Effects of Land Cover Changes and Rainfall Variation on the Landslide Size–Frequency Distribution in a Mountainous Region of Western Japan
Abstract
:1. Introduction
2. Study Area
3. Data and Methods
3.1. Land Cover Trajectory and Landslide Data
3.2. Event Rainfall Data
3.3. Classification of Landslides Based on Land Cover Trajectory and Rainfall Distributions
3.4. Statistical Analysis for Characterising Landslide Size Distributions
3.4.1. Quantifying Landslide Size Distributions
3.4.2. Landslide Size Distribution Models
3.4.3. Statistical Analysis for Model Fitting
4. Results
4.1. Size-Frequency Distribution of the Landslides Triggered by the July 2018 Storm Event
4.2. Statistical Distribution of Landslides Grouped by Land Cover Trajectory Patterns
4.3. Statistical Distribution of Landslides Grouped by Rainfall Intensity
5. Discussion and Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brardinoni, F.; Church, M. Representing the landslide magnitude-frequency relation: Capilano River basin, British Columbia. Earth Surf. Process. Landf. 2004, 29, 115–124. [Google Scholar] [CrossRef]
- Korup, O.; Densmore, A.L.; Schlunegger, F. The role of landslides in mountain range evolution. Geomorphology 2010, 120, 77–90. [Google Scholar] [CrossRef]
- Larsen, I.J.; Montgomery, D.R.; Korup, O. Landslide erosion controlled by hillslope material. Nature Geosci. 2010, 3, 247–251. [Google Scholar] [CrossRef]
- Petley, D. Global patterns of loss of life from landslides. Geology 2012, 40, 927–930. [Google Scholar] [CrossRef]
- Froude, M.J.; Petley, D.N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 2018, 18, 2161–2181. [Google Scholar] [CrossRef]
- Benda, L.; Dunne, T. Stochastic forcing of sediment supply to channel networks from landsliding and debris flow. Water Resour. Res. 1997, 33, 2849–2863. [Google Scholar] [CrossRef]
- Hantz, D.; Vengeon, J.M.; Dussauge-Peisser, C. An historical, geomechanical and probabilistic approach to rock-fall hazard assessment. Nat. Hazards Earth Syst. Sci. 2003, 3, 693–701. [Google Scholar] [CrossRef]
- Fuller, C.W.; Willett, S.D.; Hovius, N.; Slingerland, R. Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. J. Geol. 2003, 111, 71–87. [Google Scholar] [CrossRef]
- Malamud, B.D.; Turcotte, D.L.; Guzzetti, F.; Reichenbach, P. Landslide inventories and their statistical properties. Earth Surf. Process. Landf. 2004, 29, 687–711. [Google Scholar] [CrossRef]
- Katz, O.; Aharonov, E. Landslides in vibrating sand box: What controls types of slope failure and frequency magnitude relations? Earth Planet. Sci. Lett. 2006, 247, 280–294. [Google Scholar] [CrossRef]
- Corominas, J.; Moya, J. A review of assessing landslide frequency for hazard zoning purposes. Eng. Geol. 2008, 102, 193–213. [Google Scholar] [CrossRef]
- Stark, C.P.; Guzzetti, F. Landslide rupture and the probability distribution of mobilized debris volumes. J. Geophys. Res.-Earth 2009, 114, F00A02. [Google Scholar] [CrossRef]
- Bennett, G.L.; Molnar, P.; Eisenbeiss, H.; Mcardell, B.W. Erosional power in the Swiss Alps: Characterization of slope failure in the Illgraben. Earth Surf. Process. Landf. 2012, 37, 1627–1640. [Google Scholar] [CrossRef]
