Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea
Abstract
:1. Introduction
2. Seafloor Spreading
3. Continental Rifting
3.1. Seismic Stratigraphy
3.2. Rift Architecture
3.3. Deformation Styles
3.4. Cenozoic Magmatism
4. Proto-SCS
4.1. Tomography
4.2. Ophiolites
4.3. Luconia
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LDRPM | Luconia Shoals–Dangerous Grounds–Reed Bank–north Palawan–SW Mindoro |
GPTS | Geomagnetic Polarity Time Scale |
HVLC | High velocity lower crust |
IODP | International Ocean Discovery Program |
PRMB | Pearl River Mouth Basin |
SCMA | South China Magnetic Anomaly |
TWTT | Two-way travel time |
COB | Continent-ocean boundary |
CPO | Central Palawan Ophiolite |
MQZ | Magnetic quite zone |
SCS | South China Sea |
SPO | South Palawan Ophiolite |
References
- Taylor, B.; Hayes, D.E. The tectonic evolution of the South China Sea. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 1; Hayes, D.E., Ed.; Geophysical Monograph Series; AGU: Washington, DC, USA, 1980; Volume 23, pp. 89–104. [Google Scholar] [CrossRef]
- Holloway, N.H. The North Palawan block, Philippines: Its relation to the Asian mainland and its role in the evolution of the South China Sea. Bull. Geol. Soc. Malays. 1981, 14, 19–58. [Google Scholar] [CrossRef]
- Holloway, N.H. North Palawan block, Philippines-its relation to Asian mainland and role in evolution of South China Sea. Am. Assoc. Pet. Geol. Bull. 1982, 66, 1355–1383. [Google Scholar] [CrossRef]
- Taylor, B.; Hayes, D.E. Origin and history of the South China Sea basin. In The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2; Hayes, D.E., Ed.; Geophysical Monograph Series; AGU: Washington, DC, USA, 1983; Volume 27, pp. 23–56. [Google Scholar] [CrossRef]
- Taylor, B. The rifting to spreading evolution of marginal basins. AGU Fall Mtg. Abst. 2017, 2017, T32A-02. [Google Scholar]
- Sun, Z.; Lin, J.; Qiu, N.; Jian, Z.; Wang, P.; Pang, X.; Zheng, J.; Zhu, B. The role of magmatism in the thinning and breakup of the South China Sea continental margin. Natl. Sci. Rev. 2019, 6, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Huang, C.-Y.; Lin, J.; Jian, Z.; Sun, Z.; Zhao, M. The South China Sea is not a mini-Atlantic: Plate-edge rifting vs. intra-plate rifting. Nat. Sci. Rev. 2019, 6, 902–913. [Google Scholar] [CrossRef]
- Mohn, G.; Ringenbach, J.C.; Nirrengarten, M.; Lei, C.; McCarthy, A.; Tugend, J. Mode of continental breakup of marginal seas. Geology 2022, 50, 1208–1213. [Google Scholar] [CrossRef]
- Zhang, C.; Manatschal, G.; Taylor, B.; Sun, Z.; Zhao, M.; Zhang, J. Characterization and mapping of continental breakup and seafloor spreading initiation: The example of the northern rifted margin of the South China Sea. Basin Res. 2024, 36, e12882. [Google Scholar] [CrossRef]
- Li, C.-F.; Song, T.-R. Magnetic recording of the Cenozoic oceanic crustal accretion and evolution of the South China Sea basin. Chin. Sci. Bull. 2012, 57, 3165–3181. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science 2014, 346, 65–67. [Google Scholar] [CrossRef]
- Hwang, C.; Chang, E.T.Y. Seafloor sectrets revealed. Science 2014, 346, 32–33. [Google Scholar] [CrossRef]
- Hamilton, W.B. Tectonics of the Indonesian Region; Geological Survey Professional Paper; U.S. Government Publishing Office: Washington, DC, USA, 1979; Volume 1078, p. 345. [Google Scholar]
- Jahn, B.-M.; Chen, P.Y.; Yen, T.P. Rb-Sr ages of granitic rocks in southeastern China and their tectonic significance. Bull. Geol. Soc. Am. 1976, 86, 763–776. [Google Scholar] [CrossRef]
- Pautot, G.; Rangin, C.; Briais, A.; Wu, J.; Han, S.; Li, H.; Lu, Y.; Zhao, J. The axial ridge of the South China Sea: A Seabeam and geophysical survey. Oceanol. Acta 1990, 13, 129–143. [Google Scholar]
- Briais, A.; Patriat, P.; Taponnier, P. Updated interpretation of magnetic anomalies and seafloor spreading stages in South China Sea: Implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 1993, 98, 6299–6328. [Google Scholar] [CrossRef]
- Ishihara, T.; Kisimoto, K. Magnetic Anomaly Map of East Asia, Scale 1:4,000,000; Geological Survey of Japan & CCOP-ESA: Tokyo, Japan; Bangkok, Thailand, 1996; [CD-ROM]. [Google Scholar]
- Guan, Q.; Zhang, T.; Taylor, B.; Gao, J.; Li, J. Ridge jump reorientation of the South China Sea revealed by high-resolution magnetic data. Terra Nova 2021, 33, 475–482. [Google Scholar] [CrossRef]
- Qiu, N.; Sun, Z.; Lin, J.; Li, C.-F.; Xu, X. Dating seafloor spreading of the southwest sub-basin in the South China Sea. Gondw. Res. 2023, 120, 190–206. [Google Scholar] [CrossRef]
- Barckhausen, U.; Engels, M.; Franke, D.; Ladage, S.; Pubellier, M. Evolution of the South China Sea. Revised ages for breakup and seafloor spreading. Mar. Pet. Geol. 2014, 58, 599–611. [Google Scholar] [CrossRef]
- Hsu, S.-K.; Yeh, Y.-C.; Doo, W.-B.; Tsai, C.-H. New bathymetry and magnetic lineations identifications in the northernmost South China Sea and their tectonic implications. Mar. Geophys. Res. 2004, 25, 29–44. [Google Scholar] [CrossRef]
- Li, C.-F.; Xu, X.; Lin, J.; Sun, Z.; Zhu, J.; Yao, Y.; Zhao, X.; Liu, Q.; Kulhanek, D.K.; Wang, J.; et al. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosys. 2014, 15, 4958–4983. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, J.; Xu, M.; Li, H. Magnetic anomaly lineations in the northeastern South China Sea and their implications for initial seafloor spreading. Front. Earth Sci. 2023, 10, 1015856. [Google Scholar] [CrossRef]
- Song, T.-R.; Li, C.-F. The opening ages and mode of the South China Sea estimated from high-density magnetic tracks. Progress Geophys. 2012, 27, 1432–1442. [Google Scholar] [CrossRef]
- Yu, Z.; Li, J.; Ding, W.; Zhang, J.; Ruan, A.; Niu, X. Crustal structure of the southwest subbasin, South China Sea, from wide-angle seismic tomography and seismic reflection imaging. Mar. Geophys. Res. 2017, 38, 85–104. [Google Scholar] [CrossRef]
- Ding, W.; Qin, L.; Feng, X.; Wu, C.; Wu, G.; Diao, Y.; Yin, S.; Yang, C.; Gao, J.; Li, J. A new perspective on the continent-ocean boundary of Palawan continental block identified with geophysical data. Tectonophysics 2022, 826, 229239. [Google Scholar] [CrossRef]
- Ogg, J.G. Geomagnetic polarity time scale. In Geologic Time Scale 2020; Gradstein, M.F., Ogg, J.G., Schmitz, M.D., Ogg, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 5; pp. 159–192. [Google Scholar] [CrossRef]
- Chao, P.; Manatschal, G.; Chenin, P.; Zhang, C.; Ren, J.; Peng, X.; Zheng, J. A 3D snapshot of crustal breakup deduced from seismic analysis of the tip of the NW South China Sea. Tectonics 2022, 41, e2021TC007127. [Google Scholar] [CrossRef]
- Chang, S.-P.; Pubellier, M.; Delescluse, M.; Qiu, Y.; Nirrengarten, M.; Mohn, G.; Chamot-Rooke; Liang, Y. Crustal architecture of the southwestern South China Sea: Implications to continental breakup. Mar. Pet. Geol. 2022, 136, 105450. [Google Scholar] [CrossRef]
