A Modular, Model, Library Framework (DebrisLib) for Non-Newtonian Geophysical Flows
Abstract
1. Introduction
- (1)
- (2)
- Dispersive-turbulent stress models [14]. This approach adds a turbulent stress term to the dispersive model to describe the inter-particle mechanics within a clay, silt, and organic matrix. This model is commonly applied to sediment mixtures containing cohesive sediment in quantities greater than 10% by volume.
- (3)
- Dispersive fluid models [15,16,17]. The dispersive models use Bagnold’s theory to describe the non-linear fluid stress that develops from particle-to-particle interaction between granular clastic (i.e., silt, sand, or gravel) particles where the fluid fluctuations keep the particles suspended. This model is commonly applied to sediment–water mixtures containing mostly sand and gravel with lower quantities of fine sediment (≤5–10% by volume).
- (4)
- Coulomb-based frictional models [10,18,19]. Friction-dominated models such as Coulomb or Vollemy [10] take a more geotechnical approach to simulate grain flows that approach library-supported conditions where the internal mixture stresses are dominated by inter-granular friction. These approaches are often applied to heterogeneous, poorly sorted (well-graded) clastic debris flows approaching land-slide classifications.
- The library consolidates diverse literature, making a suite of algorithms available to each linked model, avoiding duplication of effort.
- The library makes non-Newtonian modeling more transparent by standardizing algorithm implementation.
- The library leverages the validation and verification activities of multiple development communities, accelerating debugging and the quality of the code.
2. Methods
2.1. Shallow-Water Numerical Models
- Q = volumetric flow discharge (m3/s)
- x = downstream distance in a channel (m)
- t = time (s)
- A = cross-sectional area of channel (m2)
- q = lateral inflow or outflow (m2/s)
- = water surface elevation (m)
- = Newtonian friction slope (m/m).
- = Mud and debris friction slope (m/m)
- g = gravitational acceleration (m/s2)
- = depth-averaged velocity (m/s)
- = mixture density (kg/m3)
- = flow velocity in the x direction (m/s)
- = flow velocity in the y direction (m/s)
- = flow depth (m)
- = Reynolds stresses due to turbulence (Pa)
- = Mud and debris slope in the x direction (m/m)
- = Mud and debris slope in the x direction (m/m)
- = depth-averaged velocity (m/s)
- = gravitational acceleration (m/s2)
- = bottom elevation (m)
- = Manning’s roughness coefficient
- = the flow surface elevation (m)
- = time (s)
- = water depth (m)
- = velocity vector (m/s)
- = a source or sink term (m3/s)
- = gravitational acceleration (m/s2)
- = a turbulent eddy viscosity (Pa)
- is the total basal stress (Pa), which is a function of the friction slopes, including
- = the water–solid mixture density (kg/m3)
- = the hydraulic radius (m)
- = the water surface slope (m/m)
- = the inclination angle of the current velocity direction (°)
2.2. Non-Newtonian Shallow-Water Closure
- = the sediment–fluid mixture density (kg/m3)
- = the hydraulic radius (m)
- = the total mud-and-debris shear stress (Pa)
- g = gravitational acceleration (m/s2)
- = the total mud-and-debris shear stress (Pa)
- = yield stress (Pa)
- = viscous shear stress (Pa)
- = turbulent shear stress (Pa) (similar to Manning’s roughness in O’Brien et al., 1993) [14]
- = dispersive shear stress (Pa)
- = the shear rate (1/s) computed as a function of depth-averaged velocity and flow depth
- = mixture dynamic viscosity (Pa s)
- = sediment mixture mass density (kg/m3)
- = mixing length (m)
- = Bagnold impact empirical coefficient (
- = sediment particle density (kg/m3)
- = maximum volumetric sediment concentration (-)
- = volumetric sediment concentration (-)
- = sediment grain size (mm)
- = depth-averaged velocity (m/s)
- = flow depth (m).
- = the Von Karmen coefficient (0.41)
- = the proportional distance from the boundary (bed).
