Heavy Minerals Distribution and Provenance in Modern Beach and Fluvial Sands of the Betic Cordillera, Southern Spain
Abstract
:1. Introduction
- To differentiate heavy mineral assemblages supplied from different source rocks and assessing the utility of heavy minerals as provenance indicators;
- To quantify the degree to which weathering has potentially reduced heavy minerals’ diversity;
- To determine the role of heavy mineral species as tracers in diamond exploration.
2. Geology and Physiography of the Source Area
- Algeciras–Cadiz Province (quartzose petrofacies);
- Marbella Province (quartzolithic ultramaficlastic petrofacies);
- Almeria–Malaga Province (quartzolithic metamorphic—sedimentaclastic petrofacies).
3. Materials and Methods
4. Results
4.1. Distribution of Heavy Minerals in the Almeria-Malaga Petrofacies
4.2. Distribution of Heavy Minerals in the Marbella Petrofacies
5. Discussion
5.1. Betic Cordillera Source Rock Types and Heavy Minerals
5.2. Provenance and Weathering of Heavy Minerals
5.3. The Role of Tracer Heavy Minerals in Diamond Exploration
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnsson, M.J. The system controlling the composition of clastic sediments. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; Volume 284, pp. 1–19. [Google Scholar]
- Palomares, M.; Arribas, J. Modern stream sands from compound crystalline sources: Composition and sand generation index. In Processes Controlling the Composition of Clastic Sediments; Johnsson, M.J., Basu, A., Eds.; Geological Society of America Special Paper: Boulder, CO, USA, 1993; Volume 284, pp. 313–322. [Google Scholar]
- Arribas, J.; Critelli, S.; Le Pera, E.; Tortosa, A. Composition of modern stream sand derived from a mixture of sedimentary and metamorphic source rocks (Henares River Central Spain). Sediment. Geol. 2000, 133, 27–48. [Google Scholar] [CrossRef]
- Le Pera, E.; Arribas, J. Sand composition in an Iberian passive-margin fluvial course: The Tajo River. Sediment. Geol. 2004, 171, 261–281. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E.; Padoan, M.; Limonta, M. Corrosion of heavy minerals during weathering and diagenesis: A catalog for optical analysis. Sediment. Geol. 2012, 280, 165–178. [Google Scholar] [CrossRef]
- Garzanti, E.; Canclini, S.; Foggia, F.M.; Petrella, N. Unraveling magmatic and orogenic provenance in modern sand: The back-arc side of the Apennine thrust belt, Italy. J. Sediment. Res. 2002, 72, 2–17. [Google Scholar] [CrossRef]
- Garzanti, E.; Andò, S.; Vezzoli, G.; Dell’Era, D. From rifted margins to foreland basins: Investigating provenance and sediment dispersal across desert Arabia (Oman, UAE). J. Sediment. Res. 2003, 73, 572–588. [Google Scholar] [CrossRef]
- Le Pera, E.; Tangari, A.C.; Marinangeli, L.; Morrone, C.; Riber, L.; Andò, S. Provenance of Modern Sands from Baja California Rivers (Mexico): Petrographic Constraints from Light and Heavy Minerals. J. Sediment. Res. 2023, 93, 617–641. [Google Scholar] [CrossRef]
- Weijermars, R. Geology and Tectonics of the Betic Zone, Se Spain. Earth-Sci. Rev. 1991, 31, 153–236. [Google Scholar] [CrossRef]
- Critelli, S.; Arribas, J.; Le Pera, E.; Tortosa, A.; Marsaglia, K.M.; Latter, K.K. The recycled orogenic sand provenance from an uplifted thrust belt, Betic Cordillera, southern Spain. J. Sediment. Res. 2003, 73, 72–81. [Google Scholar] [CrossRef]
