Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio
Abstract
:1. Introduction
2. Geographical Setting and Geological Framework
3. Methodology and Previous Knowledge
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Youd, T.L. Discussion of “Brief Review of Liquefaction during Earthquakes in Japan”. Soils Found. 1977, 17, 82–85. [Google Scholar]
- Youd, T.L.; Idriss, I.M. Liquefaction Resistance of Soils: Summary Report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. J. Geotech. Geoenviron. Eng. 2001, 127, 817–833. [Google Scholar] [CrossRef]
- Setiawan, H.; Serikawa, Y.; Sugita, W.; Kawasaki, H.; Miyajima, M. Experimental Study on Mitigation of Liquefaction-Induced Vertical Ground Displacement by Using Gravel and Geosynthetics. Geoenviron. Disasters 2018, 5, 22. [Google Scholar] [CrossRef]
- Galli, P. New Empirical Relationships between Magnitude and Distance for Liquefaction. Tectonophysics 2000, 324, 169–187. [Google Scholar] [CrossRef]
- IG-EPN Informe Sísmico Especial N. 7 2016, 2012. Available online: https://www.igepn.edu.ec/servicios/noticias/1311-informe-sismico-especial-n-7-2016 (accessed on 18 August 2023).
- Foster, M.; Fell, R.; Spannagle, M. The Statistics of Embankment Dam Failures and Accidents. Can. Geotech. J. 2000, 37, 1000–1024. [Google Scholar] [CrossRef]
- GADPP—Gobierno Autónomo Descentralizado de la Provincia de Pichincha. Estudios de Geología y Geotecnia Dentro Del Proyecto de Riego Cayambe Tabacundo y Agua Potable Pesillo-Imbabura, Cantón Cayambe, Provincia de Pichincha; GAD Provincia de Pichincha: Quito, Ecuador, 2009; p. 250. [Google Scholar]
- Torres, G. La Amenaza Sísmica y Volcánica de la Presa de la Laguna San Marcos. Cayambe-Pichincha. Bachelor’s Thesis, FIGEMPA—Universidad Central del Ecuador, Quito, Ecuador, 2018. Available online: http://www.dspace.uce.edu.ec/handle/25000/16316 (accessed on 1 August 2022).
- Alonso-Pandavenes, O.; Torres, G.; Torrijo, F.J.; Garzón-Roca, J. Basement Tectonic Structure and Sediment Thickness of a Valley Defined Using HVSR Geophysical Investigation, Azuela Valley, Ecuador. Bull. Eng. Geol. Environ. 2022, 81, 210. [Google Scholar] [CrossRef]
- Daag, A.; Aque, L.E.; Locaba, O.; Grutas, R.; Solidum, R. Site Response Measurements and Implications to Soil Liquefaction Potential Using Microtremor H/V in Greater Metro Manila, Philippines. Geomat. Nat. Hazards Risk 2023, 14, 2256936. [Google Scholar] [CrossRef]
- Nakamura, Y. A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface. Q. Rep. Railw. Tech. Res. 1989, 30, 25–33. [Google Scholar]
- Nakamura, Y. Seismic Vulnerability Indices for Ground and Structures Using Microtremor. In Proceedings of the World Congress, Florence, Italy, 17–19 September 1997; p. 7. [Google Scholar]
- Samaniego, P.; Monzier, M.; Robin, C.; Hall, M.L. Late Holocene Eruptive Activity at Nevado Cayambe Volcano, Ecuador. Bull. Volcanol. 1998, 59, 451–459. [Google Scholar] [CrossRef]
- Bernard, B.; Samaniego, P. Escenarios Eruptivos En El Volcán Cayambe y Construcción de Un Árbol de Eventos. In Proceedings of the III Jornadas en Ciencias de la Tierra, Quito, Ecuador, 8–12 May 2017. [Google Scholar]
- IG-EPN Informe Anual de La Actividad Del Volcán Cayambe 2017. Available online: https://www.igepn.edu.ec/servicios/busqueda-informes (accessed on 18 August 2023).
- MIDUVI—Ministerio de Desarrollo Urbano y Vivienda. Gobierno de la República de Ecuador NEC-SE-DS. Peligro Sísmico, Diseño Sísmo Resistente 2015. Available online: https://www.habitatyvivienda.gob.ec/documentos-normativos-nec-norma-ecuatoriana-de-la-construccion/ (accessed on 10 September 2023).
