Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence
Abstract
:1. Introduction
2. Geological Setting and Stratigraphic Overview
3. Data and Methods
3.1. Petrography
3.2. Zircon Imaging
3.3. U-Pb Detrital Zircon Dating
4. Results
4.1. Sandstone Petrography
4.1.1. Dunghan Formation (~66–56 Ma)
4.1.2. Ghazij Formation (~56–48 Ma)
4.2. U-Pb Zircon Geochronology
4.2.1. Dunghan Formation (66–56 Ma)
4.2.2. Ghazij Formation (~56–48 Ma)
4.3. Th/U Ratio
5. Discussion
5.1. U-Pb Ages and Source Terranes
5.2. Provenance of the Cenozoic Sequence
5.2.1. Dunghan Formation
5.2.2. Ghazij Formation
5.3. Implications for the Timing of India–Asia Collision
5.4. Tectonic Evolution
6. Conclusions
- The integrated provenance of the Paleocene Dunghan Formation suggests that the sediment input was mainly derived from the Indian source, as supported by the zircon age pattern consisting of ~453–1100 Ma and ~1600–2600 Ma, which are indicative of the TH, LH, and HH;
- The samples of the Ghazij Formation representing the lower and middle parts consisted of the detrital zircons with ages clustered at ~272–300 Ma, ~400–1100 Ma, and ~1600–2600 Ma are similar to TH, HH, and LH, which also suggest the Indian provenance. However, the sample representing the uppermost part of the Ghazij Formation received the residue from the KLA, which is reflected by <100 Ma detrital zircons. This transition from Indian to Asian provenance occurred during the deposition of the upper part of the Ghazij Formation;
- Relying on the sediment mixing of Indian and Asian affinity suggests the timing of the India–Asia collision occurred along the western margin by ca. 50–48 Ma, which is the age of the uppermost part of the Ghazij Formation;
- Considering the proposed collision age, it can be concluded that the western margin of the Indian plate closed later than the northern and central segments.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Bortolotti, V.; Principi, G. Tethyan ophiolites and Pangea break-up. Isl. Arc. 2005, 14, 442–470. [Google Scholar] [CrossRef]
- Chatterjee, S.; Goswami, A.; Scotese, C.R. The longest voyage: Tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res. 2013, 23, 238–267. [Google Scholar] [CrossRef]
- Awais, M.; Qasim, M.; Tanoli, J.I.; Ding, L.; Sattar, M.; Baig, M.S.; Pervaiz, S. Detrital Zircon Provenance of the Cenozoic Sequence, Kotli, Northwestern Himalaya, Pakistan; Implications for India–Asia Collision. Minerals 2021, 11, 1399. [Google Scholar] [CrossRef]
- Ding, L.; Kapp, P.; Wan, X. Paleocene–Eocene record of ophiolite obduction and initial India-Asia collision, south central Tibet. Tectonics 2005, 24, TC3001. [Google Scholar] [CrossRef]
- Garzanti, E.; Hu, X. Latest Cretaceous Himalayan tectonics: Obduction, collision or Deccan-related uplift? Gondwana Res. 2015, 28, 165–178. [Google Scholar] [CrossRef]
- Searle, M.; Treloar, P. Was Late Cretaceous–Paleocene obduction of ophiolite complexes the primary cause of crustal thickening and regional metamorphism in the Pakistan Himalaya? Geol. Soc. London Spec. Publ. 2010, 338, 345–359. [Google Scholar] [CrossRef]
- Cai, F.; Ding, L.; Yue, Y. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India–Asia collision. Earth Planet. Sci. Lett. 2011, 305, 195–206. [Google Scholar] [CrossRef]
- Ding, L.; Qasim, M.; Jadoon, I.A.K.; Khan, M.A.; Xu, Q.; Cai, F.; Wang, H.; Baral, U.; Yue, Y. The India–Asia collision in north Pakistan: Insight from the U–Pb detrital zircon provenance of Cenozoic foreland basin. Earth Planet. Sci. Lett. 2016, 455, 49–61. [Google Scholar] [CrossRef]