- Corominas, J.; van Westen, C.; Frattini, P.; Cascini, L.; Malet, J.P.; Fotopoulou, S.; Catani, F.; Van Den Eeckhaut, M.; Mavrouli, O.; Agliardi, F.; et al. Recommendations for the quantitative analysis of landslide risk. Bull. Eng. Geol. Environ. 2014, 73, 209–263. [Google Scholar] [CrossRef]
- Sugai, T.; Ohmori, H.; Hirano, M. Rock control on magnitude-frequency distribution of landslide. Trans. Jpn. Geomorphol. Union 1994, 15, 233–351. [Google Scholar]
- Hovius, N.; Stark, C.P.; Allen, P.A. Sediment flux from a mountain belt derived by landslide mapping. Geology 1997, 25, 231–234. [Google Scholar] [CrossRef]
- Stark, C.P.; Hovius, N. The characterization of landslide size distributions. Geophys. Res. Lett. 2001, 28, 1091–1094. [Google Scholar] [CrossRef]
- Guzzetti, F.; Malamud, B.D.; Turcotte, D.L.; Reichenbach, P. Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 2002, 195, 169–183. [Google Scholar] [CrossRef]
- Iwahashi, J.; Watanabe, S.; Furuya, T. Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area, Japan. Geomorphology 2003, 50, 349–364. [Google Scholar] [CrossRef]
- Guzzetti, F.; Ardizzone, F.; Cardinali, M.; Galli, M.; Reichenbach, P.; Rossi, M. Distribution of landslides in the Upper Tiber River basin, central Italy. Geomorphology 2008, 96, 105–122. [Google Scholar] [CrossRef]
- Chen, C.Y. Sedimentary impacts from landslides in the Tachia River basin, Taiwan. Geomorphology 2009, 105, 143–151. [Google Scholar] [CrossRef]
- Hurst, M.D.; Ellis, M.A.; Royse, K.R.; Lee, K.A.; Freeborough, K. Controls on the magnitude-frequency scaling of an inventory of secular landslides. Earth Surf. Dyn. 2013, 1, 67–78. [Google Scholar] [CrossRef]
- Qiu, H.; Cui, P.; Regmi, A.D.; Hu, S.; Wang, X.; Zhang, Y. The effects of slope length and slope gradient on the size distributions of loess slides: Field observations and simulations. Geomorphology 2018, 300, 69–76. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Poesen, J.; Govers, G.; Verstraeten, G.; Demoulin, A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet. Sci. Lett. 2007, 256, 588–603. [Google Scholar] [CrossRef]
- Guns, M.; Vanacker, V. Shifts in landslide frequency–area distribution after forest conversion in the tropical Andes. Anthropocene 2014, 6, 75–85. [Google Scholar] [CrossRef]
- Alvioli, M.; Guzzetti, F.; Rossi, M. Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology 2014, 213, 38–47. [Google Scholar] [CrossRef]
- Liucci, L.; Melelli, L.; Suteanu, C.; Ponziani, F. The role of topography in the scaling distribution of landslide areas: A cellular automata modeling approach. Geomorphology 2017, 290, 236–249. [Google Scholar] [CrossRef]
- Ehime Prefectural History Compilation Committee (Ed.) Ehime Prefectural History, Regional Geography II (Western Toyo Region); Ehime Prefecture: Matsuyama, Japan, 1986; 890p. (In Japanese) [Google Scholar]
- Kimura, T.; Sato, G.; Ozaki, T.; Thang, N.V.; Wakai, A. Landslide susceptibility in a highly-cultivated hilly region: Artificial slope construction in 1963–1979 and the subsequent 2018 landslide event in Omishima, western Japan. In Natural Geo-Disasters and Resiliency: Select Proceedings of CREST 2023; Hazarika, H., Haigh, S.K., Chaudhary, B., Murai, M., Manandhar, S., Eds.; Springer Nature Singapore Pte Ltd.: Singapore, 2023. [Google Scholar]