- Ibbeken, N.G.H.; Schleyer, R. Source and Sediment: A Case Study of Provenance and Mass Balance at an Active Plate Margin (Calabria, Southern Italy); Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar] [CrossRef]
- Asch, K. Geology without national boundaries: The 1:5 million international geological map of Europe and adjacent areas: IGME 5000. Episodes 2006, 29, 39–42. [Google Scholar]
- van Hinsbergen, D.J.J.; Torsvik, T.H.; Schmid, S.M.; Matenco, L.C.; Maffione, M.; Vissers, R.L.M.; Gürer, D.; Spakman, W. Orogenic architecture of the Mediterranean region and kinematic reconstruction of its tectonic evolution since the Triassic. Gondwana Res. 2020, 81, 79–229. [Google Scholar] [CrossRef]
- Guerrera, F.; Martinalgarra, A.; Perrone, V. Late Oligocene-Miocene Syn-/-Late-Orogenic Successions in Western and Central Mediterranean Chains from the Betic Cordillera to the Southern Apennines. Terra Nova 1993, 5, 525–544. [Google Scholar] [CrossRef]
- Vitale, S.; Ciarcia, S. Tectono-stratigraphic and kinematic evolution of the southern Apennines/Calabria–Peloritani Terrane system (Italy). Tectonophysics 2013, 583, 164–182. [Google Scholar] [CrossRef]
- Amodio, M.L.; Bonardi, G.; Colonna, V.; Dietrich, D.; Giunta, G.; Ippolito, F.; Liguori, V.; Lorenzoni, F.; Paglionico, A.; Perrone, V.; et al. L’arco calabro-peloritano nell’orogene appenninico-maghrebide [The Calabro-Peloritani Arc during the Apennine-Maghrebide Orogeny]. Mem. Soc. Geol. It. 1976, 17, 1–60. [Google Scholar]
- Filice, F.; Liberi, F.; Cirillo, D.; Pandolfi, L.; Marroni, M.; Piluso, E. Geology map of the central area of Catena Costiera: Insights into the tectono-metamorphic evolution of the Alpine belt in Northern Calabria. J. Maps 2015, 11, 114–125. [Google Scholar] [CrossRef]
- Do Couto, D.; Gorini, C.; Jolivet, L.; Lebret, N.; Augier, R.; Gumiaux, C.; d’Acremont, E.; Ammar, A.; Jabour, H.; Auxietre, J.L. Tectonic and stratigraphic evolution of the Western Alboran Sea Basin in the last 25 Myrs. Tectonophysics 2016, 677, 280–311. [Google Scholar] [CrossRef]
- Brozzetti, F.; Cirillo, D.; Liberi, F.; Piluso, E.; Faraca, E.; De Nardis, R.; Lavecchia, G. Structural style of Quaternary extension in the Crati Valley (Calabrian Arc): Evidence in support of an east-dipping detachment fault. Ital. J. Geosci. 2017, 136, 434–453. [Google Scholar] [CrossRef]
- Lavecchia, G.; de Nardis, R.; Ferrarini, F.; Cirillo, D.; Bello, S.; Brozzetti, F. Regional seismotectonic zonation of hydrocarbon fields in active thrust belts: A case study from Italy. In Building Knowledge for Geohazard Assessment and Management in the Caucasus and other Orogenic Regions; Bonali, F.L., Mariotto, F.P., Tsereteli, N., Eds.; Springer: Dordrecht, The Netherlands, 2021; pp. 89–128. [Google Scholar] [CrossRef]
- Alfaro, P.; Delgado, J.; de Galdeano, C.S.; Galindo-Zaldívar, J.; García-Tortosa, F.J.; López-Garrido, A.C.; López-Casado, C.; Marín-Lechado, C.; Gil, A.; Borque, M.J. The Baza Fault: A major active extensional fault in the central Betic Cordillera (south Spain). Int. J. Earth Sci. 2008, 97, 1353–1365. [Google Scholar] [CrossRef]
- Balanyá, J.C.; Crespo-Blanc, A.; Díaz-Azpiroz, M.; Expósito, I.; Torcal, F.; Pérez-Peña, V.; Booth-Rea, G. Arc-parallel vs back-arc extension in the Western Gibraltar arc: Is the Gibraltar forearc still active? Geol. Acta 2012, 10, 249–263. [Google Scholar] [CrossRef]