- Luo, P.; Manatschal, G.; Ren, J.; Zhao, Z.; Tong, D. Tectono-magmatic and stratigraphic evolution of final rifting and breakup: Evidence from the tip of the southwestern propagator in the South China Sea. Mar. Pet. Geol. 2021, 129, 105079. [Google Scholar] [CrossRef]
- LaBrecque, J.L.; Kent, D.V.; Cande, S.C. Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time. Geology 1977, 5, 330–335. [Google Scholar] [CrossRef]
- Menard, H.W.; Atwater, T. Changes in direction of seafloor spreading. Nature 1968, 219, 463–467. [Google Scholar] [CrossRef]
- Sibuet, J.-C.; Yeh, Y.-C.; Lee, C.-S. Geodynamics of the South China Sea. Tectonophysics 2016, 692, 98–119. [Google Scholar] [CrossRef]
- Cameselle, A.L.; Ranero, C.R.; Franke, D.; Barckhausen, U. The continent-ocean transition on the northwestern South China Sea. Basin Res. 2017, 29, 73–95. [Google Scholar] [CrossRef]
- Ding, W.; Sun, Z.; Mohn, G.; Nirrengarten, M.; Tugend, J.; Manatschal, G.; Li, J. Lateral evolution of the rift-to-drift transition in the South China Sea: Evidence from multi-channel seismic data and IODP Expeditions 367 and 368 drilling results. Earth Planet. Sci. Lett. 2020, 531, 115932. [Google Scholar] [CrossRef]
- Xia, S.; Fan, C.; Wang, D.; Cao, J.; Zhao, F. Hyperextended crustal structure of the Qiongdongnan Basin and subsequent magmatic influence from the Hainan mantle plume. Sci. China Earth Sci. 2022, 65, 845–862. [Google Scholar] [CrossRef]
- Cai, G.; Wan, Z.; Yao, Y.; Zhong, L.; Zheng, H.; Kapsiotis, A.; Zhang, C. Mesozoic northward subduction along the SE Asian continental margin inferred from magmatic records in the South China Sea. Minerals 2019, 9, 598. [Google Scholar] [CrossRef]
- Zhong, L.F.; Cai, G.Q.; Koppers, A.A.P.; Xu, Y.G.; Xu, H.H.; Gao, H.F.; Xia, B. 40Ar/30Ar dating of oceanic plagiogranite: Constraints on the initiation of seafloor spreading in the South China Sea. Lithos 2018, 302–303, 421–426. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, J.; Yao, Y.; Tang, J.; Gao, H.; Li, X. The temporal-spatial distribution and deep structure of the ZhongnanLiyue fault zone in the north of the South China Sea basin. Earth Sci. J. China Uni. Geosci. 2021, 46, 942–955. [Google Scholar] [CrossRef]
- Li, C.-F.; Li, J.; Ding, W.; Franke, D.; Yao, Y.; Shi, H.; Pang, X.; Cao, Y.; Lin, J.; Kulhanek, D.K.; et al. Seismic stratigraphy of the central South China Sea basin and implications for neotectonics. J. Geophys. Res. 2015, 120, 1377–1399. [Google Scholar] [CrossRef]
- Koppers, A.P. On the Ar40/Ar39 dating of low-Potassium ocean crust basalt from IODP Expedition 349, South China Sea. AGU Fall Mtg. Abst. 2014, 2014, T31E-03. [Google Scholar]
- Lo, Y.C.; Chen, C.T.; Lo, C.H.; Chung, S.L. Ages of ophiolitic rocks along plate suture in Taiwan orogeny: Fate of the South China Sea from subduction to collision. Terr. Atmos. Ocean. Sci. 2020, 31, 383–402. [Google Scholar] [CrossRef]
- Larsen, H.C.; Mohn, G.; Nirrengarten, M.; Sun, Z.; Stock, J.; Jian, Z.; Klaus, A.; Alvarez-Zarikian, C.A.; Boaga, J.; Bowden, S.A.; et al. Rapid transition from continental breakup to igneous oceanic crust in the South China Sea. Nature Geosc. 2018, 11, 782–789. [Google Scholar] [CrossRef]
- Seton, M.; Müller, R.D.; Zahirovic, S.; Williams, S.; Wright, N.M.; Cannon, J.; Whittaker, J.M.; Matthews, K.J.; McGirr, R. A global data set of present-day oceanic crustal age and seafloor spreading parameters. Geoch. Geophys. Geosyst. 2020, 21, e2020GC009214. [Google Scholar] [CrossRef]
- Nissen, S.S.; Hayes, D.E.; Yao, B.; Zeng, W.; Chen, Y.; Nu, X. Gravity, heat flow, and seismic constraints on the processes of crustal extension: Northern margin of the South China Sea. J. Geophys. Res. 1995, 100, 22447–22483. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of late Mesozoic igneous rocks in southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Waples, D.W. A new model for heat flow in extensional basins: Estimating radiogenic heat production. Nat. Resour. Res. 2002, 11, 125–133. [Google Scholar] [CrossRef]
- Li, Z.; Li, X. Formation of the 1300-km-wide intracontinental orogen and post-orogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Li, X.H. In situ zircon U-Pb and Hf-O isotopic results for ca. 73 Ma granite in Hainan Island: Implications for the termination of an Andean-type active continental margin in southeast China. J. Asian Earth Sci. 2014, 82, 32–46. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Dong, S.; Johnson, S.T. Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth Sci. Rev. 2014, 134, 98–136. [Google Scholar] [CrossRef]
- Yan, Q.; Shi, X.; Castillo, P. The late Mesozoic-Cenozoic tectonic evolution of the South China Sea: A petrologic perspective. J. Asian Earth Sci. 2014, 85, 178–201. [Google Scholar] [CrossRef]
- Xu, C.; Shi, H.; Barnes, C.G.; Zhou, Z. Tracing a late Mesozoic magmatic arc along the Southeast Asian margin from the granitoids drilled from the South China Sea. Int. Geol. Rev. 2016, 58, 71–94. [Google Scholar] [CrossRef]
- Kausarian, H.; Lei, S.; Lai, G.T.; Cui, Y.; Suryadi, Y. A new geological map of formation distribution on southern part of South China Sea:; Natuna Island, Indonesia. IOP Conf. Ser. Mat. Sci. Eng. 2018, 532, 012020. [Google Scholar] [CrossRef]
- Li, F.; Sun, Z.; Yang, H. Possible spatial distribution of the Mesozoic volcanic arc in the present-day South China Sea continental margin and its tectonic implications. J. Geophys. Res. 2018, 123, 6215–6235. [Google Scholar] [CrossRef]
- Hennig-Breitfeld, J.; Breitfeld, H.T.; Sang, D.Q.; Vinh, M.K.; Long, T.V.; Thirlwall, M.; Cuong, T.X. Ages and character of igneous rocks of the Da Lat Zone in SE Vietam and adjacent offshore regions (Cuu Long and Nam Con Son basins). J. Asian Earth Sci. 2021, 281, 104878. [Google Scholar] [CrossRef]
- Qian, X.; Yu, Y.; Wang, Y.; Gan, C.; Zhang, Y.; Asis, J.B. Late Cretaceous nature of SW Borneo and paleo-Pacific Subduction: New insights from the granitoids in the Schwaner Mountains. Lithosphere 2022, 2022, 8483732. [Google Scholar] [CrossRef]
- Webb, M.; Endinanda, F.; Gough, A. Mesozoic magmatism of Natuna Island, Indonesia: Impplications for the Subduction history of eastern Sundaland. Gondw. Res. 2023, 119, 45–67. [Google Scholar] [CrossRef]
- Kudrass, H.R.; Wiedicke, M.; Cepek, P.; Kreuzer, H.; Müller, P. Mesozoic and Cainozoic rocks dredged from the South China Sea (Reed Bank area) and Sulu Sea and their significance for plate-tectonic reconstructions. Mar. Pet. Geol. 1986, 3, 19–30. [Google Scholar] [CrossRef]
- Schlüter, H.U.; Hinz, K.; Block, M. Tectono-stratigraphic terranes and detachment faulting of the South China Sea and Sulu Sea. Mar. Geol. 1996, 130, 39–78. [Google Scholar] [CrossRef]
- Zamoras, L.R.; Matsuoka, A. Accretion and postaccretion tectonics of the Calamian Islands, North Palawan block, Philippines. Isl. Arc 2004, 13, 506–519. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhou, Z.; Hao, H.; Chen, H.; Wang, J.; Chen, B.; Wu, J. Late Mesozoic tectonic structure and evolution along the present-day northeastern South China Sea continental margin. J. Asian Earth Sci. 2008, 31, 546–561. [Google Scholar] [CrossRef]