- Kimura, T.; Sato, G.; Ozaki, T.; Thang, N.V.; Wakai, A. Land cover trajectories and their impacts on rainfall-triggered landslide occurrence in a cultivated mountainous region of western Japan. Water 2023, 15, 4211. [Google Scholar] [CrossRef]
- Ministry of the Environment of Japan (MOE). Vegetation Map. 2023. Available online: https://www.biodic.go.jp/kiso/vg/vg_kiso.html#mainText (accessed on 10 October 2023). (In Japanese)
- National Research Institute for Earth Science and Disaster Resilience (NIED). Characteristics of Cumulative Rainfall in WESTERN Japan during the Heavy Rain Event of July 2018. 2018. Available online: http://mizu.bosai.go.jp/key/RainJulyH30Accu (accessed on 10 October 2023). (In Japanese)
- Japan Meteorological Agency (JMA). Preliminary Report on Characteristics and Causes of Heavy Rains in “July 2018 Heavy Rains” and Their Causes. 2018. Available online: http://www.jma.go.jp/jma/press/1807/13a/gou20180713.pdf (accessed on 10 October 2023). (In Japanese)
- Ehime University Disaster Investigation Team of July 2018 Heavy Rain (EUDIT). Report on the Disaster in July 2018 Heavy Rain; Ehime University: Matsuyama, Japan, 2019; 379p. (In Japanese) [Google Scholar]
- Mori, S.; Ono, K. Landslide disasters in Ehime Prefecture resulting from the July 2018 heavy rain event in Japan. Soils Found. 2019, 59, 2396–2409. [Google Scholar] [CrossRef]
- Japan Meteorological Agency (JMA). Past Weather Data at the Omishima Observatory. Available online: https://www.data.jma.go.jp/obd/stats/etrn/index.php?prec_no=73&block_no=0732 (accessed on 10 October 2023). (In Japanese)
- Conover, W.J. Practical Nonparametric Statistics; John Wiley & Sons: New York, NY, USA, 1971; 462p. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S, 4th ed.; Springer: New York, NY, USA, 2002; 495p. [Google Scholar]
Rainfall * | 5th Percentile ** | 50th Percentile ** | 95th Percentile ** | |||
---|---|---|---|---|---|---|
Rainfall
(mm) | RP
(yr) | Rainfall
(mm) | RP
(yr) | Rainfall
(mm) | RP
(yr) | |
1-h max. | 32.0 | 5.0 | 36.0 | 9.0 | 41.0 | 19.5 |
3-h max. | 62.0 | 8.5 | 70.0 | 28.1 | 77.0 | 143.1 |
6-h max. | 90.0 | 15.4 | 97.0 | 27.1 | 105.0 | 55.9 |
12-h max. | 153.0 | 66.9 | 174.0 | 154.6 | 192.0 | 318.0 |
24-h max. | 243.0 | 78.5 | 271.0 | 125.4 | 294.0 | 176.1 |
Total (264-h) | 433.0 | 20.8 | 476.0 | 33.1 | 535.0 | 62.0 |
Trajectory Pattern * | Model Parameter ** | Goodness-of-Fit *** | |||||
---|---|---|---|---|---|---|---|
a | s | ρ | Rollover | NLL | AIC | BIC | |
(×10−3 km2) | (×10−4 km2) | (×10−3 km2) | |||||
Forests (n = 289) | 0.194 ± 0.039 | −0.164 ± 0.061 | 1.731 ± 0.208 | 0.056 | 1831.858 | 3669.717 | 3680.747 |
RFOR (n = 168) | 0.348 ± 0.106 | −0.312 ± 0.124 | 2.504 ± 0.470 | 0.075 | 1055.480 | 2116.959 | 2126.384 |
SFOR (n = 121) | 0.108 ± 0.032 | −0.059 ± 0.067 | 1.231 ± 0.207 | 0.042 | 771.410 | 1548.820 | 2125.347 |
Farmlands (n = 200) | 0.140 ± 0.029 | −0.133 ± 0.050 | 1.506 ± 0.192 | 0.042 | 1225.985 | 2457.971 | 2467.820 |