- Jefferies, M.; Been, K. Soil Liquefaction, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006; ISBN 978-0-203-30196-8. [Google Scholar]
- Ishihara, K. Liquefaction and Flow Failure during Earthquakes. Géotechnique 1993, 43, 351–451. [Google Scholar] [CrossRef]
- Ishihara, K. Soil Behaviour in Earthquake Geotechnics; Oxford Engineering Science Series; 1a Oxford Science Publications; Clarendon Press: Oxford, UK, 1996; ISBN 0-19-856224-1. [Google Scholar]
- Nakamura, Y.; Takizawa, T. Evaluation of Liquefaction of Surface Ground Using Microtremor. Proc. 45th Annu. Meet. JSCE Tokio 1990, 1, 1068–1069. [Google Scholar]
- Uehan, F.; Nakamura, Y. Ground Motion Characteristics Around Kobe City Detected by Microtremor Measurement; Elsevier Science Ltd.: Acapulco, Mexico, 1996; Volume 714, p. 8. [Google Scholar]
- Massa, M.; Mascandola, C.; Lovati, S.; Carannante, S.; Morasca, P.; D’Alema, E.; Franceschina, G.; Gomez, A.; Poggi, V.; Martelli, L.; et al. Seismic and Geological Bedrock Depth Estimation at Cavezzo Site (Po Plain, Northern Italy): Example of Passive Geophysical Survey in the Assessment of Soil Liquefaction Potential. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 8–13 April 2018; p. 7882. [Google Scholar]
- Kusuma, W.H.; Sanny, T.A. Analysis of Ground Shear Strain (GSS) In Mapping, Liquefaction Vulnerability Potential Using HVSR (Horizontal to Vertical Spectral Ratio) Method. Case Study: Sepaku Subdistrict, North Penajam Paser Regency, East Kalimantan. IOP Conf. Ser. Earth Environ. Sci. 2022, 1031, 012027. [Google Scholar] [CrossRef]
- Putra, R.R.; Kiyono, J.; Agung, D. Liquefaction Potential Based on Ground Investigation Data and Natural Frequency. Bull. Earthq. Eng. 2022, 20, 15. [Google Scholar]
- Moreno Robles, J. El Fenómeno de La Licuación Por Flujo. Aproximación Teórica y Práctica. Geotecnia 2022, 156, 3–32. [Google Scholar] [CrossRef]
- Seed, H.B.; Idriss, I.M. Simplified Procedure for Evaluating Soil Liquefaction Potential. J. Soil Mech. Found. Div. 1971, 97, 1249–1273. [Google Scholar] [CrossRef]
- Seed, H.B.; Tokimatsu, K.; Harder, L.F.; Chung, R.M. Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations. J. Geotech. Engrg. 1985, 111, 1425–1445. [Google Scholar] [CrossRef]
- Nakamura, Y. Clear Identification of Fundamental Idea of Nakamura’s Technique and Its Applications. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Huang, H.-C.; Tseng, Y.-S. Characteristics of Soil Liquefaction Using H/V of Microtremors in Yuan-Lin Area, Taiwan. Terr. Atmos. Ocean. Sci. 2002, 13, 325. [Google Scholar] [CrossRef]
- Fergany, E.; Omar, K. Liquefaction Potential of Nile Delta, Egypt. NRIAG J. Astron. Geophys. 2017, 6, 60–67. [Google Scholar] [CrossRef]
- Yulianur, A.; Saidi, T.; Setiawan, B.; Sugianto, S.; Rusdi, M. Microtremor Measurement at Liquefaction-Induced Ground Deformation Area. J. Eng. Sci. Technol. 2020, 15, 19. [Google Scholar]
- Kang, S.Y.; Kim, K.-H.; Gihm, Y.S.; Kim, B. Soil Liquefaction Potential Assessment Using Ambient Noise: A Case Study in Pohang, Korea. Front. Earth Sci. 2022, 10, 1029996. [Google Scholar] [CrossRef]
- Abdelrahman, K.; Al-Amri, A.M.; Alzahrani, H.; Qaysi, S.; Al-Otaibi, N. Soil Liquefaction Susceptibility of Jizan Coastal Area, Southwest Saudi Arabia, Based on Microtremor Measurements. Arab. J. Geosci. 2022, 15, 611. [Google Scholar] [CrossRef]
- Uyanık, O. Soil Liquefaction Analysis Based on Soil and Earthquake Parameters. J. Appl. Geophys. 2020, 176, 104004. [Google Scholar] [CrossRef]
- SESAME Project. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation; European Commission: Grenoble, France, 2004; p. 62.