- Yumul, G.P., Jr.; Dimalanta, C.B.; Marquez, E.J.; Queaño, K.L. Onland signatures of the Palawan microcontinental block and Philippine mobile belt collision and crustal growth process: A review. J. Asian Earth Sci. 2009, 34, 610–623. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Y.; Yan, P.; Zheng, H.; Liu, H.; Wang, J. Seismic evidence for Mesozoic strata in the northern Nansha waters, South China Sea. Tectonophysics 2016, 677–678, 190–198. [Google Scholar] [CrossRef]
- Fan, C.; Xia, S.; Cao, J.; Zhao, F.; Wan, K. Seismic constraints on a remnant Mesozoic forearc basin in the northeastern South China Sea. Gondw. Res. 2020, 102, 77–94. [Google Scholar] [CrossRef]
- Wei, W.; Lin, W.; Chen, Y.; Faure, M.; Ji, W.; Hou, Q.; Yan, Q.; Wang, Q. Tectonic controls on magmatic tempo in an active continental margin: Insights from the Early Cretaceous syn-tectonic magmatism in the Changle-Nan’ao belt, South China. J. Geophys. Res. 2023, 128, e2022JB025973. [Google Scholar] [CrossRef]
- Xie, Z.; Sun, L.; Pang, X.; Zheng, J.; Sun, Z. Origin of the Donghsa event in the South China Sea. Mar. Geophys. Res. 2017, 38, 357–371. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Z.; Manatschal, G.; Pang, X.; Ning, Q.; Su, M.; Zheng, J.; Li, H.; Gu, Y.; Zhang, J.; et al. Syn-rift magmatic characteristics and evolution at a sediment-rich margin: Insights from high-resolution seismic data from the South China Sea. Gondw. Res. 2021, 91, 81–96. [Google Scholar] [CrossRef]
- Pang, X.; Zheng, J.; Mei, L.; Liu, B.; Zhang, Z.; Wu, Z.; Feng, X. Structural diversity of fault depressions under the background of preexisting subduction continental margin, Pearl River Mouth Basin, China. Pet. Explor. Devel. 2021, 48, 677–686. [Google Scholar] [CrossRef]
- Hao, S.; Mei, L.; Peng, X.; Gernigon, L.; Paton, D.; Zheng, J.; Yu, Q.; Zhou, Z.; Zhong, Y. Rifted margin with localized detachment and polyphase magmatism: A new model of the northern South China Sea. Bull. Geol. Soc. Am. 2022, 135, 1667–1687. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, J.; Zhao, Y.; Zheng, J.; Lei, C.; Zhu, D. Consequences of continental core complexes on rifting patterns: Insights from multichannel seismic data from the northern margin of the South China Sea. Tectonics 2024, 43, e2023TC007870. [Google Scholar] [CrossRef]
- Macdonald, K.C. Mid-Ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Ann. Rev. Earth Planet. Sci. 1982, 10, 155–190. [Google Scholar] [CrossRef]
- Nirrengarten, M.; Mohn, G.; Kusznir, N.J.; Sapin, F.; Despinois, F.; Pubellier, M.; Chang, S.P.; Larsen, H.C.; Ringenbach, J.C. Extension modes and breakup processes of the southeast China-Northwest Palawan conjugate rifted margins. Mar. Pet. Geol. 2020, 113, 104123. [Google Scholar] [CrossRef]
- Tugend, J.; Gillard, M.; Manatschal, G.; Nirrengarten, M.; Harkin, C.; Epin, M.-E.; Sauter, D.; Autin, J.; Kusznir, N.; McDermott, K. Reappraisal of the magma-rich versus magma-poor rifted margin archetypes. In Passive Margins: Tectonics, Sedimentation and Magmatism; McClay, K.R., Hammerstein, J.A., Eds.; Geological Society Special Publication: London, UK, 2018; Volume 476, pp. 23–47. [Google Scholar] [CrossRef]
- Pérez-Gussinyé, M.; Andrés-Martinez, M.; Araújo, X.Y.; Armitage, J.; Morgan, J.P. Lithospheric strength and rift migration controls on synrift stratigraphy and breakup unconformities at rifted margins: Examples from numerical models, the Atlantic and South China Sea margins. Tectonics 2020, 39, e2020TC006255. [Google Scholar] [CrossRef]
- Benyshek, E.K.; Taylor, B.; Goodliffe, A.M. A detailed reconstruction of the Woodlark Basin. Geochem. Geophys. Geosyst. 2024, 25, e2023GC011410. [Google Scholar] [CrossRef]
- Franke, D. Rifting, lithosphere breakup and volcanism: Comparison of magma-poor and volcanic rifted margins. Mar. Pet. Geol. 2013, 43, 63–87. [Google Scholar] [CrossRef]
- Franke, D.; Savva, D.; Pubellier, M.; Steuer, S.; Mouly, B.; Auxietre, J.-L.; Meresse, F.; Chamot-Rooke, N. The final rifting evolution in the South China Sea. Mar. Pet. Geol. 2014, 58, 704–720. [Google Scholar] [CrossRef]
- Savva, D.; Pubellier, M.; Franke, D.; Chamot-Rooke, N.; Meresse, F.; Steuer, S.; Auxietre, J.L. Different expressions of rifting on the South China Sea margins. Mar. Pet. Geol. 2014, 58, 579–598. [Google Scholar] [CrossRef]
- Morley, C.K. Major unconformities/termination of extension events and associated surfaces in the South China Seas: Review and implications for tectonic development. J. Asian Earth Sci. 2016, 120, 62–86. [Google Scholar] [CrossRef]
- Pubellier, M.; Chang, S.-P.; Delescluse, M. The South China Sea—Rifting and the evolution of a marginal basin. In Continental Rifted Margins 2: Case Examples; Peron-Pinvidic, G., Coord.; Wiley: New York, NY, USA, 2022; Chapter 5; pp. 1–19. [Google Scholar]
- Das, P.S.; Choudhuri, M.; Zakaria, N.L.; Hassan, T.M.S.B.T.; Rudiana, C.W.; Idris, J.J.B.M. Review and new insights on the significant unconformities related to the strati-structural evolution of NW Sabah within the Dangerous Ground, South China Sea. Arab. J. Geosci. 2024, 17, 43. [Google Scholar] [CrossRef]
- Hu, D.; Zhou, D.; Wu, X.; He, M.; Pang, X.; Wang, Y. Crustal structure and extension from slope to deepsea basin in the northern South China Sea. J. Earth Sci. 2009, 20, 27–37. [Google Scholar] [CrossRef]
- Xie, H.; Zhou, D.; Li, Y.; Pang, X.; Li, P.; Chen, G.; Li, F.; Jinghe, C. Cenozoic tectonic subsidence in deepwater sags in the Pearl River Mouth Basin, northern South China Sea. Tectonophysics 2014, 615–616, 182–198. [Google Scholar] [CrossRef]
- Pang, X.; Ren, J.; Zheng, J.; Liu, J.; Yu, P.; Liu, B. Petroleum geology controlled by extensive detachment thinning of continental margin crust: A case study of Baiyun sag in the deep-water area of northern South China Sea. Petrol. Explor. Develop. 2018, 45, 29–42. [Google Scholar] [CrossRef]
- Zhou, Z.; Mei, L.; Liu, J.; Zheng, J.; Chen, L.; Hao, S. Continentward-dipping detachment fault system and asymmetric rift structure of the Baiyun Sag, northern South China Sea. Tectonophysics 2018, 726, 121–136. [Google Scholar] [CrossRef]
- Zhou, Z.; Mei, L.; Shi, H.; Shu, Y. Evolution of low-angle normal faults in the Enping Sag, the northern South China Sea: Lateral growth and vertical rotation. J. Earth Sci. 2019, 30, 1326–1340. [Google Scholar] [CrossRef]
- Suo, Y.; Li, S.; Peng, G.; Du, X.; Zhou, J.; Wang, P.; Wang, G.; Somerville, I.; Diao, Y.; Liu, Z.; et al. Cenozoic basement-involved rifting of the northern South China Sea margin. Gondw. Res. 2023, 120, 20–30. [Google Scholar] [CrossRef]
- Liang, Y.; Yang, D.; Chen, S.; Zhang, G.; Bai, Z.; Liang, X.; Wang, Y.; Wang, L.; Guo, S.; Ji, M.; et al. The effect of faults to the tectono-stratigraphy evolution in the Panyu low uplift. Front. Earth Sci. 2024, 11, 1281153. [Google Scholar] [CrossRef]