- Hu, X.; Garzanti, E.; Moore, T.; Raffi, I. Direct stratigraphic dating of India-Asia collision onset at the Selandian (middle Paleocene, 59 ± 1 Ma). Geology 2015, 43, 859–862. [Google Scholar] [CrossRef]
- Hu, X.; Wang, J.; An, W.; Garzanti, E.; Li, J. Constraining the timing of the India-Asia continental collision by the sedimentary record. Sci. China Earth Sci. 2017, 60, 603–625. [Google Scholar] [CrossRef]
- Baral, U.; Lin, D.; Chamlagain, D.; Qasim, M.; Paudayal, K.N.; Neupane, B. Detrital zircon U–Pb ages, Hf isotopic constraints, and trace element analysis of Upper Cretaceous–Neogene sedimentary units in the Western Nepal Himalaya: Implications for provenance changes and India–Asia collision. Geol. J. 2019, 54, 120–132. [Google Scholar] [CrossRef]
- DeCelles, P.; Kapp, P.; Gehrels, G.; Ding, L. Paleocene-Eocene foreland basin evolution in the Himalaya of southern Tibet and Nepal: Implications for the age of initial India-Asia collision. Tectonics 2014, 33, 824–849. [Google Scholar] [CrossRef]
- Leech, M.L.; Singh, S.; Jain, A.; Klemperer, S.L.; Manickavasagam, R. The onset of India–Asia continental collision: Early, steep subduction required by the timing of UHP metamorphism in the western Himalaya. Earth Planet. Sci. Lett. 2005, 234, 83–97. [Google Scholar] [CrossRef]
- Qasim, M.; Ding, L.; Khan, M.A.; Jadoon, I.A.K.; Haneef, M.; Baral, U.; Cai, F.; Wang, H.; Yue, Y. Tectonic Implications of Detrital Zircon Ages From Lesser Himalayan Mesozoic-Cenozoic Strata, Pakistan. Geochem. Geophys. Geosystems 2018, 19, 1636–1659. [Google Scholar] [CrossRef]
- Wilke, F.D.; O’Brien, P.J.; Altenberger, U.; Konrad-Schmolke, M.; Khan, M.A. Multi-stage reaction history in different eclogite types from the Pakistan Himalaya and implications for exhumation processes. Lithos 2010, 114, 70–85. [Google Scholar] [CrossRef]
- Jadoon, U.F.; Huang, B.; Shah, S.A.; Rahim, Y.; Khan, A.A.; Bibi, A. Multi-stage India-Asia collision: Paleomagnetic constraints from Hazara-Kashmir syntaxis in the western Himalaya. GSA Bull. 2021, 134, 1109–1128. [Google Scholar] [CrossRef]
- Zhang, D.; Ding, L.; Chen, Y.; Schertl, H.-P.; Qasim, M.; Jadoon, U.K.; Wang, H.; Li, J.; Zhang, L.; Yue, Y.; et al. Two Contrasting Exhumation Scenarios of Deeply Subducted Continental Crust in North Pakistan. Geochem. Geophys. Geosystems 2022, 23, e2021GC010193. [Google Scholar] [CrossRef]
- Huang, W.; Hinsbergen, D.J.; Lippert, P.C.; Guo, Z.; Dupont-Nivet, G. Paleomagnetic tests of tectonic reconstructions of the India-Asia collision zone. Geophys. Res. Lett. 2015, 42, 2642–2649. [Google Scholar] [CrossRef]
- Lippert, P.; Van Hinsbergen, D.; Dupont-Nivet, G.; Kapp, P. Consensus on the Eocene Latitude of Lhasa and the Age of the Tethyan Himalaya-Asia Collision? In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–17 December 2010; p. 3. [Google Scholar]
- Najman, Y.; Pringle, M.; Godin, L.; Oliver, G. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 2001, 410, 194–197. [Google Scholar] [CrossRef]
- Khan, S.D.; Walker, D.J.; Hall, S.A.; Burke, K.C.; Shah, M.T.; Stockli, L. Did the Kohistan-Ladakh island arc collide first with India? Geol. Soc. Am. Bull. 2009, 121, 366–384. [Google Scholar] [CrossRef]
- van Hinsbergen, D.J.; Steinberger, B.; Doubrovine, P.V.; Gassmöller, R. Acceleration and deceleration of India-Asia convergence since the Cretaceous: Roles of mantle plumes and continental collision. J. Geophys. Res. Solid Earth 2011, 116, B06101. [Google Scholar]
