Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Study Areas I and II in the Federal State of Salzburg
- The quaternary alluvial and moraine deposits
- The tertiary Eocene-Miocene Molasse
- The Jura-mid Eocene continental margin Helvetic Zone
- The Lower Cretaceous-Eocene Penninic Rhenodanubian Flysch
- The Permo-Mesozoic Northern Calcareous Alps (NCA)
2.1.2. Study Areas III and IV in the Federal State of Vorarlberg
- Molasse
- Helvetic Nappes and Vorarlberg Flysch (Eastern Alps origin)
- Northern Calcareous Alps and Silvretta Crystalline (Western Alps origin)
2.1.3. Study Area V in Südtirol—Alto Adige Autonomous Province
- Schiliar dolomites (detritic massive dolomite of Anisian age)
- Wengen formation (marls and calciturbidites mixed with volcaniclastic conglomerates of Ladinian age)
- S. Cassian formation (grey mudstones and calciturbidites of Carnian age)
2.2. Data
- Pansharpening if a panchromatic band was provided along with multispectral bands.
- Orthorectification supported by rational polynomial coefficients (RPCs) and/or ground control points (GCPs) to achieve sub-pixel geolocation accuracies.
2.3. Object-Based Landslide Mapping
2.4. Manual Landslide Mapping
2.5. Comparison Methods
3. Results
3.1. Landslide Mapping Results
3.1.1. OBIA Landslide Mapping Results
3.1.2. Manual Landslide Mapping Results
- Score of “1” for study area III and IV (1 m resolution)
- Score of “2” for area II (2.5 m resolution) and area V (10 m resolution)
- Score of “3” for study area I (15 m resolution)
3.2. Accuracy Assessment
3.2.1. Comparison of Overlapping Areas
3.2.2. Completeness of the Semi-Automated Extraction
3.2.3. Spatial Accuracy of the Semi-Automated Extraction
4. Discussion
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Scaioni, M.; Longoni, L.; Melillo, V.; Papini, M. Remote Sensing for Landslide Investigations: An Overview of Recent Achievements and Perspectives. Remote Sens. 2014, 6, 9600–9652. [Google Scholar] [CrossRef]
- Singhroy, V. Remote sensing of landslides. In Landslide Hazard and Risk; Glade, T., Anderson, M.G., Crozier, M.J., Eds.; Wiley & Sons: West Sussex, UK, 2005; pp. 469–492. ISBN 9780471486633. [Google Scholar]
- Fiorucci, F.; Cardinali, M.; Carlà, R.; Rossi, M.; Mondini, A.C.; Santurri, L.; Ardizzone, F.; Guzzetti, F. Seasonal landslide mapping and estimation of landslide mobilization rates using aerial and satellite images. Geomorphology 2011, 129, 59–70. [Google Scholar] [CrossRef]
- Gao, J.; Maro, J. Topographic controls on evolution of shallow landslides in pastoral Wairarapa, New Zealand, 1979–2003. Geomorphology 2010, 114, 373–381. [Google Scholar] [CrossRef]
- Morgan, J.L.; Gergel, S.H.; Coops, N.C. Aerial Photography: A Rapidly Evolving Tool for Ecological Management. BioScience 2010, 60, 47–59. [Google Scholar] [CrossRef]
- Galli, M.; Ardizzone, F.; Cardinali, M.; Guzzetti, F.; Reichenbach, P. Comparing landslide inventory maps. Geomorphology 2008, 94, 268–289. [Google Scholar] [CrossRef]
- Hölbling, D.; Friedl, B.; Eisank, C. An object-based approach for semi-automated landslide change detection and attribution of changes to landslide classes in northern Taiwan. Earth Sci. Inform. 2015, 8, 327–335. [Google Scholar] [CrossRef]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.-T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Van Coillie, F.M.B.; Gardin, S.; Anseel, F.; Duyck, W.; Verbeke, L.P.C.; De Wulf, R.R. Variability of operator performance in remote-sensing image interpretation: The importance of human and external factors. Int. J. Remote Sens. 2014, 35, 754–778. [Google Scholar] [CrossRef]