- Hao, S.; Mei, L.; Ranero, C.R.; Zhou, Z.; Pang, X.; Zheng, J. 3D crustal architecture and along-strike variation in the mid-northern South China Sea rifted margin. J. Geophys. Res. 2024, 129, e2023JB026876. [Google Scholar] [CrossRef]
- Ye, Q.; Mei, L.; Shi, H.; Camanni, G.; Shu, Y.; Wu, J.; Yu, L.; Deng, P.; Li, G. The Late Cretaceous tectonic evolution of the South China Sea area: An overview, and new perspectives from 3D seismic reflection data. Earth-Sci. Rev. 2018, 187, 186–204. [Google Scholar] [CrossRef]
- Lei, C.; Alves, T.M.; Ren, J.; Pang, X.; Yang, L.; Liu, J. Depositional architecture and structural evolution of a region immediately inboard of the locus of continental breakup (Liwan Sub-basin, South China Sea). Bull. Geol. Soc. Am. 2019, 131, 1059–1074. [Google Scholar] [CrossRef]
- Ye, Q.; Mei, L.; Jiang, D.; Xu, X.; Delogkos, E.; Zhang, L.; Camanni, G. 3-D structure and development of a metamorphic core complex in the northern south China sea rifted margin. J. Geophys. Res. 2022, 127, e2021JB022595. [Google Scholar] [CrossRef]
- Deng, C.; Zhu, R.; Han, J.; Shu, Y.; Wu, Y.; Hou, K.; Long, W. Impact of basement thrust faults on low-angle normal faults and rift basin evolution: A case study in the Enping sag, Pearl River Basin. Solid Earth 2021, 12, 2327–2350. [Google Scholar] [CrossRef]
- Legeay, E.; Mohn, G.; Ringenbach, J.C.; Vetel, W.; Sapin, F. 3D structure of low-angle normal faults and tectono-sedimentary processes of nascent continental core-complexes in the SE South China Sea. Tectonics 2024, 43, e2023TC008218. [Google Scholar] [CrossRef]
- Li, G.; Ye, Q.; Peng, G.; Liu, Z.; Zhang, L.; Hao, S.; Xu, X.; Mei, L. Development of detachment fault system associated with a mature metamorphic core complex: Insight from the Kaiping Sag, northern South China Sea rifted margin. Basin Res. 2024, 36, e70006. [Google Scholar] [CrossRef]
- Pan, Z.; Lu, S.; Gao, H.; He, Q.; Chen, H.; Ge, X. The effect of pre-existing strutures on the Cenozoic rifting processes: Insights from seismic reflection imaging of the northeastern south China sea. J. Struct. Geol. 2024, 188, 105257. [Google Scholar] [CrossRef]
- Yan, P.; Zhou, D.; Liu, Z.S. A crustal structure profile across the northern continental margin of the South China Sea. Tectonophysics 2001, 338, 1–21. [Google Scholar] [CrossRef]
- Wei, X.D.; Ruan, A.G.; Zhao, M.H.; Qiu, X.L.; Li, J.B.; Zhu, J.J.; Wu, Z.L.; Ding, W.W. A wide-angle OBS profile across the Dongsha uplift and Chaoshan depression in the mid-northern South China Sea. Chin. J. Geophys. 2011, 54, 1149–1160. [Google Scholar] [CrossRef]
- Ding, W.; Schnabel, M.; Franke, D.; Aiguo, R.; Zhenli, W. Crustal structure across the northwestern margin of South China Sea: Evidence for magma-poor rifting from a wide-angle seismic profile. Acta Geol. Sinica-Eng. Ed. 2012, 86, 854–866. [Google Scholar] [CrossRef]
- Wan, K.; Xia, S.; Cao, J.; Sun, J.; Xu, H. Deep seismic structure of the northeastern South China Sea: Origin of a high-velocity layer in the lower crust. J. Geophys. Res. 2017, 122, 2831–2858. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, M.; Zhang, J.; Zhang, H.; Sibuet, J.-C.; Li, Z.; He, E.; Qiu, X.; Peng, W.; Chen, G. Breakup mechanism of the northern South China Sea: Evidence from the deep crustal structure across the continent-ocean transition. Gondw. Res. 2022, 120, 47–69. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Ding, W.; Ranero, C.R.; Sallares, V.; Gao, J.; Zhang, C.; Qiu, X. New insights into the rift-to-drift process of the northern South China Sea margin constrained by a three-dimensional wide-angle seismic velocity model. J. Geophys. Res. 2023, 128, e2022JB026171. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, M.; Sun, Z.; Sun, L.; Xu, M.; Yang, H.; Wang, Q.; Pang, X.; Zheng, J.; Yao, Y. Large volume of magma involved in South China Sea rifting: Implication for mantle breakup earlier than crust. Tectonophysics 2023, 853, 229801. [Google Scholar] [CrossRef]
- Zhang, L.; Cai, C.; Gao, R. Post-rifting magmatism at the northern margin of the South China Sea: Evidenced by an ocean bottom seismometer experiment. Earthq. Sci. 2025, 38, 1–16. [Google Scholar] [CrossRef]
- Lei, C.; Ren, J.; Pang, X. Rift structures and its related unconformities on and adjacent the Dongsha Rise: Insights into the nature of the high-velocity layer in the northern South China Sea. Mar. Geophys. Res. 2019, 40, 99–110. [Google Scholar] [CrossRef]
- Ding, W.; Franke, D.; Li, J.; Steuer, S. Seismic stratigraphy and tectonic structure from a composite multi-channel seismic profile across the entire Dangerous Grounds, South China Sea. Tectonophysics 2013, 582, 162–176. [Google Scholar] [CrossRef]
- Falvey, D. The development of continental margins in plate tectonic theory. APEA J. 1974, 14, 95–106. [Google Scholar] [CrossRef]
- Lin, A.T.; Watts, A.B.; Hesselbo, P. Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Res. 2003, 15, 453–476. [Google Scholar] [CrossRef]
- Zhang, Z.; Fang, N.; Zhen, S. The sedimentary record of the Sanshui Basin: Implication to the Late Cretaceou tectonic evolution in the northern margin of South China Sea. J. Oceanol. Limnol. 2023, 41, 532–549. [Google Scholar] [CrossRef]
- Cao, S.; Ma, J.; Wang, C. The sedimentological characteristics of the intermontane desert system in the Jurong Basin, South China and its relationship with the Late Cretaceous hot climate. Palaeogeog. Palaeoclim. Palaeoecol. 2023, 623, 111618. [Google Scholar] [CrossRef]
- Burton, Z.F.M.; McHargue, T.R.; Graham, S.A. Global Eocene-Oligocene unconformity in clastic sedimentary basins. Earth-Sci. Rev. 2024, 258, 104912. [Google Scholar] [CrossRef]
- Miller, K.G.; Schmelz, W.J.; Browning, J.V.; Rosenthal, Y.; Hess, A.V.; Kopp, R.E.; Wright, J.D. Global mean and relative sea-level changes over the past 66 Myr: Implications for Early Eocene ice sheets. Earth Sci. Syst. Soc. 2024, 3, 10091. [Google Scholar] [CrossRef]
- Goodliffe, A.M.; Taylor, B. The boundary between continental rifting and sea-floor spreading in the Woodlark Basin, Papua New Guinea. In Imaging, Mapping and Modelling Continental Lithosphere Extension and Breakup; Karner, G.D., Manatschal, G., Pinheiro, L.M., Eds.; Geological Society: London, UK, 2007; Volume 282, pp. 217–238. [Google Scholar] [CrossRef]
- Fang, P.; Ding, W.; Zhao, Y.; Lin, X.; Zhao, Z. Detachment-controlled subsidence pattern at hyper-extended passive margin: Insights from backstripping modelling of the Baiyun Rift, northern South China Sea. Gondw. Res. 2023, 120, 70–84. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, H.; Yang, C.; Han, B.; Tian, J.; Yin, Z.; Gong, J.; Xu, Q. Characteristics and evolution of Cenozoic sediments in the Liyue Basin, SE South China Sea. J. Asian Earth Sci. 2012, 60, 114–129. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Y.; Ding, W.; Fang, P.; Li, J. Cenozoic propagating rifting in the Dangerous Grounds in response to the episodic seafloor spreading of the South China Sea. J. Earth Sci. 2022, 33, 1031–1046. [Google Scholar] [CrossRef]
