
JSD-21-03 | 20.911 | 250.2 | 163709 | 1.06 × 10−13 | 7.27 × 10−15 | 1.02 × 10−13 | 7.31 × 10−15 | 8.17 | 5.84 |
JSD-21-04 | 20.911 | 250.5 | 163710 | 1.10 × 10−13 | 4.67 × 10−15 | 1.06 × 10−13 | 4.72 × 10−15 | 8.51 | 3.77 |
JSD-21-05 | 17.477 | 249.4 | 163711 | 6.56 × 10−14 | 3.15 × 10−15 | 6.22 × 10−14 | 3.22 × 10−15 | 5.93 | 3.07 |
JSD-21-06 | 20.702 | 249.6 | 163712 | 1.21 × 10−13 | 4.38 × 10−15 | 1.17 × 10−13 | 4.43 × 10−15 | 9.46 | 3.57 |
JSD-21-07 | 20.818 | 249.9 | 163713 | 1.18 × 10−13 | 4.27 × 10−15 | 1.15 × 10−13 | 4.33 × 10−15 | 9.21 | 3.47 |
JSD-21-08 | 21.003 | 250.2 | 163715 | 5.19 × 10−14 | 3.71 × 10−15 | 4.85 × 10−14 | 3.78 × 10−15 | 3.86 | 3.01 |
JSD-21-09 | 21.040 | 250.5 | 163716 | 5.92 × 10−14 | 3.34 × 10−15 | 5.58 × 10−14 | 3.41 × 10−15 | 4.44 | 2.71 |
JSD-21-10 | 20.900 | 249.9 | 163717 | 1.22 × 10−13 | 5.32 × 10−15 | 1.18 × 10−13 | 5.36 × 10−15 | 9.46 | 4.28 |
JSD-21-11 | 20.877 | 249.2 | 163718 | 1.11 × 10−13 | 4.13 × 10−15 | 1.08 × 10−13 | 4.19 × 10−15 | 8.59 | 3.34 |
JSD-21-12 | 21.012 | 251.2 | 163719 | 1.21 × 10−13 | 4.36 × 10−15 | 1.18 × 10−13 | 4.42 × 10−15 | 9.41 | 3.53 |
JSD-21-13 | 20.971 | 250.2 | 163720 | 1.04 × 10−13 | 3.76 × 10−15 | 1.01 × 10−13 | 3.82 × 10−15 | 8.03 | 3.05 |
JSD-21-14 | 20.905 | 249.8 | 163721 | 1.16 × 10−13 | 5.28 × 10−15 | 1.12 × 10−13 | 5.33 × 10−15 | 8.97 | 4.25 |
Sample Name * | Type | Site | 10Be Exposure Age (ka) † | 10Be Internal Uncertainty (ka) | 10Be External Uncertainty (ka) |
---|---|---|---|---|---|
JSD-21-01 | Bedrock | 1 | 18.1 | 1.0 | 1.5 |
JSD-21-02 | Boulder | 1 | 18.0 | 0.9 | 1.4 |
JSD-21-03 | Bedrock | 1 | 18.5 | 1.3 | 1.7 |
JSD-21-04 | Boulder | 1 | 22.4 | 1.0 | 1.7 |
JSD-21-05 | Boulder | 2 | 12.5 | 0.7 | 1.0 |
JSD-21-06 | Bedrock | 3 | 15.4 | 0.6 | 1.1 |
JSD-21-07 | Boulder | 3 | 15.0 | 0.6 | 1.1 |
JSD-21-08 | Boulder | 3 | 6.7 | 0.5 | 0.7 |
JSD-21-09 | Boulder | 3 | 8.5 | 0.5 | 0.7 |
JSD-21-10 | Boulder | 4 | 18.4 | 0.8 | 1.4 |
JSD-21-11 | Boulder | 4 | 16.8 | 0.7 | 1.2 |
JSD-21-12 | Boulder | 4 | 18.1 | 0.7 | 1.3 |
JSD-21-13 | Boulder | 4 | 15.8 | 0.6 | 1.1 |
JSD-21-14 | Boulder | 4 | 17.6 | 0.8 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drebber, J.S.; Halsted, C.T.; Corbett, L.B.; Bierman, P.R.; Caffee, M.W. In Situ Cosmogenic 10Be Dating of Laurentide Ice Sheet Retreat from Central New England, USA. Geosciences 2023, 13, 213. https://doi.org/10.3390/geosciences13070213
Drebber JS, Halsted CT, Corbett LB, Bierman PR, Caffee MW. In Situ Cosmogenic 10Be Dating of Laurentide Ice Sheet Retreat from Central New England, USA. Geosciences. 2023; 13(7):213. https://doi.org/10.3390/geosciences13070213
Chicago/Turabian StyleDrebber, Jason S., Christopher T. Halsted, Lee B. Corbett, Paul R. Bierman, and Marc W. Caffee. 2023. "In Situ Cosmogenic 10Be Dating of Laurentide Ice Sheet Retreat from Central New England, USA" Geosciences 13, no. 7: 213. https://doi.org/10.3390/geosciences13070213
APA StyleDrebber, J. S., Halsted, C. T., Corbett, L. B., Bierman, P. R., & Caffee, M. W. (2023). In Situ Cosmogenic 10Be Dating of Laurentide Ice Sheet Retreat from Central New England, USA. Geosciences, 13(7), 213. https://doi.org/10.3390/geosciences13070213