- Stich, D.; Morales, J.; López-Comino, J.Á.; Araque-Pérez, C.; Azañón, J.M.; Dengra, M.Á.; Ruiz, M.; Weber, M. Seismogenic structures and active creep in the Granada Basin (S-Spain). Tectonophysics 2024, 882, 230368. [Google Scholar] [CrossRef]
- Brozzetti, F.; Mondini, A.C.; Pauselli, C.; Mancinelli, P.; Cirillo, D.; Guzzetti, F.; Lavecchia, G. Mainshock Anticipated by Intra-Sequence Ground Deformations: Insights from Multiscale Field and SAR Interferometric Measurements. Geosciences 2020, 10, 186. [Google Scholar] [CrossRef]
- Fallot, P. Les Cordilléres Bétiques; Consejo Superior de Investigaciones Cientificas, Instituto de Investigaciones Geologicas Lucas Mallada: Barcelona, Spain, 1948. [Google Scholar]
- Gutierrez Mas, J.M.; Martin Algarra, A.; Domínguez Bella, S.; Moral Cardona, J.P. Introduccion a la Geologıa de la Provincia de Cadiz; Universidad de Cadiz, Servicio de Publicaciones: Cádiz, Spain, 1991. [Google Scholar]
- Lundeen, M.T. Emplacement of the Ronda peridotite, Sierra Bermeja, Spain. Geol. Soc. Am. Bull. 1978, 89, 172–180. [Google Scholar] [CrossRef]
- Criniti, S.; Martín-Martín, M.; Martín-Algarra, A.A. New constraints for the western Paleotethys paleogeography-paleotectonics derived from detrital signatures: Malaguide Carboniferous Culm Cycle (Betic Cordillera, S Spain). Sediment. Geol. 2023, 458, 106534. [Google Scholar] [CrossRef]
- Dickey, J.S.J. Partial fusion products in alpine-type peridotites: Serrania de la Ronda and other examples. Mineral. Soc. Am. 1970, 3, 33–49. [Google Scholar]
- Liquete, C.; Arnau, P.; Canals, M.; Colas, S. Mediterranean river systems of Andalusia, southern Spain, and associated deltas: A source to sink approach. Mar. Geol. 2005, 222, 471–495. [Google Scholar] [CrossRef]
- Koppen, W. Versuch einer Klassifikation der klimate vorzugsweise nach ihren Bezie-hungen zur Pflanzenwelt. Geogr. Z. 1901, 6, 593. [Google Scholar]
- Cavazza, W.; Zuffa, G.G.; Camporesi, C.; Ferretti, C. Sedimentary recycling in a temperate climate drainage basin (Senio River, north-central Italy): Composition of source rock, soil profiles, and fluvial deposits. In Processes Controlling the Composition of Clastic Sediments: Geological Society of America; Johnsson, M.J., Basu, A., Eds.; Geological Society of America: Boulder, CO, USA, 1993; Volume 284, pp. 226–247. [Google Scholar]
- Malvarez, G.; Navas, F.; del Rio, J.L. Assessment and projections of sediment budget resilience in Marbella, Spain. Front. Mar. Sci. 2022, 9, 933994. [Google Scholar] [CrossRef]
- Molina, R.; Anfuso, G.; Manno, G.; Gracia, P.F.J. The Mediterranean Coast of Andalusia (Spain): Medium-Term Evolution and Impacts of Coastal Structures. Sustainability 2019, 11, 3539. [Google Scholar] [CrossRef]
- Parfenoff, A.; Pomerol, C.; Tourenq, J. Minerals in Grains: Methods of Study and Determination; Masson & Cie: Paris, France, 1970; 571p. [Google Scholar]
- Marinangeli, L.; Pompilio, L.; Baliva, A.; Billotta, S.; Bonanno, G.; Domeneghetti, M.C.; Fioretti, A.M.; Menozzi, O.; Nestola, F.; Piluso, E.; et al. Development of an ultra-miniaturised XRD/XRF instrument for the in situ mineralogical and chemical analysis of planetary soils and rocks: Implication for archaeometry. Rend. Lincei-Sci. Fis. 2015, 26, 529–537. [Google Scholar] [CrossRef]