- Wathelet, M.; Chatelain, J.-L.; Cornou, C.; Giulio, G.D.; Guillier, B.; Ohrnberger, M.; Savvaidis, A. Geopsy: A User-Friendly Open-Source Tool Set for Ambient Vibration Processing. Seismol. Res. Lett. 2020, 91, 1878–1889. [Google Scholar] [CrossRef]
- Sil, A.; Haloi, J. Empirical Correlations with Standard Penetration Test (SPT)-N for Estimating Shear Wave Velocity Applicable to Any Region. Int. J. Geosynth. Ground Eng. 2017, 3, 22. [Google Scholar] [CrossRef]
- Ambraseys, N.N. Engineering Seismology: Part II. Earthq. Engng. Struct. Dyn. 1988, 17, 51–105. [Google Scholar] [CrossRef]
- Alonso Pandavenes, O. Técnicas de Sísmica Pasiva HVSR Aplicadas a la Geotecnia. Aplicación al Estudio de Movimientos en Masa en la Planificación Territorial e Infraestructura Civil en Ecuador. Ph.D. Thesis, Universitat Politècnica de València, Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos, Valencia, Spain, 2024. [Google Scholar]
- Alonso-Pandavenes, O.; Torrijo, F.J.; Garzón-Roca, J.; Gracia, A. Early Investigation of a Landslide Sliding Surface by HVSR and VES Geophysical Techniques Combined, a Case Study in Guarumales (Ecuador). Appl. Sci. 2023, 13, 1023. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Bernal, D.; Torrijo, F.J.; Garzón-Roca, J. A Comparative Analysis for Defining the Sliding Surface and Internal Structure in an Active Landslide Using the HVSR Passive Geophysical Technique in Pujilí (Cotopaxi), Ecuador. Land 2023, 12, 961. [Google Scholar] [CrossRef]
- Molnar, S.; Cassidy, J.F.; Castellaro, S.; Cornou, C.; Crow, H.; Hunter, J.A.; Matsushima, S.; Sánchez-Sesma, F.J.; Yong, A. Application of Microtremor Horizontal-to-Vertical Spectral Ratio (MHVSR) Analysis for Site Characterization: State of the Art. Surv. Geophys. 2018, 39, 613–631. [Google Scholar] [CrossRef]
- Sebastiano, D.; Francesco, P.; Salvatore, M.; Roberto, I.; Antonella, P.; Giuseppe, L.; Pauline, G.; Daniela, F. Ambient Noise Techniques to Study Near-Surface in Particular Geological Conditions: A Brief Review. In Innovation in Near-Surface Geophysics; Elsevier: Amsterdam, The Netherlands, 2019; pp. 419–460. ISBN 978-0-12-812429-1. [Google Scholar]
- Lermo, J.; Chávez-García, F.J. Site Effect Evaluation Using Spectral Ratios with Only One Station. Bull. Seismol. Soc. Am. 1993, 83, 1574–1594. [Google Scholar] [CrossRef]
- Delgado, J.; López Casado, C.; Giner, J.; Estévez, A.; Cuenca, A.; Molina, S. Microtremors as a Geophysical Exploration Tool: Applications and Limitations. Pure Appl. Geophys. 2000, 157, 1445–1462. [Google Scholar] [CrossRef]
- Yuliyanto, G.; Harmoko, U.; Widada, S. Identification of Potential Ground Motion Using the HVSR Ground Shear Strain Approach in Wirogomo Area, Banyubiru Subdistrict, Semarang Regency. Int. J. Appl. Environ. Sci. 2016, 11, 1497–1507. [Google Scholar]