- Chang, S.-P.; Pubellier, M. Rifting and seafloor spreading in the South China Sea: A subduction-related extension of the down-going plate? Comptes Rendus Géosci. 2023, 355, 29–52. [Google Scholar] [CrossRef]
- Qiu, N.; Wang, Z.; Xie, H.; Sun, Z.; Wang, Z.; Sun, Z.; Zhou, D. Geophysical investigations of crust-scale structural model of the Qiongdongnan Basin, northern South China Sea. Mar. Geophys. Res. 2013, 34, 259–279. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Wang, Z.; Sun, Z. The mechanics of continental extension in Qiongdongnan Basin, northern South China Sea. Mar. Geophys. Res. 2015, 36, 197–210. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Sun, L. Cenozoic tectonic subsidence in the Qiongdongnan Basin, northern South China Sea. Basin Res. 2016, 28, e12220. [Google Scholar] [CrossRef]
- Cullen, A.; Reemst, P.; Henstra, G.; Gozzard, S.; Ray, A. Rifting of the South China Sea: New perspectives. Pet. Geosci. 2010, 16, 273–282. [Google Scholar] [CrossRef]
- Savva, D.; Meresse, F.; Pubellier, M.; Chamot-Rooke, N.; Lavier, L.; Wong Po, K.; Franke, D.; Steuer, S.; Sapin, F.; Auxietre, J.L.; et al. Seismic evidence of hyper-stretched crust and mantle exhumation offshore Vietnam. Tectonophysics 2013, 608, 72–83. [Google Scholar] [CrossRef]
- Deng, P.; Mei, L.; Liu, J.; Zheng, J.; Liu, M.; Cheng, Z.; Guo, F. Episodic normal faulting and magmatism during the syn-spreading stage of the Baiyun sag in Pearl River Mouth Basin: Response to the multi-phase seafloor spreading of the South China Sea. Mar. Geophys. Res. 2019, 40, 33–50. [Google Scholar] [CrossRef]
- Li, G.; Mei, L.; Ye, Q.; Pang, X.; Zheng, J.; Li, W. Post-rift faulting controlled by different geodynamics in the Pearl River Mouth Basin, northern South China Sea margin. Earth Sci. Rev. 2023, 237, 104311. [Google Scholar] [CrossRef]
- Xie, X.; Ren, J.; Pang, X.; Lei, C.; Chen, H. Stratigraphic architectures and associated unconformities of Pearl River Mounth basin during rifting and lithospheric breakup of the South China Sea. Mar. Geophys. Res. 2019, 40, 129–144. [Google Scholar] [CrossRef]
- Shi, H.; Du, J.; Mei, L.; Zhang, X.; Hao, S.; Liu, P.; Deng, P.; Zhang, Q. Huizhou movement and its significance in Pearl River Mouth Basin, China. Petrol. Explor. Develop. 2020, 47, 483–498. [Google Scholar] [CrossRef]
- Ye, Q.; Mei, L.; Shi, H.; Du, J.; Deng, P.; Shu, Y.; Camanni, G. The influence of pre-existing basement faults on the Cenozoic structure and evolution of the proximal domain, northern South China Sea rifted margin. Tectonics 2020, 39, e2019TC005845. [Google Scholar] [CrossRef]
- Ma, B.S.; Ge, J.W.; Wu, G.H.; Qi, J.F.; Yu, F.; Chen, S.; He, W.G. The premature decay of rifting processes in the northern South China Sea (38–33.9 Ma): Insight from 3D seismic and its interpretation of the Lufeng Sag of the Pearl River Mouth Basin. Aust. J. Earth Sci. 2022, 69, 268–285. [Google Scholar] [CrossRef]
- Mu, D.; Peng, G.; Zhu, D.; Li, S.; Suo, Y.; Zhan, H.; Zhao, L. Structure and formation mechanism of the Pearl River Mouth Basin: Insights from multi-phase strike-slip motions in the Yangjiang Sag, SE China. J. Asian Earth Sci. 2022, 226, 10581. [Google Scholar] [CrossRef]
- Zheng, Q.-G.; Li, J.L.; Lei, B.-H.; Song, P.; Li, Q.; Shi, D.-F.; Liu, H.; Lin, C.-S. Differential tectonic evolution and formation mechanism of three sub-sags in Wenchang Sag of Pearl River Mouth Basin, South China Sea. Petrol. Sci. 2022, 20, 1379–1394. [Google Scholar] [CrossRef]
- Chen, W.; Liu, J.; Peng, G.; Wei, Z.; Jia, P.; Yao, J.; Wang, Z.; Zhuo, H. Stratigraphic-sedimentary evolution of a mixed siliciclastic-carbonate system in the Huizhou Sag of the Pearl River Moutn Basin, northern South China Sea. Front. Earth Sci. 2024, 11, 1231984. [Google Scholar] [CrossRef]
- Shi, H.; Xu, C.; Zhou, Z.; Ma, C. Zircon U-Pb dating on granitoids from the northern South China Sea and its geotectonic relevance. Acta Geol. Sin. 2011, 85, 1359–1372. [Google Scholar] [CrossRef]
- Cui, Y.; Shao, L.; Li, Z.-X.; Zhu, W.; Qiao, P.; Zhang, X. A Mesozoic Andean-type active continental margin along coastal South China: New geological records from the basement of the northern South China Sea. Gondw. Res. 2021, 99, 36–52. [Google Scholar] [CrossRef]
- Li, C.-F.; Zhou, Z.; Li, J.; Chen, B.; Geng, J. Magnetic zoning and seismic structure of the South China Sea ocean basin. Mar. Geophys. Res. 2008, 29, 223–238. [Google Scholar] [CrossRef]
- Chen, Z.; Gui, L. Three-dimensional magnetic inversion with mixed Lp norm regularization for constraining the crustal architecture of Mesozoic volcanic arc in the northern South China Sea. Appl. Sci. 2025, 15, 2791. [Google Scholar] [CrossRef]
- Zhao, Y.; Ren, J.; Pang, X.; Yang, L.; Zheng, J. Structural style, formation of low angle normal fault and its controls on the evolution of Baiyun Rift, northern margin of the South China Sea. Mar. Pet. Geol. 2018, 89, 687–700. [Google Scholar] [CrossRef]
- Gao, J.; Peng, X.; Wu, S.; Lüdmann, T.; McIntosh, K.; Ma, B.; Xu, Z.J. Different expressions of the crustal structure across the Dongsha Rise along the northeastern margin of the South China Sea. Asian Earth Sci. 2019, 171, 187–200. [Google Scholar] [CrossRef]
- Guan, W.; Huang, L.; Liu, C.; Peng, G.; Li, H.; Liang, C.; Zhang, L.; Li, H.; Wu, Z.; Li, X.; et al. Interactions between pre-existing structures and rift faults: Implications for basin geometry in the northern South China Sea. Basin Res. 2023, 36, e12822. [Google Scholar] [CrossRef]
- Zhao, Y.; Ding, W.; Ren, J.; Li, J.; Tong, D.; Zhang, J. Extension discrepancy of the hyper-thinned continental crust in the Baiyun Rift, northern margin of the South China Sea. Tectonics 2021, 40, e2020TC006547. [Google Scholar] [CrossRef]
- Pang, X.; Zheng, J.; Ren, J.; Wang, F.; Yan, H.; Sun, H.; Liu, B. Structural evolution and magmatism of fault depression in Baiyun Sag, northern margin of South China Sea. Earth Sci. 2022, 47, 2303–2316. [Google Scholar] [CrossRef]
- Sun, Q.; Alves, T.M.; Wu, S.; Zhao, M.; Xie, X. Early Miocene magmatism in the Baiyun Sag (South China Sea): A view to the origin of intense post-rift magmatism. Gondw. Res. 2023, 120, 127–144. [Google Scholar] [CrossRef]
- Hao, S.; Mei, L.; Zheng, J.; Ranero, C.R. Detachment and transfer fault system in the northern South China Sea, insights into 3D tectonic segmentation of rifted margins. Tectonics 2024, 43, e2023TC008172. [Google Scholar] [CrossRef]
- Lei, C.; Ren, J.; Pang, X.; Chao, P.; Han, X. Continental rifting and sediment infill in the distal part of the northern South China Sea in the Western Pacific region: Challenge of the present-day models for the passive margins. Mar. Pet. Geol. 2018, 93, 166–181. [Google Scholar] [CrossRef]