- Szopa, K.; Skreczko, S.; Chew, D.; Krzykawski, T.; Szymczyk, A. Multi-Tool (LA-ICPMS, EMPA and XRD) Investigation on Heavy Minerals from Selected Holocene Peat-Bog Deposits from the Upper Vistula River Valley, Poland. Minerals 2020, 10, 9. [Google Scholar] [CrossRef]
- Miriello, D.; Bloise, A.; Crisci, G.M.; De Luca, R.; De Nigris, B.; Martellone, A.; Osanna, M.; Pace, R.; Pecci, A.; Ruggieri, N. Non-Destructive Multi-Analytical Approach to Study the Pigments of Wall Painting Fragments Reused in Mortars from the Archaeological Site of Pompeii (Italy). Minerals 2018, 8, 134. [Google Scholar] [CrossRef]
- Huang, E.; Chen, C.H.; Huang, T.; Lin, E.H.; Xu, J.A. Raman spectroscopic characteristics of Mg-Fe-Ca pyroxenes. Am. Mineral. 2000, 85, 473–479. [Google Scholar] [CrossRef]
- Wang, A.; Jolliff, B.L.; Haskin, L.A.; Kuebler, K.E.; Viskupic, K.M. Characterization and comparison of structural and compositional features of planetary quadrilateral pyroxenes by Raman spectroscopy. Am. Mineral. 2001, 86, 790–806. [Google Scholar] [CrossRef]
- Rinaudo, C.; Belluso, E.; Gastaldi, D. Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineral. Mag. 2004, 68, 455–465. [Google Scholar] [CrossRef]
- Reddy, B.J.; Frost, R.L. Spectroscopic characterization of chromite from the Moa-Baracoa Ophiolitic Massif, Cuba. Spectrochim. Acta A 2005, 61, 1721–1728. [Google Scholar] [CrossRef] [PubMed]
- McKeown, D.A. Raman spectroscopy, vibrational analysis, and heating of buergerite tourmaline. Phys. Chem. Min. 2008, 35, 259–270. [Google Scholar] [CrossRef]
- Bersani, D.; Andò, S.; Scrocco, L.; Gentile, P.; Salvioli-Mariani, E.; Fornasini, L.; Lottici, P.P. Composition of Amphiboles in the Tremolite-Ferro-Actinolite Series by Raman Spectroscopy. Minerals 2019, 9, 491. [Google Scholar] [CrossRef]
- Apopei, A.I.; Buzgar, N. The Raman study of amphiboles. Geology 2010, 56, 57. [Google Scholar]
- Apopei, A.I.; Buzgar, N.; Buzatu, A. Raman and infrared spectroscopy of kaersutite and certain common amphiboles. Geology 2011, 57, 35–58. [Google Scholar]
- Buzatu, A.; Buzgar, N. The Raman study of single-chain silicates. Geology 2010, 56, 107. [Google Scholar]
- Hoang, L.H.; Nguyen, T.M.H.; Chen, X.B.; Minh, N.V.; Yang, I.S. Raman spectroscopic study of various types of tourmalines. J. Raman Spectrosc. 2011, 42, 1442–1446. [Google Scholar] [CrossRef]
- Kloprogge, J.T.; Case, M.H.; Frost, R.L. Raman microscopic study of the Li amphibole holmquistite, from the Martin Marietta Quarry, Bessemer City, NC, USA. Mineral. Mag. 2001, 65, 775–785. [Google Scholar] [CrossRef]
- Andò, S.; Garzanti, E. Raman spectroscopy in heavy-mineral studies. Geol. Soc. Spec. Publ. 2014, 386, 395–412. [Google Scholar] [CrossRef]
- D’Ippolito, V.; Andreozzi, G.B.; Bersani, D.; Lottici, P.P. Raman fingerprint of chromate, aluminate and ferrite spinels. J. Raman Spectrosc. 2015, 46, 1255–1264. [Google Scholar] [CrossRef]
- Chukanov, N.V.; Vigasina, M.F. Vibrational (Infrared and Raman) Spectra of Minerals and Related Compounds; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Kos, S.; Dolenec, M.; Lux, J.; Dolenec, S. Raman Microspectroscopy of Garnets from S-Fibulae from the Archaeological Site Lajh (Slovenia). Minerals 2020, 10, 325. [Google Scholar] [CrossRef]
- Maftei, A.E.; Buzatu, A.; Damian, G.; Buzgar, N.; Dill, H.G.; Apopei, A.I. Micro-Raman—A tool for the heavy mineral analysis of gold placer-type deposits (Pianu Valley, Romania). Minerals 2020, 10, 988. [Google Scholar] [CrossRef]