- Aque, L.E.G.; Daag, A.S.; Grutas, R.N.; Abigania, M.I.T.; Dizon, M.P.; Buhay, D.J.L.; Mitiam, E.D.; Serrano, A.T.; Halasan, O.P.C.; Reyes, M.J.V.; et al. Evaluation of Passive Seismic Horizontal-To-Vertical Spectral Ratio (HVSR) for rapid Site-Specific Liquefaction Hazard Assessment. In Proceedings of the 18th Annual Meeting of the Asia Oceania Geosciences Society, Singapore, 1–6 August 2021; World Scientific: Singapore, 2022; pp. 132–134. [Google Scholar]
- Herrera, M.; Arango, S.; Cruz, A.; Sandoval, E.; Thomson, P. Assessment of Nakamura Methodology for Evaluating Soil Liquefaction Potential. In Proceedings of the Geotechnical Earthquake Engineering and Soil Dynamics V, Austin, TX, USA, 10–13 June 2018; American Society of Civil Engineers: Austin, TX, USA, 2018; pp. 94–107. [Google Scholar]
- Khan, M.Y.; Turab, S.A.; Ali, L.; Shah, M.T.; Qadri, S.M.T.; Latif, K.; Kanli, A.I.; Akhter, M.G. The Dynamic Response of Coseismic Liquefaction-Induced Ruptures Associated with the 2019 Mw 5.8 Mirpur, Pakistan, Earthquake Using HVSR Measurements. Lead. Edge 2021, 40, 590–600. [Google Scholar] [CrossRef]
- Meng, Q.; Li, Y.; Wang, W.; Chen, Y.; Wang, S. A Case Study Assessing the Liquefaction Hazards of Silt Sediments Based on the Horizontal-to-Vertical Spectral Ratio Method. J. Mar. Sci. Eng. 2023, 11, 104. [Google Scholar] [CrossRef]
- Ramos, A.; Viana da Fonseca, A.; Carrilho Gomes, R. Evaluating Soil Liquefaction Potential Using Nakamura Methodology in an Experimental Site. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, Proceedings of the 7th International Conference on Earthquake Geotechnical Engineering, (ICEGE 2019), Rome, Italy, 17–20 June 2019; CRC Press: Rome, Italy, 2019; p. 5998. ISBN 978-0-429-03127-4. [Google Scholar]
- Andrus, R.D.; Stokoe II, K.H. Liquefaction Resistance of Soils from Shear-Wave Velocity. J. Geotech. Geoenviron. Eng. 2000, 126, 1015–1025. [Google Scholar] [CrossRef]
- Iwasaki, T.; Tokida, K.; Tatsuoka, F.; Watanabe, S.; Yasuda, S.; Sato, H. Microzonation for Soil Liquefaction Potential Using Simplified Methods. In Proceedings of the 3rd International Conference on Microzonation, Seattle, WA, USA, 28 June–1 July 1982; Volume 3, pp. 1310–1330. [Google Scholar]
- Huang, Y.; Yu, M. Hazard Analysis of Seismic Soil Liquefaction; Springer Natural Hazards; Springer Singapore: Singapore, 2017; ISBN 978-981-10-4378-9. [Google Scholar]
- Issaadi, A.; Saadi, A.; Semmane, F.; Yelles-Chaouche, A.; Galiana-Merino, J.J. Liquefaction Potential and Vs30 Structure in the Middle-Chelif Basin, Northwestern Algeria, by Ambient Vibration Data Inversion. Appl. Sci. 2022, 12, 8069. [Google Scholar] [CrossRef]