- Albrecht, F.; Lang, S.; Hölbling, D. Spatial accuracy assessment of object boundaries for object-based image analysis. In Proceedings of the GEOBIA 2010—Geographic Object-Based Image Analysis, Ghent, Belgium, 29 June–2 July 2010; Addink, E., Van Coillie, F.M.B., Eds.; ISPRS Vol. No. XXXVIII-4/C7. Archives ISSN No 1682-1777. [Google Scholar]
- Kohli, D.; Stein, A.; Sliuzas, R. Uncertainty analysis for image interpretations of urban slums. Comput. Environ. Urban Syst. 2016, 60, 37–49. [Google Scholar] [CrossRef]
- Guzzetti, F.; Cardinali, M.; Reichenbach, P.; Carrara, A. Comparing Landslide Maps: A Case Study in the Upper Tiber River Basin, Central Italy. Environ. Manag. 2000, 25, 247–263. [Google Scholar] [CrossRef]
- Ardizzone, F.; Cardinali, M.; Carrara, A.; Guzzetti, F.; Reichenbach, P. Impact of mapping errors on the reliability of landslide hazard maps. Nat. Hazards Earth Syst. Sci. 2002, 2, 3–14. [Google Scholar] [CrossRef]
- Moosavi, V.; Talebi, A.; Shirmohammadi, B. Producing a landslide inventory map using pixel-based and object-oriented approaches optimized by Taguchi method. Geomorphology 2014, 204, 646–656. [Google Scholar] [CrossRef]
- Stumpf, A.; Kerle, N. Object-oriented mapping of landslides using Random Forests. Remote Sens. Environ. 2011, 115, 2564–2577. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; Jetten, V.; van Westen, C.J.; Kumar, K.V. Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 2010, 116, 24–36. [Google Scholar] [CrossRef]
- Barlow, J.; Franklin, S.; Martin, Y. High spatial resolution satellite imagery, DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogramm. Eng. Rem. S. 2006, 72, 687–692. [Google Scholar] [CrossRef]
- Behling, R.; Roessner, S.; Kaufmann, H.; Kleinschmit, B. Automated Spatiotemporal Landslide Mapping over Large Areas Using RapidEye Time Series Data. Remote Sens. 2014, 6, 8026–8055. [Google Scholar] [CrossRef]
- Blaschke, T.; Feizizadeh, B.; Hölbling, D. Object-Based Image Analysis and Digital Terrain Analysis for Locating Landslides in the Urmia Lake Basin, Iran. IEEE J. Sel. Top. Appl. 2014, 7, 4806–4817. [Google Scholar] [CrossRef]
- Heleno, S.; Matias, M.; Pina, P.; Sousa, A.J. Semiautomated object-based classification of rain-induced landslides with VHR multispectral images on Madeira Island. Nat. Hazards Earth Syst. Sci. 2016, 16, 1035–1048. [Google Scholar] [CrossRef]
- Hölbling, D.; Füreder, P.; Antolini, F.; Cigna, F.; Casagli, N.; Lang, S. A Semi-Automated Object-Based Approach for Landslide Detection Validated by Persistent Scatterer Interferometry Measures and Landslide Inventories. Remote Sens. 2012, 4, 1310–1336. [Google Scholar] [CrossRef]
- Hölbling, D.; Betts, H.; Spiekermann, R.; Phillips, C. Identifying Spatio-Temporal Landslide Hotspots on North Island, New Zealand, by Analyzing Historical and Recent Aerial Photography. Geosciences 2016, 6, 48. [Google Scholar] [CrossRef]
- Kurtz, C.; Stumpf, A.; Malet, J.-P.; Gançarski, P.; Puissant, A.; Passat, N. Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J. Photogramm. 2014, 87, 122–136. [Google Scholar] [CrossRef]
- Lahousse, T.; Chang, K.-T.; Lin, Y. Landslide mapping with multiscale object-based image analysis—A case study in the Baichi watershed, Taiwan. Nat. Hazards Earth Syst. Sci. 2011, 11, 2715–2726. [Google Scholar] [CrossRef]