- Zhai, K.; Xue, W.H.; Wang, H.; Wu, X.; Zhai, S.M. Raman spectra of sillimanite, andalusite, and kyanite at various temperatures. Phys Chem Min. 2020, 47, 23. [Google Scholar] [CrossRef]
- Fu, M.H.; Dai, J.J.; Zhao, L.X. A Study on the Raman Spectral Characteristics of Garnet from the Jiama Copper Polymetallic Deposit in Tibet. Minerals 2022, 12, 1578. [Google Scholar] [CrossRef]
- Borromeo, L.; Andò, S.; Bersani, D.; Garzanti, E.; Gentile, P.; Mantovani, L.; Tribaudino, M. Detrital orthopyroxene as a tracer of geodynamic setting: A Raman and SEM-EDS provenance study. Chem. Geol. 2022, 596, 120809. [Google Scholar] [CrossRef]
- Limonta, M.; Andò, S.; Bersani, D.; Garzanti, E. Discrimination of Clinozoisite-Epidote Series by Raman Spectroscopy: An application to Bengal Fan Turbidites (IODP Expedition 354). Geosciences 2022, 12, 442. [Google Scholar] [CrossRef]
- Sundararajan, M.; Rejith, R.G.; Renjith, R.A.; Mohamed, A.P.; Gayathri, G.S.; Resmi, A.N.; Jinesh, K.B.; Loveson, V.J. Raman-XPS spectroscopic investigation of heavy mineral sands along Indian coast. Geo-Mar. Lett. 2021, 41, 22. [Google Scholar] [CrossRef]
- do Nascimento-Dias, B.L. Overview about Raman spectroscopy of types of olivine group minerals: A brief review. J. Raman Spectrosc. 2022, 53, 1942–1946. [Google Scholar] [CrossRef]
- Torre-Fdez, I.; García-Florentino, C.; Huidobro, J.; Coloma, L.; Ruiz-Galende, P.; Aramendia, J.; Castro, K.; Arana, G.; Madariaga, J.M. Characterization of olivines and their metallic composition: Raman spectroscopy could provide an accurate solution for the active and future Mars missions. J. Raman Spectrosc. 2023, 54, 340–350. [Google Scholar] [CrossRef]
- Zheira, G.; Masoudi, F.; Rahimzadeh, B. Identification of Fe3+ content in epidote from Varan, Urumieh-Dokhtar magmatic arc, Iran: Using FTIR and Raman spectroscopy. Iran. J. Earth Sci. 2022, 14, 131–139. [Google Scholar] [CrossRef]
- Lafuente, B.; Downs, R.T.; Yang, H.; Stone, N. The power of databases: The RRUFF project. In Highlights in Mineralogical Crystallography; W. De Gruyter: Berlin, Germany, 2015; pp. 1–30. [Google Scholar]
- Komar, P.D. The entrainment, transport and sorting of heavy minerals by waves and currents. In Developments in Sedimentology; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 3–48. [Google Scholar]
- Cascalho, S.; Fradique, C. The Sources and Hydraulic sorting of heavy minerals on the northern portuguese continental margin. In Developments in Sedimentology; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 75–107. [Google Scholar]
- Mason, B.; Donnay, G.; Hardie, L.A. Ferric tourmaline from Mexico. Science 1964, 144, 71–73. [Google Scholar] [CrossRef] [PubMed]
- Arnaudov, V.; Petrussenko, S.; Karov, C. Buergerite in pegmatites from the Plana Cretaceous pluton, Western Bulgaria. Geochem. Mineral. Pet. 2002, 39, 75–80. [Google Scholar]
- Augustsson, C.; Bahlburg, H. Provenance of late Palaeozoic metasediments of the Patagonian proto-Pacific margin (southernmost Chile and Argentina). Int. J. Earth Sci. 2008, 97, 71–88. [Google Scholar] [CrossRef]
- Mange, M.A.; Wright, D.T. Heavy Minerals in Use; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Rodriguez Fernandez, R.; Oliveira, T.J. Mapa Geologico de Espana y Portugal—Geological Map of Spain and Portugal 1:1,000,000 Scale. Available online: https://info.igme.es/visor/ (accessed on 31 May 2024).