- Zhang, L. A Simple Method for Evaluating Liquefaction Potential from Shear Wave Velocity. Front. Archit. Civ. Eng. China 2010, 4, 178–195. [Google Scholar] [CrossRef]
- Cetin, K.O.; Seed, R.B.; Kayen, R.E.; Moss, R.E.S.; Bilge, H.T.; Ilgac, M.; Chowdhury, K. Examination of Differences between Three SPT-Based Seismic Soil Liquefaction Triggering Relationships. Soil Dyn. Earthq. Eng. 2018, 113, 75–86. [Google Scholar] [CrossRef]
- Andrus, R.D.; Stokoe, K.H.; Hsein Juang, C. Guide for Shear-Wave-Based Liquefaction Potential Evaluation. Earthq. Spectra 2004, 20, 285–308. [Google Scholar] [CrossRef]
- Green, R.A.; Bommer, J.J. What Is the Smallest Earthquake Magnitude That Needs to Be Considered in Assessing Liquefaction Hazard? Earthq. Spectra 2019, 35, 1441–1464. [Google Scholar] [CrossRef]
- Mokhberi, M.; Yazdanpanah Fard, S. Liquefaction Hazard assessment using Horizontal-to-Vertical Spectral Ratio of Microtremor. J. Struct. Eng. Geotech. 2018, 8, 31–44. [Google Scholar]
- Singh, A.P.; Shukla, A.; Kumar, M.R.; Thakkar, M.G. Characterizing Surface Geology, Liquefaction Potential, and Maximum Intensity in the Kachchh Seismic Zone, Western India, through Microtremor Analysis. Bull. Seismol. Soc. Am. 2017, 107, 1277–1292. [Google Scholar] [CrossRef]
- Beroya, M.A.A.; Aydin, A.; Tiglao, R.; Lasala, M. Use of Microtremor in Liquefaction Hazard Mapping. Eng. Geol. 2009, 107, 140–153. [Google Scholar] [CrossRef]
Size of GSS (γ) | 10−6 | 10−5 | 10−4 | 10−3 | 10−2 | 10−1 |
---|---|---|---|---|---|---|
Phenomena | Wave, Vibration | Crack, Settlement | Landslide, Soil compaction Liquefaction | |||
Dynamic Properties | Elasticity | Elasto-plasticity | Collapse | |||
Repetition effect, Velocity load effect |
HVSR Points | fo (Hz) | Ao | Kg | GSS (γ) | SUSCEPT. GSS | SUSCEPT. by Kg |
---|---|---|---|---|---|---|
1 | 61.26 | 1.90 | 0.1 | 1.92 × 10−5 | NO | NO |
2 | 33.05 | 3.45 | 0.4 | 1.17 × 10−4 | NO | NO |
3 | 10.01 | 4.94 | 2.4 | 7.92 × 10−4 | NO | NO |
4 | 7.36 | 0.95 | 0.1 | 3.99 × 10−5 | NO | NO |
5 | 1.51 | 4.92 | 16.0 | 5.21 × 10−3 | NO | YES |
6 | 1.61 | 3.70 | 8.5 | 2.76 × 10−3 | NO | (YES) 1 |
7 | 0.18 | 1.45 | 11.7 | 3.80 × 10−3 | NO | YES |
8 | 0.29 | 3.36 | 38.9 | 1.27 × 10−2 | YES | YES |
9 | 0.12 | 3.10 | 80.1 | 2.60 × 10−2 | YES | YES |
10 | 0.14 | 3.31 | 78.3 | 2.54 × 10−2 | YES | YES |
11 | 0.18 | 2.14 | 25.4 | 8.27 × 10−3 | (YES) 1 | YES |
12 | 0.38 | 2.81 | 20.8 | 6.75 × 10−3 | NO | YES |
13 | 0.67 | 8.74 | 114.0 | 3.71 × 10−2 | YES | YES |
14 | 0.27 | 9.33 | 322.4 | 1.05 × 10−1 | YES | YES |
15 | 1.21 | 5.35 | 23.7 | 7.69 × 10−3 | (YES) 1 | YES |
16 | 1.36 | 5.17 | 19.7 | 6.39 × 10−3 | NO | YES |
17 | 12.58 | 4.49 | 1.6 | 5.21 × 10−4 | NO | NO |
18 | 17.11 | 7.42 | 3.2 | 1.05 × 10−3 | NO | NO |
19 | 0.36 | 2.37 | 15.6 | 5.07 × 10−3 | NO | YES |
20 | 0.19 | 3.61 | 68.6 | 2.23 × 10−2 | YES | YES |