- = Coulomb yield stress (Pa)
- = bed slope angle (°)
- g = gravitational acceleration (m/s2)
- h = depth (m)
- = sediment mixture mass density (kg/m3)
2.3. Numerical Model Discretization
2.4. Verification and Validation Datasets
3. Results
3.1. Jeyapalan (1983) [58] Validation
3.2. Haldenwang et al. (2006) [63] Validation
3.3. Iverson et al. (2010) [62] Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sanderson, B.M.; Wobus, C.; Mills, D.; Zarakas, C.; Crimmins ASarofilm, M.C.; Weaver, C. Informing the future risk of record-level rainfall in the United States. Geophys. Res. Lett. 2019, 46, 3963–3972. [Google Scholar] [CrossRef] [PubMed]
- Goss, M.; Swain, D.L.; Abatzoglou, J.T.; Sarhadi AKolden, C.A.; Williams, A.P.; Diffenbaugh, N.S. Climate Change is increasing the likelihood of extreme autumn wildfire conditions across California. Environ. Res. Lett. 2020, 15, 094016. [Google Scholar] [CrossRef]
- Thomas, M.A.; Rengers, F.K.; Kean, J.W.; McGuire, L.A.; Staley, D.M.; Barnhart, K.R.; Ebel, B.A. Postwildfire soil-hydraulic recovery and the persistence of debris flow hazards. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF0060. [Google Scholar] [CrossRef]
- Azam, S.; Li, Q. Tailings Dam Failures: A Review of the Last One Hundred Years. Geotech. News 2010, 28, 50–54. [Google Scholar]
- Rowe, P.B.; Countryman, C.M.; Storey, H.C. Hydrologic Analysis Used to Determine Effects of Fire on Peak Discharge and Erosion Rates in Southern California Watersheds; USDA Forest Service, California Forest and Range Experimental Station: Riverside, CA, USA, 1954; Volume 49.
- Lane, P.N.J.; Sheridan, G.J.; Noske, P.J. Changes in sediment loads and discharge from small mountain catchments following wildfire in south eastern Australia. J. Hydrol. 2006, 331, 495–510. [Google Scholar] [CrossRef]
- Shin, S.S. Response of runoff and erosion with vegetation recovery in differently treated hillslopes after forest fire, Korea. In Proceedings of the 8th International Symposium on Ecohydraulics, Seoul, Republic of Korea, 12–16 January 2009. [Google Scholar]
- Shakesby, R.A. Post-wildfire soil erosion in the Mediterranean: Review and future research directions. Earth-Sci. Rev. 2011, 105, 71–100. [Google Scholar] [CrossRef]
- Moody, J.A.; Shakesby, R.A.; Robichaud, P.K.; Cannon, S.H.; Martin, D.A. Current research issues related to post-wildfire runoff and erosion processes. Earth-Sci. Rev. 2013, 122, 10–37. [Google Scholar] [CrossRef]
- Iverson, R.M. The physics of debris-flows. Rev. Geophys. Am. Geophys. Union 1997, 35, 245–296. [Google Scholar] [CrossRef]
- Jin, M.; Fread, D.L. 1D Modeling of Mud/Debris unsteady flows. J. Hydraul. Eng. 1997, 125, 827–834. [Google Scholar] [CrossRef]
- Imran, J.; Parker, G.; Locat, J.; Lee, H. 1D numerical model of muddy subaqueous and subaerial debris flows. J. Hydraul. Eng. 2001, 127, 959–968. [Google Scholar] [CrossRef]
- Bingham, E.C. Fluidity and Plasticity; McGraw-Hill: New York, NY, USA, 1922; Volume 2. [Google Scholar]
- O’Brien, J.S.; Julien, P.Y.; Fullerton, W.T. Two-dimensional water flood and mudflow simulation. J. Hydraul. Eng. 1993, 119, 244–261. [Google Scholar] [CrossRef]
- Bagnold, R.A. Experiments on gravity-free dispersion of a large solid sphere in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A 1954, 224, 49–63. [Google Scholar]
- Bagnold, R.A. Flow of cohesionless grains in fluid. Philos. Trans. R. Soc. Lond. 1956, 249, 235–297. [Google Scholar]
- Takahashi, T. Mechanical characteristics of debris-flows. J. Hydraul. Eng. 1978, 104, 381–396. [Google Scholar] [CrossRef]
- Hungr, O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 1995, 32, 610–623. [Google Scholar] [CrossRef]
- Iverson, R.M.; Denlinger, R.P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J. Geophys. Res. 2001, 106, 537–552. [Google Scholar] [CrossRef]
- Phillips, C.J. Rheological Investigations of Debris Flow Materials. Ph.D. Thesis, Lincln College, Lincoln, UK, 1988. [Google Scholar]
- Phillips, C.J.; Davies, T.R. Determining rheologicalparameters of debris flow material. Geomorphology 1991, 4, 101–110. [Google Scholar] [CrossRef]
- Coussot, P.; Meunier, M. Recognition, classification, and mechanical description of debris flows. Earth Sci. Rev. 1996, 40, 209–227. [Google Scholar] [CrossRef]
- HEC 2025. HEC-RAS Mud and Debris Flow Manual Version 6.7. US Army Corps of Engineers Hydrologic Engineering Center, May 2005. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/rasmuddebris (accessed on 22 May 2025).