- Wang, J.; Pang, X.; Liu, B.; Zheng, J.; Wang, H. The Baiyun and Liwan Sags: Two supradetachment basins on the passive continental margin of the northern South China Sea. Mar. Pet. Geol. 2018, 95, 206–218. [Google Scholar] [CrossRef]
- Yang, L.; Ren, J.; McIntosh, K.; Pang, X.; Lei, C.; Zhao, Y. The structure and evolution of deepwater basins in the distal margin of the northern South China Sea and their implications for the formation of the continental margin. Mar. Pet. Geol. 2018, 92, 234–254. [Google Scholar] [CrossRef]
- Deng, H.; Ren, J.; Pang, X.; Rey, P.F.; McClay, K.R.; Watkinson, I.M.; Zheng, J.; Luo, P. South China Sea documents the transition from wide continental rift to continental break up. Nature Commun. 2020, 11, 4583. [Google Scholar] [CrossRef]
- Zhang, C.; Manatschal, G.; Pang, X.; Sun, Z.; Zheng, J.; Li, H.; Sun, L.; Zhang, J.; Zhao, Y. Discovery of mega-sheath folds flooring the Liwan subbasin (South China Sea): Implications for the rheology of hyperextended crust. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009023. [Google Scholar] [CrossRef]
- Zhao, F.; Alves, T.M.; Xia, S.; Li, W.; Wang, L.; Mi, L.; Wu, S.; Cao, J.; Fan, C. Along-strike segmentation of the South China Sea margin imposed by inherited pre-rift basement structures. Earth Planet. Sci. Lett. 2020, 530, 115862. [Google Scholar] [CrossRef]
- Ren, J.Y.; Pang, X.; Yu, P.; Lei, C.; Luo, P. Characteristics and formation mechanism of deepwater and ultra-deepwater basins in the northern continental margin of the South China Sea. Chin. J. Geophys. 2018, 61, 4901–4920. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, Z.; Manatschal, G.; Pang, X.; Li, S.; Sauter, D.; Péron-Pinvidic, G.; Zhao, M. Ocean-continent transition architecture and breakup mechanism at the mid- northern South China Sea. Earth-Sci. Rev. 2021, 217, 103620. [Google Scholar] [CrossRef]
- Sun, L.; Sun, Z.; Zhang, Y.; Zhao, Z.; Zhao, J.; Zhang, C.; Zhang, Z.; Sun, L.; Zhu, X. Multi-stage carbonate veins at IODP Site U1504 document early Cretaceous to early Cenozoic extensional events on the South China Sea margin. Mar. Geol. 2021, 442, 106656. [Google Scholar] [CrossRef]
- Clerc, C.; Jolivet, L.; Ringenbach, J.-C. Ductile extensional shear zones in the lower crust of a passive margin. Earth Planet. Sci. Lett. 2015, 431, 1–7. [Google Scholar] [CrossRef]
- Cameselle, A.J.; Ranero, C.R.; Barckhausen, U. Understanding the 3D formation of a wide rift: The central South China Sea rift system. Tectonics 2020, 39, e2019TC006040. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, Z.; Zhu, X.; Fang, P.; Liao, J.; Sun, L.; Zhang, Z. The spatial-temporal variations in dynamic uplift and deep mantle upwelling in the northwest South China Sea margin: Insights into continental rifting and magmatism. Gondw. Res. 2023, 120, 145–161. [Google Scholar] [CrossRef]
- Zhang, C.; Xiu, S.; Cao, J.; Fan, C.; Wan, K.; Gou, T. Control of coral reef formation by boudin-like extension processes in the South China Sea: New insights from wide-angle seismic imaging. J. Geophys. Res. 2025, 130, e2024JB030150. [Google Scholar] [CrossRef]
- Burov, E.B.; Watts, A.B. The long-tern strength of continental lithosphere: “jelly sandwich” or “crème brûlée”? GSA Today 2006, 16, 4–10. [Google Scholar] [CrossRef]
- Taylor, B.; Goodliffe, A.; Martinez, F. Initiation of transform faults at rifted continental margins. Comptes Rendus Géosci. 2009, 341, 428–438. [Google Scholar] [CrossRef]
- Nissen, S.S.; Hayes, D.E.; Buhl, P.; Diebold, J.; Yao, B.; Zeng, W.; Chen, Y. Deep penetration seismic soundings across the northern margin of the South China Sea. J. Geophys. Res. 1995, 100, 22407–22433. [Google Scholar] [CrossRef]
- Brune, S.; Williams, S.; Butterworth, N.; Müller, R.D. Abrupt plate accelerations shape rifted continental margins. Nature 2016, 536, 201–204. [Google Scholar] [CrossRef]
- Zhao, F.; Alves, T.M.; Wu, S.; Li, W.; Huuse, M.; Mi, L.; Sun, Q.; Ma, B. Prolonged post-rift magmatism on highly extended crust of divergent continental margins (Baiyun Sag, South China Sea). Earth Planet Sci. Lett. 2016, 445, 79–91. [Google Scholar] [CrossRef]
- Fan, C.; Xia, S.; Zhao, F.; Sun, J.; Gao, J.; Xu, H.; Wan, K. New insights into the magmatism in the northern margin of the South China Sea: Spatial features and volume of intraplate seamounts. Geochem. Geophys. Geosyst. 2017, 18, 2216–2239. [Google Scholar] [CrossRef]
- Zhang, Q.; Wu, S.; Dong, D. Cenozoic magmatism in the northern continental margin of the South China Sea: Evidence from seismic profiles. Mar. Geophys. Res. 2016, 37, 71–94. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhu, H.; Yang, X.; Zhang, G.; Zeng, H. Three-dimensional imaging of Miocene volcanic effusive and conduit facies: Implications for the magmatism and seafloor spreading of the South China Sea. Mar. Pet. Geol. 2019, 109, 193–207. [Google Scholar] [CrossRef]
- Chen, C.-H.; Hsieh, P.-S.; Wang, K.-L.; Yang, H.-J.; Lin, W.; Liang, Y.-H.; Lee, C.-Y.; Yang, H.-C. Zircon LA-ICPMS U-Pb ages and Hf isotopes of Huayu (Penghu Islands) volcanics in the Taiwan Strait and tectonic implication. J. Asian Earth Sci. 2010, 37, 17–30. [Google Scholar] [CrossRef]
- Yan, P.; Deng, H.; Liu, H.; Zhang, Z.; Jiang, Y. The temporal and spatial distribution of volcanism in the South China Sea region. J. Asian Earth Sci. 2006, 27, 647–659. [Google Scholar] [CrossRef]
- Wang, K.-L.; Lo, Y.-M.; Chung, S.-L.; Lo, C.-H.; Hsu, S.-K.; Yang, H.-J.; Shinjo, R. Age and geochemical features of dredged basalts from offshore SW Taiwan: The coincidence of intra-plate magmatism with the spreading South China Sea. Terr. Atmos. Ocean Sci. 2012, 23, 657–669. [Google Scholar] [CrossRef]
- Hoang, N.; Huong, T.T.; Shinjo, R.; Anh, L.D.; Luong, L.D.; Pho, P.D. Geochemistry of late Miocene-Pliocene basalts from a coastal area of Vietnam: Implication for small-scale mantle heterogeneities. J. Asian Earth Sci. 2025, 281, 106488. [Google Scholar] [CrossRef]
- Wang, K.-L.; Chung, S.-L.; Lo, Y.-M.; Lo, C.-H.; Yang, H.-J.; Shinjo, R.; Lee, T.-Y.; Wu, J.-C.; Huang, S.-T. Age and geochemical characteristics of Paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos 2012, 155, 426–441. [Google Scholar] [CrossRef]
- Zhang, C.; Xia, S.; Fan, C.; Cao, J. Submarine volcanism in the southern margin of the South China Sea. J. Oceanol. Limnol. 2023, 41, 612–629. [Google Scholar] [CrossRef]
- Flower, M.F.J.; Zhang, M.; Chen, C.-Y.; Tu, K.; Xie, G. Magmatism in the South China Basin 2. Post-spreading Quaternary basalts from Hainan Island, south China. Chem. Geol. 1992, 97, 65–87. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Li, H.; Zhang, J.; Bai, X. 40Ar/39Ar ages of Quaternary volcanic rocks from the midwest of the Leizhou Peninsula, and their geologic significance. J. Geomech. 2023, 29, 512–521. [Google Scholar] [CrossRef]
- Ludmann, T.; Wong, H.K. Neotectonic regime on the passive continental margin of the northern South China Sea. Tectonophys. 1999, 311, 113–138. [Google Scholar] [CrossRef]