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA, 1972. [Google Scholar] [CrossRef]
- Hubert, J.F. A zircon-tourmaline-rutile maturity index and the interdependence of the composition of heavy mineral assemblages with the gross composition and texture of sandstones. J. Sediment. Res. 1962, 32, 440–450. [Google Scholar] [CrossRef]
- Tangari, A.C.; Le Pera, E.; Andò, S.; Garzanti, E.; Piluso, E.; Marinangeli, L.; Scarciglia, F. Soil-formation in the central Mediterranean: Insight from heavy minerals. Catena 2021, 197, 104998. [Google Scholar] [CrossRef]
- Nowicki, T.E.; Moore, R.O.; Gurney, J.J.; Baumgartner, M.C. Diamonds and associated heavy minerals in kimberlite: A review of key concepts and applications. In Developments in Sedimentology; Mange, M.A., Wright, D.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 58, pp. 1235–1267. [Google Scholar]
- Neilson, S.; Grütter, H.; Pell, J.; Grenon, H. The evolution of kimberlite indicator mineral interpretation on the Chidliak project, Baffin Island, Nunavut. In Proceedings of the International Kimberlite Conference, Bangalore, India, 6–11 February 2012. [Google Scholar]
- Pell, J.; Russell, J.K.; Zhang, S.X. Kimberlite emplacement temperatures from conodont geothermometry. Earth Planet. Sci. Lett. 2015, 411, 131–141. [Google Scholar] [CrossRef]
Samples | Petrofacies | Sample Environment | Electromagnetic Fraction (A) | Heavy Minerals |
---|---|---|---|---|
382 Rio Morales | A: Almeria-Malaga | fluvial | 1.0 | Ep + Bur |
0.5 | Alm + Cld + Bur | |||
388 Rio Adra | fluvial | 1.0 | Ep | |
0.5 | Alm | |||
381 Las Negras beach | beach | 0.5 | Bur + Hbl + Cum + Hyp + Aug + Di + Omp | |
0.2 | Hyp + Krs + Bur | |||
394 Punta de la Mona beach | beach | 1.0 | St + Sill | |
0.5 | Alm + Tr + Mnz | |||
396 Lagos beach | beach | 1.0 | Tr + St | |
0.5 | Alm + Di | |||
406 Rio Guadalmina | B: Marbella | fluvial | 0.5 | Fo + Hyp + Act |
0.2 | Chr | |||
407 Rio Guadalmansa | fluvial | 1.0 | Fo + Aug + Di | |
0.5 | Alm + Di + Fo + Chr | |||
408 Punta del Castor beach | beach | 1.0 | Fo + Hyp + Aug + Act | |
0.5 | Alm + Di + Cum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tangari, A.C.; Cirillo, D.; De Luca, R.; Miriello, D.; Pugliese, E.; Le Pera, E. Heavy Minerals Distribution and Provenance in Modern Beach and Fluvial Sands of the Betic Cordillera, Southern Spain. Geosciences 2024, 14, 208. https://doi.org/10.3390/geosciences14080208
Tangari AC, Cirillo D, De Luca R, Miriello D, Pugliese E, Le Pera E. Heavy Minerals Distribution and Provenance in Modern Beach and Fluvial Sands of the Betic Cordillera, Southern Spain. Geosciences. 2024; 14(8):208. https://doi.org/10.3390/geosciences14080208
Chicago/Turabian StyleTangari, Anna Chiara, Daniele Cirillo, Raffaella De Luca, Domenico Miriello, Elena Pugliese, and Emilia Le Pera. 2024. "Heavy Minerals Distribution and Provenance in Modern Beach and Fluvial Sands of the Betic Cordillera, Southern Spain" Geosciences 14, no. 8: 208. https://doi.org/10.3390/geosciences14080208
APA StyleTangari, A. C., Cirillo, D., De Luca, R., Miriello, D., Pugliese, E., & Le Pera, E. (2024). Heavy Minerals Distribution and Provenance in Modern Beach and Fluvial Sands of the Betic Cordillera, Southern Spain. Geosciences, 14(8), 208. https://doi.org/10.3390/geosciences14080208