- van Hinsbergen, D.J.J.; Lippert, P.C.; Li, S.; Huang, W.; Advokaat, E.L.; Spakman, W. Reconstructing Greater India: Paleogeographic, kinematic, and geodynamic perspectives. Tectonophysics 2019, 760, 69–94. [Google Scholar] [CrossRef]
- Searle, M.; Khan, M.A.; Fraser, J.; Gough, S.; Jan, M.Q. The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transect, north Pakistan. Tectonics 1999, 18, 929–949. [Google Scholar] [CrossRef]
- Bouilhol, P.; Jagoutz, O.; Hanchar, J.M.; Dudas, F.O. Dating the India–Eurasia collision through arc magmatic records. Earth Planet. Sci. Lett. 2013, 366, 163–175. [Google Scholar] [CrossRef]
- An, W.; Hu, X.; Garzanti, E.; Wang, J.-G.; Liu, Q. New Precise Dating of the India-Asia Collision in the Tibetan Himalaya at 61 Ma. Geophys. Res. Lett. 2021, 48, e2020GL090641. [Google Scholar] [CrossRef]
- Jadoon, I.A.K.; Lawrence, R.D.; Lillie, R.J. Seismic Data, Geometry, Evolution, and Shortening in the Active Sulaiman Fold- and-Thrust Belt of Pakistan, Southwest of the Himalayas1. AAPG Bull. 1994, 78, 758–774. [Google Scholar] [CrossRef]
- Jadoon, I.A.K.; Ding, L.; Nazir, J.; Idrees, M.; Jadoon, S.-u.-R.K. Structural interpretation of frontal folds and hydrocarbon exploration, western sulaiman fold belt, Pakistan. Mar. Pet. Geol. 2020, 117, 104380. [Google Scholar] [CrossRef]
- Banks, C.J.; Warburton, J. ‘Passive-roof’ duplex geometry in the frontal structures of the Kirthar and Sulaiman mountain belts, Pakistan. J. Struct. Geol. 1986, 8, 229–237. [Google Scholar] [CrossRef]
- Beck, R.A.; Burbank, D.W.; Sercombe, W.J.; Riley, G.W.; Barndt, J.K.; Berry, J.R.; Afzal, J.; Khan, A.M.; Jurgen, H.; Metje, J. Stratigraphic evidence for an early collision between northwest India and Asia. Nature 1995, 373, 55–58. [Google Scholar] [CrossRef]
- Jadoon, I.; Zaib, M. Tectonic Map of Sulaiman Fold Belt: 1: 500,000 Scale; COMSATS University Islamabad (Abbottabad Campus): Abbottabad, Pakistan, 2018. [Google Scholar]
- Zhuang, G.; Najman, Y.; Guillot, S.; Roddaz, M.; Antoine, P.-O.; Métais, G.; Carter, A.; Marivaux, L.; Solangi, S.H. Constraints on the collision and the pre-collision tectonic configuration between India and Asia from detrital geochronology, thermochronology, and geochemistry studies in the lower Indus basin, Pakistan. Earth Planet. Sci. Lett. 2015, 432, 363–373. [Google Scholar] [CrossRef]
- Qasim, M.; Tabassum, K.; Ding, L.; Tanoli, J.I.; Awais, M.; Baral, U. Provenance of the Late Cretaceous Pab Formation, Sulaiman fold-thrust belt, Pakistan: Insight from the detrital zircon U–Pb geochronology and sandstone petrography. Geol. J. 2022, 57, 4439–4450. [Google Scholar] [CrossRef]
- Chen, Y.; Ding, L.; Li, Z.; Laskowski, A.K.; Li, J.; Baral, U.; Qasim, M.; Yue, Y. Provenance analysis of Cretaceous peripheral foreland basin in central Tibet: Implications to precise timing on the initial Lhasa-Qiangtang collision. Tectonophysics 2020, 775, 228311. [Google Scholar] [CrossRef]
- Coward, M.P.; Rex, D.C.; Khan, M.A.; Windley, B.F.; Broughton, R.D.; Luff, I.W.; Petterson, M.G.; Pudsey, C.J. Collision tectonics in the NW Himalayas. Geol. Soc. London Spec. Publ. 1986, 19, 203–219. [Google Scholar] [CrossRef]
- Kakar, M.I.; Kerr, A.C.; Mahmood, K.; Collins, A.S.; Khan, M.; McDonald, I. Supra-subduction zone tectonic setting of the Muslim Bagh Ophiolite, northwestern Pakistan: Insights from geochemistry and petrology. Lithos 2014, 202–203, 190–206. [Google Scholar] [CrossRef]
- Barbero, E.; Di Rosa, M.; Pandolfi, L.; Delavari, M.; Dolati, A.; Zaccarini, F.; Saccani, E.; Marroni, M. Deformation history and processes during accretion of seamounts in subduction zones: The example of the Durkan Complex (Makran, SE Iran). Geosci. Front. 2023, 14, 101522. [Google Scholar] [CrossRef]