- Wu, S.; Gao, J.; Zhao, S.; Lüdmann, T.; Chen, D.; Spence, G. Post-rift uplift and focused fluid flow in the passive margin of northern South China Sea. Tectonophysics 2014, 615–616, 27–39. [Google Scholar] [CrossRef]
- Sun, Q.; Jackson, C.A.-L.; Magee, C.; Mitchell, S.J.; Xie, X. Extrusion dynamics of deepwater volcanoes revealed by 3-D seismic data. Solid Earth 2019, 10, 1269–1282. [Google Scholar] [CrossRef]
- Zhao, D.; Tokokuni, G.; Kurata, K. Deep mantle structure and origin of Cenozoic intraplate volcanoes in Indochina, Hainan and South China Sea. Geophys. J. Int. 2021, 225, 572–588. [Google Scholar] [CrossRef]
- Chen, S.-S.; Gao, R.; Wang, Z.; Hou, T.; Liao, J.; Yan, C. Coexistence of Hainan plume and stagnant slab in the mantle transition zone beneath the South China Sea spreading ridge: Constraints from volcanic glasses and seismic tomography. Lithosphere 2021, 2021, 6619463. [Google Scholar] [CrossRef]
- Rangin, C.; Spakman, W.; Pubellier, M.; Bijwaard, H. Tomographic and geological constraints on subduction along the eastern Sundaland continental margin (South-East Asia). Bull. Soc. géol. Fr. 1999, 170, 775–788. [Google Scholar]
- Hall, R.; Spakman, W. Mantle structure and tectonic history of SE Asia. Tectonophysics 2015, 658, 14–45. [Google Scholar] [CrossRef]
- Wu, J.; Suppe, J.; Lu, R.; Kanda, R. Philippine Sea and east Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods. J. Geophys. Res. 2016, 121, 4670–4741. [Google Scholar] [CrossRef]
- Hua, Y.; Zhao, D.; Xu, Y.-G. Azimuthal anisotropy tomography of the southeast Asia subduction system. J. Geophys. Res. 2022, 127, e2021JB022854. [Google Scholar] [CrossRef]
- Lester, R.; Van Avendonk, H.J.; McIntosh, K.; Lavier, L.; Liu, C.-S.; Wang, T.; Wu, F. Rifting and magmatism in the northeastern South China Sea from wide-angle tomography and seismic reflection imaging. J. Geophys. Res. 2014, 119, 2305–2323. [Google Scholar] [CrossRef]
- Karner, G.D.; Johnson, C.; Shoffner, J.; Lawson, M.; Sullivan, M.; Sitgreaves, J.; McHarge, J.; Stewart, J.; Figueredo, P. Chapter 9: Tectono-magmatic development of the Santos and Campos basins, offshore Brazil. In The Supergiant Lower Cretaceous Pre-Salt Petroleum Systems of the Santos Basin, Brazil; Mello, M.R., Yilmaz, P.O., Katz, B.J., Eds.; AAPG: Houston, TX, USA, 2021; Memoir 124; pp. 215–256. [Google Scholar] [CrossRef]
- Dong, S.; Li, J.; Cawaood, P.A.; Gao, R.; Zhang, Y.; Yin, Y. Mantle influx compensates crustal thinning beneath the Cathaysia block, South China: Evidence from SINOPROBE reflection profiling. Earth Planet. Sci. Lett. 2020, 544, 116360. [Google Scholar] [CrossRef]
- Cheng, J.; Zhang, J.; Zhao, M.; Du, F.; Fan, C.; Wang, X.; Qiu, X. Spatial distribution and origin of the high-velocity lower crust in the northeastern South China Sea. Tectonophysics 2021, 819, 229086. [Google Scholar] [CrossRef]
- Sun, Q.; Alves, T.M.; Zhao, M.; Sibuet, J.-C.; Calves, G.; Xie, X. Post-rift magmatism on the northern South China Sea margin. Bull. Geol. Soc. Am. 2020, 132, 2382–2396. [Google Scholar] [CrossRef]
- Hinz, K.; Block, M.; Kudrass, H.R.; Meyer, H. Structural elements of the Sulu Sea, Philippines. Geol. Jahr. Reihe A 1991, 127, 483–506. [Google Scholar]
- Hutchison, C.S.; Bergman, S.C.; Swauger, D.A.; Graves, J.E. A Miocene collisional belt in north Borneo: Uplift mechanism and isostatic adjustment quantified by thermochronology. J. Geol. Soc. 2000, 157, 783–793. [Google Scholar] [CrossRef]
- Ilao, K.A.; Morley, C.K.; Aurelio, M.A. 3D seismic investigation of the structural and stratigraphic characteristics of the Pagasa Wedge, Southwest Palawan Basin, Philippines, and their tectonic implications. J. Asian Earth Sci. 2018, 154, 213–237. [Google Scholar] [CrossRef]
- Fuller, M.; Ali, J.R.; Moss, S.J.; Frost, G.M.; Richter, B.; Mahfi, A. Paleomagnetism of Borneo. J. Asian Earth Sci. 1999, 17, 3–24. [Google Scholar] [CrossRef]
- Almasco, J.N.; Rodolfo, K.; Fuller, M.; Frost, G. Paleomagnetism of Palawan, Philippines. J. Asian Earth Sci. 2000, 18, 369–389. [Google Scholar] [CrossRef]
- Advokaat, E.L.; Marshall, N.; Li, S.; Spakman, W.; Krijgsman, W.; van Hinsbergen, D.J.J. Cenozoic rotation history of Borneo and Sundaland, SE Asia, revealed by paleomagnetism, mantle tomography and kinematic reconstruction. Tectonics 2018, 37, 2486–2512. [Google Scholar] [CrossRef] [PubMed]
- Burton-Johnson, A.; Cullen, A.B. Continental rifting in the South China Sea through extension and high heat flow: An extended history. Gondw. Res. 2022, 120, 235–263. [Google Scholar] [CrossRef]
- Wu, J.; Suppe, J. Proto-South China Sea plate tectonics using subducted slab constraints from tomography. J. Earth Sci. 2018, 29, 1304–1318. [Google Scholar] [CrossRef]
- Faccenna, C.; Becker, T.W.; Auer, L.; Billi, A.; Boschi, L.; Brun, J.P.; Capitanio, F.A.; Funiciello, F.; Horvath, F.; Jolivet, L.; et al. Mantle dynamics in the Mediterranean. Rev. Geophys. 2014, 52, 283–332. [Google Scholar] [CrossRef]
- Zhang, G.-L.; Luo, Q.; Zhao, J.; Jackson, M.G.; Guo, L.-S.; Zhong, L.-F. Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth Planet. Sci. Lett. 2018, 489, 145–155. [Google Scholar] [CrossRef]
- Chen, S.-S.; Wu, D.-Y.; Gao, R.; Cheng, Q.; Liu, J.-Q. In situ Sr isotope disequilibrium in plagioclases from Late Cenozoic basalts in Leiqiong area: Evidence for the role of the Hainan plume and mantle metasomatism due to a paleo-subduction event. Front. Earth Sci. 2023, 11, 1090803. [Google Scholar] [CrossRef]
- Wang, W.; Tian, L.; Castillo, P.R.; Wu, T.; Dong, Y.; Liu, H.; Chen, L. Petrogenesis of high-alumina basalts: Implications for magmatic processes associated with the opening of the South China Sea. Chem. Geol. 2023, 636, 121641. [Google Scholar] [CrossRef]
- Ma, Q.; Qian, S.-P.; Xu, Y.-G.; Yang, F. Architecture and evolution of the lithosphere beneath the northern South China Sea: Implications for plate-edge lithospheric thinning and rifting. Fundam. Res. 2025, in press. [Google Scholar] [CrossRef]
- Qian, S.-P.; Gazel, E.; Wang, J.-H. Mantle transition zone water triggers lithospheric weakening and spreading. Geology 2025. [Google Scholar] [CrossRef]
- Deschamps, A.; Monié, P.; Lallemand, S.; Hsu, S.-K.; Yeh, K.Y. Evidence for Early Cretaceous oceanic crust trapped in the Philippine Sea Plate. Earth Planet. Sci. Lett. 2000, 179, 503–516. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, J.; Dalton, H.; Phillips, D. Geochemical and geochronological constraints on the origin and mantle source of Early Cretaceous arc volcanism on the Gagua Ridge in western Pacific. Geochem. Geophys. Geosyst. 2022, 25, e2022GC010424. [Google Scholar] [CrossRef]
- Fuller, M.; Haston, R.; Almasco, J. Paleomagnetism of the Zambales ophiolite, Luzon, northern Philippines. Tectonophysics 1989, 168, 171–203. [Google Scholar] [CrossRef]