- Lu, P.; Stumpf, A.; Kerle, N.; Casagli, N. Object-oriented change detection for landslide rapid mapping. IEEE Geosci. Remote Sens. 2011, 8, 701–705. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Kumar, K.V. Segment Optimization and Data-Driven Thresholding for Knowledge-Based Landslide Detection by Object-Based Image Analysis. IEEE Geosci. Remote Sens. 2011, 49, 4928–4943. [Google Scholar] [CrossRef]
- Martha, T.R.; Kerle, N.; van Westen, C.J.; Jetten, V.; Kumar, K.V. Object-oriented analysis of multi-temporal panchromatic images for creation of historical landslide inventories. ISPRS J. Photogramm. 2012, 67, 105–119. [Google Scholar] [CrossRef]
- Rau, J.-Y.; Jhan, J.-P.; Rau, R.-J. Semiautomatic object-oriented landslide recognition scheme from multisensor optical imagery and DEM. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1336–1349. [Google Scholar] [CrossRef]
- Lang, S. Object-based image analysis for remote sensing applications: modeling reality—Dealing with complexity. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Heidelberg/Berlin, Germany; New York, NY, USA, 2008; pp. 1–25. ISBN 978-3-540-77058-9. [Google Scholar]
- Eisank, C.; Hölbling, D.; Friedl, B.; Chen, Y.C.; Chang, K.T. Expert knowledge for object-based landslide mapping in Taiwan. South-East. Eur. J. Earth Obs. Geomat. 2014, 3, 347–350. [Google Scholar]
- Wagreich, M.; Lukeneder, A.; Egger, H. Cretaceous History of Austria. In Proceedings of the International Meeting on Correlation of Cretaceous Micro—And Macrofossils—Berichte der Geologischen Bundesanstalt, Vienna, Austria, 16–18 April 2008; Volume 74, pp. 12–30. [Google Scholar]
- Vecchiotti, F.; Kociu, A. Geohazard Description for Salzburg, Public Pangeo FP7 Final Report, 2013. Available online: http://www.pangeoproject.eu/eng/coverage_map (accessed on 30 March 2017).
- Embleton-Hamann, C. Geomorphological hazards in Austria. In Geomorphology for the Future; Kellerer-Pirklbauer, A., Keiler, M., Embleton-Hamann, C., Stötter, J., Eds.; Innsbruck University Press: Innsbruck, Austria, 2007; pp. 33–56. ISBN 978-3-902571-18-2. [Google Scholar]
- Fiebiger, G. Die Rutschung Fürwag im Norden von Salzburg/Österreich. Prozess und Maßnahmen. In Proceedings of the International Congress Interpraevent, Matsumoto, Japan, 14–18 October 2002; pp. 629–639. [Google Scholar]
- Friebe, J.G. Geologie der Österreichischen Bundesländer. Vorarlberg. Erläuterungen der Geologischen Karte Vorarlberg 1:100,000; Geologische Bundesanstalt: Vienna, Austria, 2007. [Google Scholar]
- Seijmonsbergen, A.C.; Anders, N.; Bouten, W. Geomorphological change detection using object-based feature extraction from multi-temporal LiDAR data. In Proceedings of the 4th GEOBIA, Rio de Janeiro, Brazil, 7–9 May 2012; Feitosa, R., Costa, G., Almeida, C., Eds.; pp. 484–489. [Google Scholar]
- Dorren, L.K.; Maier, B.; Seijmonsbergen, A.C. Improved Landsat-based forest mapping in steep mountainous terrain using object-based classification. Forest Ecol. Manag. 2003, 183, 31–46. [Google Scholar] [CrossRef]
- De Graaff, L.W.S.; Seijmonsbergen, A.C. Postglacial landslides and their impact on Pleistocene lake floor deposits in the Balderschwang Valley as witnessed by geomorphological, sedimentological and geophysical evidence (Vorarlberg, Austria). Vorarlb. Naturschau 2001, 9, 237–251. [Google Scholar]