S.U.C.S.-Type Materials | Depth (m) | N SPT (blows) | (N 1)60 CS | CRR corr. | CSR | Safety Factor SFliq | Condition 1 |
---|---|---|---|---|---|---|---|
SM | 1.5 | 2 | 2.531 | 0.206 | 0.263 | 0.783 | (C) |
SM | 2 | 3 | 3.694 | 0.232 | 0.311 | 0.746 | (C) |
SM | 3 | 5 | 6.300 | 0.279 | 0.333 | 0.838 | (C) |
SP-SM | 4 | 6 | 7.662 | 0.298 | 0.323 | 0.923 | (C) |
SP-SM | 5 | 7 | 8.852 | 0.314 | 0.302 | 1.040 | (C) |
SP-SM | 6 | 6 | 7.420 | 0.263 | 0.278 | 0.946 | (C) |
SP-SM | 7 | 9 | 10.808 | 0.339 | 0.251 | 1.351 | (D) |
SP-SM | 8 | 13 | 15.548 | 0.454 | 0.226 | 2.009 | (D) |
SP-SM | 9 | 12 | 13.588 | 0.386 | 0.204 | 1.892 | (D) |
SP-SM | 10 | 16 | 17.916 | 0.490 | 0.185 | 2.649 | (D) |
SP-SM | 11 | 15 | 15.911 | 0.421 | 0.170 | 2.476 | (D) |
SM | 12 | 9 | 8.872 | 0.251 | 0.159 | 1.579 | (C) |
SP-SM | 13 | 13 | 12.523 | 0.324 | 0.151 | 2.146 | (D) |
SP-SM | 14 | 9 | 8.283 | 0.231 | 0.144 | 1.604 | (C) |
SP-SM | 15 | 13 | 11.631 | 0.293 | 0.140 | 2.093 | (C) |
SP-SM | 16 | 11 | 9.475 | 0.246 | 0.136 | 1.809 | (C) |
SP-SM | 17 | 12 | 10.007 | 0.253 | 0.134 | 1.888 | (C) |
SP-SM | 18 | 11 | 8.890 | 0.228 | 0.132 | 1.727 | (C) |
SP-SM | 19 | 15 | 11.810 | 0.279 | 0.131 | 2.130 | (C) |
SP-SM | 20 | 17 | 13.080 | 0.299 | 0.127 | 2.354 | (D) |
SP-SM | 21 | 14 | 10.286 | 0.244 | 0.125 | 1.952 | (C) |
SP-SM | 22 | 17 | 12.230 | 0.276 | 0.123 | 2.244 | (C) |
SM | 23 | 20 | 14.165 | 0.308 | 0.121 | 2.545 | (D) |
SM | 24 | 31 | 22.508 | 0.478 | 0.119 | 4.017 | (D) |
SM | 25 | 20 | 13.287 | 0.285 | 0.116 | 2.457 | (C) |
SM | 26 | 20 | 12.888 | 0.275 | 0.114 | 2.412 | (C) |
SM | 27 | 25 | 16.021 | 0.326 | 0.112 | 2.911 | (D) |
SM | 28 | 22 | 13.488 | 0.279 | 0.110 | 2.536 | (C) |
SM | 29 | 19 | 11.161 | 0.239 | 0.108 | 2.213 | (C) |
SM | 30 | 18 | 10.194 | 0.222 | 0.106 | 2.094 | (C) |
Depth (m) | Safety Factor SFliq 1 | Safety Factor SFliq 2 | Safety Factor SFliq 3 | Safety Factor SFliq 4 | Safety Factor SFliq 5 | Safety Factor SFliq 6 | Safety Factor SFliq 7 |
---|---|---|---|---|---|---|---|
Acc.: 550 Gal 1 | 3.5 Mw | 4.0 Mw | 4.5 Mw | 5.0 Mw | 5.2 Mw | 5.6 Mw | 6.0 Mw |
1.5 | 1.135 | 0.843 | 0.647 | 0.511 | 0.468 | 0.395 | 0.340 |
2 | 1.087 | 0.805 | 0.619 | 0.486 | 0.446 | 0.377 | 0.322 |
3 | 1.240 | 0.914 | 0.698 | 0.549 | 0.502 | 0.423 | 0.360 |
4 | 1.387 | 1.019 | 0.775 | 0.607 | 0.553 | 0.466 | 0.396 |
5 | 1.602 | 1.168 | 0.882 | 0.687 | 0.626 | 0.522 | 0.444 |
6 | 1.506 | 1.088 | 0.818 | 0.631 | 0.572 | 0.478 | 0.403 |
7 | 2.227 | 1.595 | 1.186 | 0.906 | 0.818 | 0.676 | 0.566 |
8 | 3.476 | 2.459 | 1.805 | 1.363 | 1.234 | 1.011 | 0.839 |
9 | 3.427 | 2.394 | 1.733 | 1.300 | 1.168 | 0.949 | 0.781 |
10 | 5.070 | 3.476 | 2.486 | 1.835 | 1.639 | 1.328 | 1.086 |
11 | 4.989 | 3.371 | 2.375 | 1.733 | 1.544 | 1.238 | 1.007 |