- Encarnación, J.P.; Mukusa, S.B.; Obille, E.C., Jr. Zircon U-Pb geochronology of the Zambales and Angat ophiolites, Luzon, Philippines: Evidence for an Eocene arc-back arc pair. J. Geophys. Res. 1993, 98, 19991–20004. [Google Scholar] [CrossRef]
- Encarnación, J.P. Multiple ophiolite generation preserved in the northern Philippines and the growth of an island arc complex. Tectonophysics 2004, 392, 103–130. [Google Scholar] [CrossRef]
- Queaño, K.L.; Yumul, G.P., Jr.; Marquez, E.J.; Gabo-Ratio, J.A.; Payot, B.D.; Dimalanta, C.B. Consumed tectonic plates in Southeast Asia: Markers from the Mesozoic to early Cenozoic stratigraphic units in the northern and central Philippines. J. Asian Earth Sci. X 2020, 4, 100033. [Google Scholar] [CrossRef]
- Queaño, K.L.; Ali, J.R.; Milsom, J.; Aitchison, J.C.; Pubellier, M. North Luzon and the Philippine Sea Plate motion model: Insights following paleomagnetic, structural, and age-dating investigations. J. Geophys. Res. 2007, 112, B05101. [Google Scholar] [CrossRef]
- Yumul, G.P., Jr.; Dimalanta, C.B.; Tamayo, R.A. Indenter-tectonics in the Philippines: Example from the Palawan microcontinental block-Philippine mobile belt collision. Resour. Geol. 2005, 55, 189–198. [Google Scholar] [CrossRef]
- Yumul, G.P., Jr.; Dimalanta, C.B.; Gabo-Ratio, J.A.S.; Queaño, K.L.; Armada, L.T.; Padrones, J.T.; Faustino-Eslava, D.V.; Payot, B.D.; Marquez, E.J. Mesozoic rock suites along western Philippines: Exposed proto-South China Sea fragments? J. Asian Earth Sci. X 2020, 4, 100031. [Google Scholar] [CrossRef]
- Rangin, C.; Stephan, J.F.; Müller, C. Middle Oligocene oceanic crust of the South China Sea jammed into the Mindoro collision zone (Philippines). Geology 1985, 13, 425–428. [Google Scholar] [CrossRef]
- Aurelio, M.A.; Forbes, M.T.; Taguibao, K.J.L.; Savella, R.B.; Bacud, J.A.; Franke, D.; Pubellier, M.; Savva, D.; Meresse, F.; Steuer, S. Middle to Late Cenozoic tectonic events in south and central Palawan (Philippines) and their implications to the evolution of the south-eastern margin of South China Sea: Evidence from onshore structural and offshore seismic data. Mar. Pet. Geol. 2014, 58, 658–673. [Google Scholar] [CrossRef]
- Gibaga, C.R.L.; Arcilla, C.A.; Hoang, N. Volcanic rocks from the Central and Southern Palawan Ophiolites, Philippines: Tectonic and mantle heterogeneity constraints. J. Asian Earth Sci. X 2020, 4, 100038. [Google Scholar] [CrossRef]
- van de Lagemaat, S.H.A.; Cao, L.; Asis, J.; Advokaat, E.L.; Mason, P.R.D.; Dekkers, M.J.; van Hinsbergen, D.J.J. Causes of Late Cretaceous Subduction termination below South China and Borneo: Was the Proto-South China Sea underlain by an oceanic plateau? Geosci. Front. 2023, 15, 101752. [Google Scholar] [CrossRef]
- Encarnación, J.P.; Essene, E.J.; Mukasa, S.B.; Hall, C.H. High-pressure and temperature subophiolitic kyanite-garnet amphibolites generated during initiation of mid-Tertiary subduction, Palawan, Philippines. J. Petrol. 1995, 36, 1481–1503. [Google Scholar] [CrossRef]
- Keenan, T.E.; Encarnación, J.P.; Buchwaldt, R.; Fernandez, D.; Mattinson, J.; Rasoazanamparany, C.; Luetkemeyer, P.B. Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology. Proc. Nat. Acad. Sci. USA 2016, 113, E7359–E7366. [Google Scholar] [CrossRef]
- Dycoco, J.M.A.; Payot, B.D.; Valera, G.T.V.; Labis, F.A.C.; Pasco, J.A.; Perez, A.D.C.; Tani, K. Juxtaposition of Cenozoic and Mesozoic ophiolites in Palawan island, Philippines: New insights on the evolution of the Proto-South China Sea. Tectonophysics 2021, 819, 229085. [Google Scholar] [CrossRef]
- Advokaat, E.L.; van Hinsbergen, D.J.J. Finding Argoland: Reconstructing a microcontinental archipelago from the SE Asian accretionary orogen. Gondw. Res. 2024, 128, 161–263. [Google Scholar] [CrossRef]
- Hutchison, C.S. The ‘Rajang accretionary prism’ and ‘Lupar Line’ problem of Borneo. In Tectonic Evolution of Southeast Asia; Hall, R., Blundell, D., Eds.; Geological Society Special Publication: London, UK, 1996; Volume 106, pp. 247–261. [Google Scholar] [CrossRef]
- Fyhn, M.B.W.; Pedersen, S.A.S.; Boldreel, L.O.; Nielsen, L.H.; Green, P.F.; Dien, P.T.; Huyen, L.T.; Frei, D. Palaeocene–early Eocene inversion of the Phuquoc-Kampot Som Basin: SE Asian deformation associated with the suturing of Luconia. J. Geol. Soc. Lond. 2010, 167, 281–295. [Google Scholar] [CrossRef]
- Hall, R. Late Jurassic-Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 2012, 570–571, 1–41. [Google Scholar] [CrossRef]
- Hall, R.; Breitfeld, H.T. Nature and demise of the proto-South China Sea. Bull. Geol. Soc. Malays. 2017, 63, 61–76. [Google Scholar] [CrossRef]
- Henglai, P.; Fongmgern, R.; Saller, A. The growth and demise of a Middle Miocene carbonate platform in Central Luconia, offshore Malaysia. Mar. Pet. Geol. 2024, 163, 106763. [Google Scholar] [CrossRef]
- Jamaludin, S.N.F.; Pubellier, M.; Sautter, B. Shallow vs. deep subsurface structures of central Luconia province, offshore Malaysia reveal by aeromagnetic, airborne gravity and seismic data. Appl. Sci. 2021, 11, 5095. [Google Scholar] [CrossRef]
- Kosa, E.; Warrlich, G.M.D.; Loftus, G. Wings, mushrooms, and Christmas trees: The carbonate seismic geomorphology of Central Luconia, Miocene-present, offshore Sarawak, northwest Borneo. Bull. Geol. Soc. Am. 2015, 99, 2043–2075. [Google Scholar] [CrossRef]
- Pubellier, M.; Sautter, B. Key structural elements around the East Vietnam Sea (South China Sea) and implications on reconstructions: Towards a clarification. Viet. J. Mar. Sci. Tech. 2022, 22, 217–229. [Google Scholar] [CrossRef]
- de Vargas, M.R.; Tugend, J.; Mohn, G.; Kusznir, N.; Liang-Fu, L. Crustal structure of the northeast South China Sea rifted margin. Tectonics 2024, 43, e2024TC008399. [Google Scholar] [CrossRef]
- Chen, Y.; Meng, J.; Liu, H.; Wang, C.; Tang, M.; Liu, T.; Zhao, Y. Detrital zircons record the evolution of the Cathaysian coastal mountains along the South China margin. Basin Res. 2021, 34, 688–701. [Google Scholar] [CrossRef]
- Shao, L.; Meng, A.; Li, Q.; Qiao, P.; Cui, Y.; Cao, L.; Chen, S. Detrital zircon ages and elemental characteristics of the Eocene sequence in IODP Hole U1435A: Implications for rifting and environmental changes before the opening of the South China Sea. Mar. Geol. 2017, 394, 39–51. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylor, B. Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea. Geosciences 2025, 15, 152. https://doi.org/10.3390/geosciences15040152
Taylor B. Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea. Geosciences. 2025; 15(4):152. https://doi.org/10.3390/geosciences15040152
Chicago/Turabian StyleTaylor, Brian. 2025. "Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea" Geosciences 15, no. 4: 152. https://doi.org/10.3390/geosciences15040152
APA StyleTaylor, B. (2025). Reappraisal of the Continental Rifting and Seafloor Spreading That Formed the South China Sea. Geosciences, 15(4), 152. https://doi.org/10.3390/geosciences15040152