- Ghuffar, S.; Szekely, B.; Roncat, A.; Pfeifer, N. Landslide Displacement Monitoring Using 3D Range Flow on Airborne and Terrestrial LiDAR Data. Remote Sens. 2013, 5, 2720–2745. [Google Scholar] [CrossRef]
- Jaritz, W.; Supper, R.; Wöhrer-Alge, M. Beurteilung geogener Gefahren in Hinblick auf eine Risikominderung in der Gemeinde Sibratsgfäll (Österreich). In Proceedings of the 11th Interpraevent Congress, Dornbirn, Austria, 26–30 May 2008; pp. 171–182. [Google Scholar]
- Brandner, R.; Gruber, A.; Morelli, C.; Mair, V. Field trip 1—Pulses of Neotethys-Rifting in the Permomesozoic of the Dolomites. In Geo.Alp; Institute of Geology—University of Innsbruck: Innsbruck, Austria, 2016; Volume 13, pp. 7–70. [Google Scholar]
- Gianolla, P.; Andreetta, R.; Furin, S.; Furlanis, S.; Riva, A. Geology of the Dolomites. In Nomination of the Dolomites for Inscription on the World Natural Heritage List Unesco; Artimedia: Trento, Italy, 2008; pp. 3–77. [Google Scholar]
- Larcher, V.; Notarnicola, C.; Piacentini, D.; Pinter, T.; Schneiderbauer, S.; Soldati, M.; Strada, C. Analyse flachgründiger Massenbewegungen mittels Verwendung zweier statistischer Methoden im Gadertal (Südtirol). In Proceedings of the COGeo, Salzburg, Austria, 11 June 2010; Marschallinger, R., Wanker, W., Zobl, F., Eds.; pp. 1–11. [Google Scholar]
- Corsini, A.; Pasuto, A.; Soldati, M.; Zannoni, A. Field monitoring of the Corvara landslide (Dolomites, Italy) and its relevance for hazard assessment. Geomorphology 2005, 66, 149–165. [Google Scholar] [CrossRef]
- Riley, S.J.; De Gloria, S.D.; Elliot, R. A terrain ruggedness that quantifies topographic heterogeneity. Interm. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Tilch, N. Identifizierung gravitativer Massenbewegungen mittels multitemporaler Luftbildauswertung in Vorarlberg und angrenzender Gebiete. Jahrb. Geol. Bundesanstalt 2014, 154, 21–39. [Google Scholar]
- Kociu, A.; Kautz, H.; Tilch, N.; Grösel, K.; Horst, H.; Reischer, J. Massenbewegungen in Österreich. Jahrb. Geol. Bundesanstalt 2007, 147, 215–220. [Google Scholar]
- Wills, C.J.; McCrink, T.P. Comparing Landslide Inventories: The Map Depends on the Method. Environ. Eng. Geosci. 2002, 8, 279–293. [Google Scholar] [CrossRef]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Cruden, D.M.; Varnes, D.J. Landslide Types and Processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Sp. Rep. 247; Transportation Research Board, National Research Council, National Academy Press: Washington, DC, USA, 1996; pp. 36–75. ISBN 978-0309062084. [Google Scholar]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data—Principles and Practices, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 183. ISBN 978-1420055122. [Google Scholar]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Eisank, C.; Smith, M.; Hillier, J. Assessment of multiresolution segmentation for delimiting drumlins in digital elevation models. Geomorphology 2014, 214, 452–464. [Google Scholar] [CrossRef] [PubMed]
- Clinton, N.; Holt, A.; Scarborough, J.; Yan, L.; Gong, P. Accuracy Assessment Measures for Object-based Image Segmentation Goodness. Photogramm. Eng. Rem. S. 2010, 76, 289–299. [Google Scholar] [CrossRef]
- Belgiu, M.; Draguţ, L. Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. 2014, 96, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Lang, S.; Albrecht, F.; Kienberger, S.; Tiede, D. Object validity for operational tasks in a policy context. J. Spat. Sci. 2010, 55, 9–22. [Google Scholar] [CrossRef]