- Fread, D.L. The NWS DAMBRK Model: Theoretical Background and User Documentation; HRL-258; Hydrological Research Lab., National Weather Service: Silver Spring, MD, USA, 1988.
- Savage, S.B.; Hutter, K. The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 1989, 199, 177–215. [Google Scholar] [CrossRef]
- Bradley, J.B.; McCutcheon, S.C. Influence of large suspended-sediment concentrations in rivers. In Sediment Transport in Gravel-Bed Rivers; Thorne, C.R., Bathurst, J.C., Hey, R.D., Eds.; Wiley: Chichester, UK, 1987; pp. 645–674. [Google Scholar]
- Chen, H.; Lee, C.F. Numerical simulation of debris flows. Can. Geotech. J. 2000, 37, 146–160. [Google Scholar] [CrossRef]
- Pudasaini, S.P.; Wang, Y.; Hutter, K. Modelling of debris flows downs general channels. Nat. Hazards Earth Syst. Sci. 2005, 5, 799–819. [Google Scholar] [CrossRef]
- Naef, D.; Rickenmann, D.; Rutschmann, P.; Mcardell, B.W. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model. Nat. Hazards Earth Syst. Sci. 2006, 6, 155–165. [Google Scholar] [CrossRef]
- Martinez, C.; Miralles-Wilhem, F.; Garcia-Martinez, R. A 2D finite-element debris-flow model based on the Cross rheology formulation. In Debris-Flow Hazard Mitigation: Mechanics, Prediction, and Assessment; Chen, C., Major, J., Eds.; Millpress: Utrecht, The Netherlands, 2007; pp. 189–196. [Google Scholar]
- Luna, Q.B.; Remaitre, A.; van Asch Th, W.J.; Malet, J.-P.; van Westen, C.J. Analysis of debris flow behavior with a one dimensional run-out model incorporating entrainment. Eng. Geol. 2012, 128, 63–75. [Google Scholar] [CrossRef]
- O’Brien, J.S. FLO-2D Reference Manual. Technical Report. 2020. Available online: https://documentation.flo-2d.com/ (accessed on 3 February 2025).
- Christen, M.; Kowalski, J.; Bartelt, P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg. Sci. Technol. 2010, 63, 1–14. [Google Scholar] [CrossRef]
- Hydronia. Mud and Tailings Flow Module for Riverflow2d. 2024. Available online: https://www.hydronia.com/riverflow2d-mt-model (accessed on 3 February 2025).