12 | 3.337 | 2.215 | 1.551 | 1.116 | 0.991 | 0.790 | 0.639 |
13 | 4.753 | 3.124 | 2.141 | 1.536 | 1.356 | 1.072 | 0.861 |
14 | 3.688 | 2.377 | 1.617 | 1.149 | 1.014 | 0.800 | 0.636 |
15 | 4.969 | 3.185 | 2.151 | 1.518 | 1.332 | 1.046 | 0.834 |
16 | 4.407 | 2.786 | 1.873 | 1.309 | 1.153 | 0.901 | 0.713 |
17 | 4.681 | 2.936 | 1.969 | 1.375 | 1.208 | 0.943 | 0.748 |
18 | 4.374 | 2.737 | 1.818 | 1.260 | 1.106 | 0.860 | 0.683 |
19 | 5.442 | 3.393 | 2.248 | 1.559 | 1.369 | 1.064 | 0.842 |
20 | 6.217 | 3.798 | 2.503 | 1.728 | 1.514 | 1.171 | 0.926 |
21 | 5.233 | 3.183 | 2.088 | 1.435 | 1.258 | 0.969 | 0.765 |
22 | 6.080 | 3.713 | 2.407 | 1.663 | 1.446 | 1.120 | 0.876 |
23 | 6.990 | 4.235 | 2.752 | 1.890 | 1.640 | 1.265 | 0.995 |
24 | 11.213 | 6.759 | 4.377 | 2.988 | 2.613 | 2.000 | 1.571 |
25 | 6.890 | 4.133 | 2.667 | 1.815 | 1.582 | 1.213 | 0.950 |
26 | 6.886 | 4.100 | 2.629 | 1.786 | 1.556 | 1.196 | 0.939 |
27 | 8.560 | 5.000 | 3.194 | 2.173 | 1.881 | 1.443 | 1.130 |
28 | 7.593 | 4.404 | 2.824 | 1.898 | 1.641 | 1.254 | 0.979 |
29 | 6.744 | 3.910 | 2.467 | 1.660 | 1.431 | 1.094 | 0.850 |
30 | 6.507 | 3.742 | 2.353 | 1.574 | 1.353 | 1.030 | 0.804 |
Feature | Test Type | |||
---|---|---|---|---|
SPT | CPT | Vs | HVSR | |
Past measurements at liquefaction sites | Abundant | Abundant | Limited | Limited |
Type of stress–strain behavior influencing test | Partially drained, large strain | Drained, large strain | Small strain | Small strain |
Quality control and repeatability | Poor to good | Very good | Good | Very good |
Detection of the variability of soil deposits | Good for closely spaced test | Very good | Fair | Limited |
Soil types in which testing is recommended | Fine under gravel | Fine under gravel | All | All |
Soil sample retrieved | Yes | No | No | No |
Test measures index or engineering property | Index | Index | Engineering | Index |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-Pandavenes, O.; Torrijo, F.J.; Torres, G. Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio. Geosciences 2024, 14, 306. https://doi.org/10.3390/geosciences14110306
Alonso-Pandavenes O, Torrijo FJ, Torres G. Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio. Geosciences. 2024; 14(11):306. https://doi.org/10.3390/geosciences14110306
Chicago/Turabian StyleAlonso-Pandavenes, Olegario, Francisco Javier Torrijo, and Gabriela Torres. 2024. "Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio" Geosciences 14, no. 11: 306. https://doi.org/10.3390/geosciences14110306
APA StyleAlonso-Pandavenes, O., Torrijo, F. J., & Torres, G. (2024). Analysis of the Liquefaction Potential at the Base of the San Marcos Dam (Cayambe, Ecuador)—A Validation in the Use of the Horizontal-to-Vertical Spectral Ratio. Geosciences, 14(11), 306. https://doi.org/10.3390/geosciences14110306