- Hölbling, D.; Betts, H.; Spiekermann, R.; Phillips, C. Semi-automated landslide mapping from historical and recent aerial photography. In Proceedings of the 19th AGILE Conference on Geographic Information Science, Helsinki, Finland, 14–17 June 2016; p. 5. [Google Scholar]
- Hölbling, D.; Eisank, C.; Friedl, B.; Weinke, E.; Kleindienst, H.; Kociu, A.; Vecchiotti, F.; Albrecht, F. EO-based landslide mapping: From methodological developments to automated web-based information delivery. In Proceedings of the 13th Congress Interpraevent—Extended Abstracts, Lucerne, Switzerland, 30 May–2 June 2016; pp. 102–103. [Google Scholar]
- Weinke, E.; Albrecht, F.; Hölbling, D.; Eisank, C.; Vecchiotti, F. Verfahren zur Implementierung eines Kartierungsdienstes für Rutschungen auf Basis von Fernerkundungsdaten und Nutzereinbindung. AGIT J. Angew. Geoinform. 2016, 46–55. [Google Scholar] [CrossRef]
Study Area | Size (km²) | Optical Sensor | Acquisition Date | Spectral Resolution 1 | Spatial Resolution (m) | DEM Resolution (m) |
---|---|---|---|---|---|---|
I | 4.7 | Landsat 7 | 28 July 2002 | 1× pan | 15 | 10 |
7× multispectral (blue, green, red, nir, swir-1, thermal, swir-2) | 30 | |||||
II | 2.8 | SPOT-5 | 10 September 2011 | 3× multispectral (green, red, nir) | 2.5 | 10 |
III | 1.4 | WorldView-2 | 29 August 2015 | 1× pan | 0.5 | 5 |
4× multispectral (blue, green, red, nir) | 2 | |||||
IV | 1.8 | WorldView-3 | 13 August 2015 | 1× pan | 0.5 | 5 |
4× multispectral (blue, green, red, nir) | 2 | |||||
V(a) | 3 | Sentinel-2 | 27 August 2016 | 13× multispectral (coastal aerosol, blue, green, red, red edge 1-3, nir, red edge 4, water vapour, swir cirrus, swir 1-2) | 10 (blue, green, red, nir) | 5 |
V(b) | 1.2 | 20 (red edge 1-4, swir 1-2) 60 (other) |
Study Area | Software | Segmentation Method and Parameters | Main Classification Parameters |
---|---|---|---|
I | eCognition 9.2 (Trimble Geospatial) | Multiresolution segmentation: SP: 25; S: 0.1; C: 0.5 | Mean diff. to neighbors (NDVI) < 0 Mean slope > 10 Length/Width > 4 |
II | eCognition 9.2 (Trimble Geospatial) | Multiresolution segmentation: SP: 15; S: 0.3; C: 0.5 | Mean NDVI < 0.04 Mean slope > 10 Mean brightness > 85 |
III | InterIMAGE 1.43 | Threshold segmentations based on NDVI and brightness layer (Threshold = Mean of layer) | Mean slope > 35° Mean TRI > 1.5 Size > 100 m² Perimeter/Area Ratio (P/A) < 0.55 Mean NDVI < 0.55 |
IV | InterIMAGE 1.43 | 1. Threshold segmentations based on NDVI and brightness layer (Threshold = Mean of layer) 2. Multiresolution segmentation based on slope; SP: 400; S: 0.5; C: 0.5 | Same as III, except: Mean slope > 15° No use of Mean NDVI |
V (a) | eCognition 9.2 (Trimble Geospatial) | Multiresolution segmentation: SP: 150; S: 0.5; C: 0.5 | Mean NDVI < 0.4 or < 0.5 (depending on fine adjustment in combination with other features) Mean slope > 10 |
V (b) | eCognition 9.2 (Trimble Geospatial) | Multiresolution segmentation: SP: 150; S: 0.3; C: 0.8 | Mean NDVI < 0.4 Mean slope > 8 Length/Width > 1.6 Shape index < 3.6 |
Band Combination | Digitalization Level of Detail | Geometric Quality | Completeness Quality | Landslide Classification Quality |
---|---|---|---|---|
R-G-B | Mapping Scale (varies between 1:1.000–1:20,000) depends on spatial resolution | accurate (1) | complete (1) | certain (1) |