- Han, Z.; Su, B.; Li, Y.; Dou, J.; Wang, W.; Zhao, L. Modeling the progressive entrainment of bed sediment by viscous debris flows using the three-dimensional SC-HBP-SPH method. Water Res. 2020, 182, 116031. [Google Scholar] [CrossRef]
- Iverson, R.M.; George, D.L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc. R. Soc. A Math. Phys. Eng. Sci. 2014, 470, 20130819. [Google Scholar] [CrossRef]
- Pudasaini, S.P.; Mergili, M. A multi-phase mass flow model. J. Geophys. Res. Earth Surf. 2019, 124, 2920–2942. [Google Scholar] [CrossRef]
- Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V. A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int. J. Numer. Anal. Methods GeoMech. 2009, 33, 143–172. [Google Scholar] [CrossRef]
- Patra, A.K.; Bauer, A.C.; Nichita, C.C.; Pitman, E.B.; Sheridan, M.F.; Bursik, M.; Rupp, B.; Webber, A.; Stinton, A.J.; Namikawa, L.M. Parallel adaptive numerical simulation of dry avalanches over natural terrain. J. Volcanol. Geotherm. Res. 2005, 139, 1–21. [Google Scholar] [CrossRef]
- Happel, J.; Brenner, H. Low Reynolds Number Hydrodynamics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1965. [Google Scholar]
- Julien, P.Y. Erosion and Sedimentation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; p. 371. [Google Scholar]
- Richardson, J.F.; Zaki, W.N. Sedimentation and fluidization: Part 1. Trans. Inst. Chem. Eng. 1954, 32, 35–53. [Google Scholar]
- Baldock, T.E.; Tomkins, M.R.; Nielson, P.; Hughes, M.G. Settling velocity of sediments at high concentrations. Coast. Eng. 2004, 51, 91–100. [Google Scholar] [CrossRef]
- Cuthbertson, A.; Dong, P.; King, S.; Davies, P. Hindered settling velocity of cohesive/non-cohesive sediment mixtures. Coast. Eng. 2008, 55, 1197–1208. [Google Scholar] [CrossRef]
- Einstein, H.A.; Chien, N. Effects of Heavy Sediment Concentration Near the Bed on Velocity and Sediment Distribution; MRD Series, no. 8; University of California, Institute of Engineering Research: Berkeley, CA, USA; U.S. Army Engineering Division: Omaha, NE, USA; U.S. Army Corps of Engineers: Washington, DC, USA, 1955.
- Dabak, T.; Yucel, O. Shear viscosity behavior of highly concentrated suspensions at low and high shear-rates. Rheol. Acta 1986, 25, 527–533. [Google Scholar] [CrossRef]
- HEC 2025. HEC-RAS River Analysis System Hydraulic Reference Manual Version 6.3. US Army Corps of Engineers Hydrologic Engineering Center, CPD-69, February 2016. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/ras1dtechref/latest (accessed on 23 March 2025).
- Hergarten, S.; Robl, J. Modelling rapid mass movements using the shallow water equations in Cartesian coordinates. Nat. Harzards Earth Syst. Sci. 2015, 15, 671–685. [Google Scholar] [CrossRef]
- Gibson, S.; Floyd, I.; Sanchez, A.; Heath, R. Comparing single-phase, non-Newtonian approaches with experimental results: Validating flume-scale mud and debris flow in HEC-RAS. Earth Surf. Process. Landf. 2020, 46, 540–553. [Google Scholar] [CrossRef]
- Takahashi, T. Debris flow on prismatic open channel. J. Hydraul. Div. 1980, 106, 381–396. [Google Scholar] [CrossRef]
- Johnson, A.M.; Rodine, J.R. Slope Instability; Wiley: Hoboken, NJ, USA, 1984; Volume 535, pp. 257–361. [Google Scholar]
- McArdell, B.W.; Bartelt, P.; Kowalski, J. Field observations of basal forces and fluid pore pressure in a debris flow. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Gibson, S.; Moura, L.; Ackerman Ortman, N.; Amorim, R.; Floyd, I.; Eom, M.; Creech, C.; Sanchez, A. Prototype Scale Evaluation of Non-Newtonian Algorithms in HEC-RAS: Mud and Debris Flow Case Studies of Santa Barbara and Brumadinho. Geosciences 2022, 12, 134. [Google Scholar] [CrossRef]