- Raynolds, R.G.H.; Johnson, G.D. Rate of Neogene depositional and deformational processes, north-west Himalayan foredeep margin, Pakistan. Geol. Soc. London Memoirs 1985, 10, 297–311. [Google Scholar] [CrossRef]
- Quittmeyer, R.C.; Kafka, A.L.; Armbruster, J.G. Focal mechanisms and depths of earthquakes in central Pakistan: A tectonic interpretation. J. Geophys. Res. Solid Earth 1984, 89, 2459–2470. [Google Scholar] [CrossRef]
- Khan, I.H.; Clyde, W.C. Lower Paleogene Tectonostratigraphy of Balochistan: Evidence for Time-Transgressive Late Paleocene-Early Eocene Uplift. Geosciences 2013, 3, 466–501. [Google Scholar] [CrossRef]
- Shah, S. Stratigraphy of Pakistan: Geological Survey of Pakistan Memoir 22; GSP: Quetta, Pakistan, 2009. [Google Scholar]
- Dickinson, W.R. Interpreting provenance relations from detrital modes of sandstones. In Provenance of Arenites; Springer: Berlin/Heidelberg, Germany, 1985; pp. 333–361. [Google Scholar]
- Ingersoll, R.V.; Fullard, T.F.; Ford, R.L.; Grimm, J.P.; Pickle, J.D.; Sares, S.W. The effect of grain size on detrital modes; a test of the Gazzi-Dickinson point-counting method. J. Sediment. Res. 1984, 54, 103–116. [Google Scholar]
- Corfu, F.; Hanchar, J.M.; Hoskin, P.W.O.; Kinny, P. Atlas of Zircon Textures. Rev. Mineral. Geochem. 2003, 53, 469–500. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon trace element geochemistry: Partitioning with garnet and the link between U–Pb ages and metamorphism. Chem. Geol. 2002, 184, 123–138. [Google Scholar] [CrossRef]
- Rosa, M.D.; Farina, F.; Marroni, M.; Jeon, H.; Pandolfi, L. U–Pb ages from felsic rocks of the External Ligurian sedimentary mélange (Northern Apennine, Italy): Tracing the pre-Jurassic history of the hyperextended Adria continental margin. J. Geol. Soc. 2024, 181, jgs2023-2121. [Google Scholar] [CrossRef]
- Jackson, S.E.; Pearson, N.J.; Griffin, W.L.; Belousova, E.A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chem. Geol. 2004, 211, 47–69. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Allé, P.; Corfu, F.; Griffin, W.L.; Meier, M.; Oberli, F.; Quadt, A.V.; Roddick, J.C.; Spiegel, W. Three natural zircon standards for u-th-pb, lu-hf, trace element and ree analyses. Geostand. Newsl. 1995, 19, 1–23. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.00, a geochronlogical toolkit for microsoft excel. Berkeley Geochronol. Center Spec. Publ. 2003, 4, 25–32. [Google Scholar]
- Fornelli, A.; Gallicchio, S.; Micheletti, F.; Langone, A. U–Pb detrital zircon ages from Gorgoglione Flysch sandstones in Southern Apennines (Italy) as provenance indicators. Geol. Mag. 2021, 158, 859–874. [Google Scholar] [CrossRef]
- Myrow, P.; Hughes, N.; Paulsen, T.; Williams, I.; Parcha, S.; Thompson, K.; Bowring, S.; Peng, S.-C.; Ahluwalia, A. Integrated tectonostratigraphic analysis of the Himalaya and implications for its tectonic reconstruction. Earth Planet. Sci. Lett. 2003, 212, 433–441. [Google Scholar] [CrossRef]
- Ravikant, V.; Wu, F.-Y.; Ji, W.-Q. U–Pb age and Hf isotopic constraints of detrital zircons from the Himalayan foreland Subathu sub-basin on the Tertiary palaeogeography of the Himalaya. Earth Planet. Sci. Lett. 2011, 304, 356–368. [Google Scholar] [CrossRef]