low degree of inaccuracy (2) | high degree of completeness (2) | low degree of uncertainty (2) | ||
high degree of inaccuracy (3) | low degree of completeness (3) | high degree of uncertainty (3) | ||
inaccurate (4) | incomplete (4) | uncertain (4) |
Landslide Type | Landslide Subtype | Landslide Accumulation | Landslide Transport | Landslide Activity 1 |
---|---|---|---|---|
Landslide process type classification [50] | Landslide process subtype classification [50,51] | accumulation area complete (1) | transport area complete (1) | active (1) |
incomplete (2) | incomplete (2) | probably still active (2) | ||
absent (3) | absent (3) | dormant (3) | ||
not active (4) |
Statistical Property | Study Area I | Study Area II | Study Area III | Study Area IV | Study Area V |
---|---|---|---|---|---|
Number of landslides | 2 | 85 | 9 | 11 | 5 |
Area affected by landslides (km2) | 0.148 | 0.203 | 0.019 | 0.011 | 0.250 |
Smallest mapped landslide (m2) | 59700 | 75 | 135 | 244 | 4200 |
Largest mapped landslide (m2) | 87900 | 38741 | 12577 | 2400 | 148800 |
Average size of mapped landslides (m2) | 73800 | 2393 | 2110 | 992 | 49960 |
Statistical Property | Study Area I | Study Area II | Study Area III | Study Area IV | Study Area V |
---|---|---|---|---|---|
Number of landslides | 2 | 18 | 5 | 14 | 3 |
Area affected by landslides (km2) | 0.140 | 0.031 | 0.011 | 0.010 | 0.320 |
Smallest mapped landslide (m2) | 54855 | 247 | 66 | 30 | 10781 |
Largest mapped landslide (m2) | 85339 | 8374 | 7200 | 1882 | 270966 |
Average size of mapped landslides (m2) | 70097 | 1830 | 2157 | 709 | 106533 |
Comparison Metric | Study Area I | Study Area II | Study Area III | Study Area IV | Study Area V |
---|---|---|---|---|---|
Number of landslides (OBIA) | 2 | 85 | 9 | 11 | 5 |
Number of landslides (manual) | 2 | 18 | 5 | 14 | 3 |
Difference in numbers OBIA—manual (count; %) | 0 | +67 | +4 | −3 | +2 |
0% | 372% | 80% | −21% | +67% | |
Landslide affected area (OBIA, km²) | 0.148 | 0.203 | 0.0190 | 0.0109 | 0.250 |
Landslide affected area (manual, km²) | 0.140 | 0.0351 | 0.0108 | 0.00993 | 0.320 |
Area difference OBIA—manual (%) | 5.28% | 480% | 76 % | 9.91% | −21.8% |
Overlap area (km²) | 0.118 | 0.0318 | 0.0104 | 0.00691 | 0.208 |
Producer’s Accuracy (%) | 84.3% | 90.6% | 95.8% | 69.6% | V(a): 60.6% |
V(b): 90.0% | |||||
User’s Accuracy (%) | 80.1% | 15.6% | 54.4% | 63.3% | V(a): 91.2% |
V(b): 62.7% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hölbling, D.; Eisank, C.; Albrecht, F.; Vecchiotti, F.; Friedl, B.; Weinke, E.; Kociu, A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences 2017, 7, 37. https://doi.org/10.3390/geosciences7020037
Hölbling D, Eisank C, Albrecht F, Vecchiotti F, Friedl B, Weinke E, Kociu A. Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences. 2017; 7(2):37. https://doi.org/10.3390/geosciences7020037
Chicago/Turabian StyleHölbling, Daniel, Clemens Eisank, Florian Albrecht, Filippo Vecchiotti, Barbara Friedl, Elisabeth Weinke, and Arben Kociu. 2017. "Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors" Geosciences 7, no. 2: 37. https://doi.org/10.3390/geosciences7020037
APA StyleHölbling, D., Eisank, C., Albrecht, F., Vecchiotti, F., Friedl, B., Weinke, E., & Kociu, A. (2017). Comparing Manual and Semi-Automated Landslide Mapping Based on Optical Satellite Images from Different Sensors. Geosciences, 7(2), 37. https://doi.org/10.3390/geosciences7020037