- Savant, G.; Trahan, C.J.; McAlpin, T.O. Streamline Upwind Petrov-Galerkin (SUPG) Based shallow water model for large scale geophysical flows in Cartesian and Spherical coordinates. J. Waterw. Ports Coasts 2019, 145, 04019017. [Google Scholar] [CrossRef]
- Savant, G.; Trahan, C.J.; Pettey, L.; McAlpin, T.O.; Bell, G.L.; McKnight, C.J. Urban and overland flow modeling with dynamic adaptive mesh and implicit diffusive wave equation solver. J. Hydrol. 2019, 573, 13–30. [Google Scholar] [CrossRef]
- Trahan, C.J.; Savant, G.; Berger, R.C.; Farthing, M.; McAlpin, T.O.; Pettey, L.; Choudhary, G.K.; Dawson, C.N. Formulation and application of the adaptive hydraulics three-dimensional shallow water and transport models. J. Comput. Phys. 2018, 374, 47–90. [Google Scholar] [CrossRef]
- Savant, G.; Trahan, C.J.; Berger, R.C.; McAlpin, J.T.; McAlpin, T.O. Refinement Indicator for Dynamic Mesh adaption in Three-Dimensional Shallow Water Equation Modelling. J. Hydraul. Eng. 2018, 144, 06017026. [Google Scholar] [CrossRef]
- Jeyapalan, J.K.; Duncan, J.M.; Seed, H.B. Analyses of flow failures of mine tailings dams. J.Geotech. Eng. 1983, 109, 150–171. [Google Scholar] [CrossRef]
- Jeyapalan, K. Analysis of Flow Failures of Mine Tailing Impoundments. Ph.D. Thesis, University of California, Berkeley, CA, USA, 1981. [Google Scholar]
- Haldenwang, R. Flow of Non-Newtonian Fluids in Open Channels. Ph.D. Thesis, Cape Technikon, Cape Town, South Africa, 2003. [Google Scholar]
- Iverson, R.M.; Costa, J.E.; LaHusen, R.G. Debris Flow Flume at H.J. Andrews Experimental Forest, Oregon; USGS Open-File Report, No. 92-483; U.S. Geological Survey, Department of The Interior: Reston, VA, USA, 1992.
- Iverson, R.M.; Logan, M.; LaHusen, R.G.; Berti, M. The perfect debris flow? Aggregated results from 28 large-scale experiments. J. Geophys. Res. 2010, 115, F03005. [Google Scholar] [CrossRef]
- Haldenwang, R.; Slatter, P. Experimental procedure and database for non-Newtonian open channel flow. J. Hydraul. Res. 2006, 44, 283–287. [Google Scholar] [CrossRef]
- Perez, C.M. CFD Modelling of Laminar, Open-Channel Flows of Non-Newtonian Slurries. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2017; 146p. [Google Scholar]
Variables | Hungr (1995) [18] | Haldenwang et al. (2006) [63] | Iverson et al. (2010) [62] |
---|---|---|---|
Impoundment Height (m) | 30 | - | 1.9 |
Volumetric Concentration (%) | 55 | 10 | 61.2 |
Mixture Density (kg/m3) | 2500 | 1165 | 2010 |
τy (Pa) | 1500 | 21.3 | - |
ds (mm) | 0.025 | 0.02–0.04 | 0.0625–5.0 |
O’Brien Power Coefficient | 0.75 | 0.05 | - |
O’Brien Yield Coefficient | 6 | 9 | - |
O’Brien Viscosity Coefficient | 9.1 | 8 | - |
Hershel Bulkley Coef (k) (Pa sn) | - | 0.524 | - |
Hershel Bulkley Power (n) | - | 0.468 | - |
Yield Strength (Pa) | 1496.4 | 23.84 | - |
Dynamic Viscosity (Pa s) | 101.2 | 0.00316 | |
Domain Length (m) | 2000 | 10 | 107.5 |
Domain Width (m) | - | 0.015 | 2 |
Advantages | Disadvantages/Challenges |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floyd, I.E.; Sánchez, A.; Gibson, S.; Savant, G. A Modular, Model, Library Framework (DebrisLib) for Non-Newtonian Geophysical Flows. Geosciences 2025, 15, 240. https://doi.org/10.3390/geosciences15070240
Floyd IE, Sánchez A, Gibson S, Savant G. A Modular, Model, Library Framework (DebrisLib) for Non-Newtonian Geophysical Flows. Geosciences. 2025; 15(7):240. https://doi.org/10.3390/geosciences15070240
Chicago/Turabian StyleFloyd, Ian E., Alejandro Sánchez, Stanford Gibson, and Gaurav Savant. 2025. "A Modular, Model, Library Framework (DebrisLib) for Non-Newtonian Geophysical Flows" Geosciences 15, no. 7: 240. https://doi.org/10.3390/geosciences15070240
APA StyleFloyd, I. E., Sánchez, A., Gibson, S., & Savant, G. (2025). A Modular, Model, Library Framework (DebrisLib) for Non-Newtonian Geophysical Flows. Geosciences, 15(7), 240. https://doi.org/10.3390/geosciences15070240