- Gehrels, G.; Kapp, P.; DeCelles, P.; Pullen, A.; Blakey, R.; Weislogel, A.; Ding, L.; Guynn, J.; Martin, A.; McQuarrie, N. Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics 2011, 30, TC5016. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; McKenzie, N.R. Reconstructing the Himalayan margin prior to collision with Asia: Proterozoic and lower Paleozoic geology and its implications for Cenozoic tectonics. Geol. Soc. London Spec. Publ. 2019, 483, 39–64. [Google Scholar] [CrossRef]
- McKenzie, N.R.; Hughes, N.C.; Myrow, P.M.; Banerjee, D.M.; Deb, M.; Planavsky, N.J. New age constraints for the Proterozoic Aravalli–Delhi successions of India and their implications. Precambrian Res. 2013, 238, 120–128. [Google Scholar] [CrossRef]
- DeCelles, P.G.; Gehrels, G.E.; Quade, J.; LaReau, B.; Spurlin, M. Tectonic Implications of U-Pb Zircon Ages of the Himalayan Orogenic Belt in Nepal. Science 2000, 288, 497–499. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Wang, J.; BouDagher-Fadel, M.; Garzanti, E.; An, W. New insights into the timing of the India–Asia collision from the Paleogene Quxia and Jialazi formations of the Xigaze forearc basin, South Tibet. Gondwana Res. 2015, 32, 76–92. [Google Scholar] [CrossRef]
- Saylor, J.E.; Sundell, K.E. Quantifying comparison of large detrital geochronology data sets. Geosphere 2016, 12, 203–220. [Google Scholar] [CrossRef]
- Myrow, P.M.; Hughes, N.C.; Derry, L.A.; Ryan McKenzie, N.; Jiang, G.; Webb, A.A.G.; Banerjee, D.M.; Paulsen, T.S.; Singh, B.P. Neogene marine isotopic evolution and the erosion of Lesser Himalayan strata: Implications for Cenozoic tectonic history. Earth Planet. Sci. Lett. 2015, 417, 142–150. [Google Scholar] [CrossRef]
- Roddaz, M.; Said, A.; Guillot, S.; Antoine, P.-O.; Montel, J.-M.; Martin, F.; Darrozes, J. Provenance of Cenozoic sedimentary rocks from the Sulaiman fold and thrust belt, Pakistan: Implications for the palaeogeography of the Indus drainage system. J. Geol. Soc. 2011, 168, 499–516. [Google Scholar] [CrossRef]
- Najman, Y.; Sobel, E.R.; Millar, I.; Luan, X.; Zapata, S.; Garzanti, E.; Parra, M.; Vezzoli, G.; Zhang, P.; Wa Aung, D.; et al. The Timing of Collision Between Asia and the West Burma Terrane, and the Development of the Indo-Burman Ranges. Tectonics 2022, 41, e2021TC007057. [Google Scholar] [CrossRef]
- Qasim, M.; Rehman, Z.U.; Ding, L.; Tanoli, J.I.; Abbas, W.; Jamil, M.; Bhatti, Z.I.; Umar, M. Foreland basin unconformity, Western Himalaya, Pakistan: Timing gap, regional correlation and tectonic implications. Prog. Earth Planet. Sci. 2023, 10, 51. [Google Scholar] [CrossRef]
- Clift, P.; Shimizu, N.; Layne, G.; Blusztajn, J.; Gaedicke, C.; Schlüter, H.-U.; Clark, M.; Amjad, S. Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram. Geol. Soc. Am. Bull. 2001, 113, 1039–1051. [Google Scholar] [CrossRef]
- Clift, P.; Shimizu, N.; Layne, G.; Gaedicke, C.; Schlter, H.-U.; Clark, M.; Amjad, S. Fifty-five million years of Tibetan evolution recorded in the Indus Fan. Eos Trans. Am. Geophys. Union 2000, 81, 277–281. [Google Scholar] [CrossRef]
- Li, Q.-H.; Lu, L.; Zhang, K.-J.; Yan, L.-L.; Huangfu, P.; Hui, J.; Ji, C. Late Cretaceous post-orogenic delamination in the western Gangdese arc: Evidence from geochronology, petrology, geochemistry, and Sr–Nd–Hf isotopes of intermediate–acidic igneous rocks. Lithos 2022, 424–425, 106763. [Google Scholar] [CrossRef]
- Zhang, K.-J.; Zhang, Y.-X.; Tang, X.-C.; Xia, B. Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Sci. Rev. 2012, 114, 236–249. [Google Scholar] [CrossRef]
- Malkani, M.S.; Mahmood, Z. Revised stratigraphy of Pakistan. Geol. Surv. Pakistan Record 2016, 127, 1–87. [Google Scholar]