RFAR (n = 130) | 0.252 ± 0.083 | −0.238 ± 0.093 | 2.611 ± 0.542 | 0.042 | 750.746 | 1507.491 | 1516.094 |
CFAR (n = 70) | 0.136 ± 0.049 | −0.108 ± 0.108 | 1.084 ± 0.221 | 0.056 | 461.448 | 928.896 | 935.510 |
All landslides (n = 512) | 0.176 ± 0.025 | −0.167 ± 0.041 | 1.641 ± 0.141 | 0.056 | 3215.394 | 6436.787 | 6449.502 |
Rainfall * | Model Parameter ** | Goodness-of-Fit *** | |||||
---|---|---|---|---|---|---|---|
a | s | ρ | Rollover | NLL | AIC | BIC | |
(×10−3 km2) | (×10−4 km2) | (×10−3 km2) | |||||
1-h max. | |||||||
RP ≤ 9.0 yr (n = 292) | 0.212 ± 0.036 | −0.193 ± 0.055 | 1.710 ± 0.183 | 0.056 | 1864.621 | 3735.242 | 3746.272 |
RP > 9.0 yr (n = 220) | 0.130 ± 0.031 | −0.108 ± 0.056 | 1.535 ± 0.215 | 0.042 | 1344.075 | 2694.150 | 2704.331 |
3-h max. | |||||||
RP ≤ 28.1 yr (n = 305) | 0.213 ± 0.040 | −0.205 ± 0.059 | 1.857 ± 0.215 | 0.056 | 1900.689 | 3807.378 | 3818.539 |
RP > 28.1 yr (n = 207) | 0.136 ± 0.030 | −0.120 ± 0.056 | 1.397 ± 0.182 | 0.042 | 1313.215 | 2632.430 | 2642.428 |
6-h max. | |||||||
RP ≤ 27.1 yr (n = 182) | 0.324 ± 0.090 | −0.327 ± 0.107 | 2.430 ± 0.419 | 0.056 | 1120.105 | 2246.210 | 2255.822 |
RP > 27.1 yr (n = 330) | 0.135 ± 0.024 | −0.109 ± 0.044 | 1.396 ± 0.143 | 0.042 | 2091.150 | 4188.300 | 4199.697 |
12-h max. | |||||||
RP ≤ 154.6 yr (n = 219) | 0.210 ± 0.026 | −0.205 ± 0.069 | 1.875 ± 0.258 | 0.056 | 1358.028 | 2722.055 | 2732.222 |
RP > 154.6 yr (n = 293) | 0.157 ± 0.029 | −0.143 ± 0.051 | 1.504 ± 0.167 | 0.042 | 1856.504 | 3719.009 | 3730.049 |
24-h max. | |||||||
RP ≤ 125.4 yr (n = 234) | 0.170 ± 0.036 | −0.168 ± 0.058 | 1.664 ± 0.213 | 0.042 | 1455.081 | 2916.162 | 2926.528 |
RP > 125.4 yr (n = 278) | 0.181 ± 0.035 | −0.163 ± 0.057 | 1.623 ± 0.188 | 0.056 | 1759.397 | 3524.794 | 3535.677 |
Total (264-h) | |||||||
RP ≤ 33.1 yr (n = 249) | 0.144 ± 0.029 | −0.159 ± 0.055 | 1.381 ± 0.163 | 0.042 | 1600.017 | 3206.034 | 3216.587 |
RP > 33.1 yr (n = 263) | 0.219 ± 0.046 | −0.174 ± 0.064 | 1.998 ± 0.257 | 0.056 | 1610.765 | 3227.530 | 3238.246 |
All landslides (n = 512) | 0.176 ± 0.025 | −0.167 ± 0.041 | 1.641 ± 0.141 | 0.056 | 3215.394 | 6436.787 | 6449.502 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kimura, T. Effects of Land Cover Changes and Rainfall Variation on the Landslide Size–Frequency Distribution in a Mountainous Region of Western Japan. Geosciences 2024, 14, 59. https://doi.org/10.3390/geosciences14030059
Kimura T. Effects of Land Cover Changes and Rainfall Variation on the Landslide Size–Frequency Distribution in a Mountainous Region of Western Japan. Geosciences. 2024; 14(3):59. https://doi.org/10.3390/geosciences14030059
Chicago/Turabian StyleKimura, Takashi. 2024. "Effects of Land Cover Changes and Rainfall Variation on the Landslide Size–Frequency Distribution in a Mountainous Region of Western Japan" Geosciences 14, no. 3: 59. https://doi.org/10.3390/geosciences14030059
APA StyleKimura, T. (2024). Effects of Land Cover Changes and Rainfall Variation on the Landslide Size–Frequency Distribution in a Mountainous Region of Western Japan. Geosciences, 14(3), 59. https://doi.org/10.3390/geosciences14030059