- Besse, J.; Courtillot, V. Paleogeographic maps of the continents bordering the Indian Ocean since the Early Jurassic. J. Geophys. Res. Solid Earth 1988, 93, 11791–11808. [Google Scholar] [CrossRef]
- Patriat, P.; Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 1984, 311, 615–621. [Google Scholar] [CrossRef]
- Treloar, P.J.; Izatt, C.N. Tectonics of the Himalayan collision between the Indian Plate and the Afghan Block: A synthesis. Geol. Soc. London Spec. Publ. 1993, 74, 69–87. [Google Scholar] [CrossRef]
- Umar, M.; Friis, H.; Khan, A.S.; Kelling, G.; Kassi, A.M.; Sabir, M.A.; Farooq, M. Sediment Composition and Provenance of the Pab Formation, Kirthar Fold Belt, Pakistan: Signatures of Hot Spot Volcanism, Source Area Weathering, and Paleogeography on the Western Passive Margin of the Indian Plate During the Late Cretaceous. Arab. J. Sci. Eng. 2014, 39, 311–324. [Google Scholar] [CrossRef]
Sample No. | Quartz | Feldspar | Lithics (L) | Matrix/Cement | Accessory Minerals (%) | Percentage Composition of Framework Grains | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Qm | Qp | Q | Pf | Af | F | Ls | Lm | Li | Clay (%) | Cal. (%) | Bt | Mus | Hm | Q | F | L | Qm | F | L | |
FM6 | 292 | 8 | 300 | 16 | 6 | - | - | 8.8 | 9 | - | - | 2 | 93 | 5 | 2 | 93 | 5 | 2 | ||
FM7 | 346 | 22 | 368 | 8 | 4 | 12 | 12 | - | - | - | - | - | 0.3 | 2 | 94 | 3 | 3 | 94 | 3 | 3 |
FM8 | 308 | 16 | 324 | 1 | 3 | 4 | 8 | - | - | 7.5 | 8.3 | 0.3 | - | 2 | 96 | 1 | 3 | 96 | 1 | 3 |
FM9 | 324 | 1 | 325 | - | 7 | 7 | 8 | - | - | 14 | - | - | 1 | 1.3 | 96 | 2 | 2 | 96 | 2 | 2 |
KZ9 | 136 | - | 136 | - | 148 | 148 | 68 | - | - | - | 12 | - | - | - | 39 | 42 | 19 | 39 | 42 | 19 |
Formation Name | Sample No. | Grain Shape | Fabric Support/Contacts | Sorting | Maturity | ||
---|---|---|---|---|---|---|---|
Roundness | Sphericity | Textural | Mineralogical | ||||
Dunghan Formation | FM6 | Sub-rounded | Low-Medium | Grain-supported, point contact | Moderate-Poor sorted | Sub mature | Mature |
FM7 | Subangular to Sub-rounded | Low-Medium | Grain-supported, pointed, concave-convex contacts | Moderate-Poor sorted | Mature | Mature | |
Ghazij Formation | FM8 | Sub-rounded to rounded | Low-Medium | Grain-supported, point contacts | Moderately sorted | Mature | Mature |
FM9 | Sub-rounded to rounded | Low-Medium | Matrix-supported, pointed contacts | Moderately sorted | Mature | Mature | |
KZ9 | Sub-rounded to rounded | Medium-high | Grain-supported, pointed, concave-convex contacts | Moderately sorted | Immature | Mature |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qasim, M.; Ashraf, J.; Ding, L.; Tanoli, J.I.; Cai, F.; Ahmed Abbasi, I.; Jadoon, S.-U.-R.K. Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence. Geosciences 2024, 14, 289. https://doi.org/10.3390/geosciences14110289
Qasim M, Ashraf J, Ding L, Tanoli JI, Cai F, Ahmed Abbasi I, Jadoon S-U-RK. Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence. Geosciences. 2024; 14(11):289. https://doi.org/10.3390/geosciences14110289
Chicago/Turabian StyleQasim, Muhammad, Junaid Ashraf, Lin Ding, Javed Iqbal Tanoli, Fulong Cai, Iftikhar Ahmed Abbasi, and Saif-Ur-Rehman Khan Jadoon. 2024. "Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence" Geosciences 14, no. 11: 289. https://doi.org/10.3390/geosciences14110289
APA StyleQasim, M., Ashraf, J., Ding, L., Tanoli, J. I., Cai, F., Ahmed Abbasi, I., & Jadoon, S. -U. -R. K. (2024). Rapid India–Asia Initial Collision Between 50 and 48 Ma Along the Western Margin of the Indian Plate: Detrital Zircon Provenance Evidence. Geosciences, 14(11), 289. https://doi.org/10.3390/geosciences14110289