Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database
Abstract
:1. Introduction
2. Methodology
3. Data
4. Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Akkar, S.; Sandıkkaya, M.A.; Bommer, J.J. Empirical ground-motion models for point- and extended-source crustal earthquake scenarios in Europe and the Middle East. Bull. Earthq. Eng. 2014, 12, 359–387. [Google Scholar] [CrossRef]
- Cadet, H.; Macau, A.; Benjumea, B.; Bellmunt, F.; Figueras, S. From ambient noise recordings to site effect assessment: The case study of Barcelona microzonation. Soil Dyn. Earthq. Eng. 2011, 3, 271–281. [Google Scholar] [CrossRef]
- CEN. Eurocode 8: Design of Structures for Earthquake Resistance- Part 1: General Rules, Seismic Actions and Rules for Buildings; European Standard, I.S.EN 1998-1:2005; CEN: Brussels, Belgium, 2004; (English Version). [Google Scholar]
- de Fomento, M. Norma de Construcción Sismorresistente: Parte General y Edificación (NCSE-02); Centro de Publicaciones Secretar General Tecnica-Ministerio de Fomento: Madrid, Spain, 2002. [Google Scholar]
- American Society of Civil Engineers (ASCE). Minimum Design Loads and Associated Criteria for Buildings and Other Structures; ACSE: Reston, VA, USA, 2017. [Google Scholar] [CrossRef]
- Steidl, J.H. Site response in southern California for probabilistic seismic hazard analysis. Bull. Seismol. Soc. Am. 2000, 90, 149–169. [Google Scholar] [CrossRef]
- Zhao, J.X.; Irikura, K.; Zhang, J.; Fukushima, Y.; Somerville, P.G.; Asano, A.; Ohno, Y.; Oouchi, T.; Takahashi, T.; Ogawa, H. An empirical site-classification method for strong-motion stations in Japan using H/V response spectral ratio. Bull. Seismol. Soc. Am. 2006, 96, 914–925. [Google Scholar] [CrossRef]
- Fukushima, Y.; Bonilla, L.F.; Scotti, O.; Douglas, J. Site classification using horizontal-to-vertical response spectral ratios and its impact when deriving empirical ground-motion prediction equations. J. Earthq. Eng. 2007, 11, 712–724. [Google Scholar] [CrossRef]
- Di Alessandro, C.; Bonilla, L.F.; Boore, D.M.; Rovelli, A.; Scotti, O. Predominant-period site classification for response spectra prediction equations in Italy. Bull. Seismol. Soc. Am. 2012, 102, 680–695. [Google Scholar] [CrossRef]
- Ghasemi, H.; Zare, M.; Fukushima, Y.; Sinaeian, F. Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN). Soil Dyn. Earthq. Eng. 2009, 29, 121–132. [Google Scholar] [CrossRef]
- Chopra, S.; Kumar, V.; Choudhury, P.; Yadav, R.B.S. Site classification of Indian strong motion network using response spectra ratios. J. Seismol. 2017, 22, 419–438. [Google Scholar] [CrossRef]
- Pinzón, L.A.; Pujades, L.G.; Hidalgo-leiva, D.A.; Diaz, S.A. Directionality models from ground motions of Italy. Ing. Sismica 2018, 35, 43–63. [Google Scholar]
- Boore, D.M. Orientation-independent, nongeometric-mean measures of seismic intensity from two horizontal components of motion. Bull. Seismol. Soc. Am. 2010, 100, 1830–1835. [Google Scholar] [CrossRef]
- Shahi, S.K.; Baker, J.W. NGA-West2 models for ground-motion directionality. Earthq. Spectra 2014, 46, 1285–1300. [Google Scholar] [CrossRef]
- Bozorgnia, Y.; Abrahamson, N.A.; Atik, L.A.; Ancheta, T.D.; Atkinson, G.M.; Baker, J.W.; Baltay, A.; Boore, D.M.; Campbell, K.W.; Choiu, B.S.-J.; et al. NGA-West2 research project. Earthq. Spectra 2014, 30, 973–987. [Google Scholar] [CrossRef]
- Lagaros, N.D. The impact of the earthquake incident angle on the seismic loss estimation. Eng. Struct. 2010, 32, 1577–1589. [Google Scholar] [CrossRef]
- Torbol, M.; Shinozuka, M. The directionality effect in the seismic risk assessment of highway networks. Struct. Infrastruct. Eng. 2014, 10, 175–188. [Google Scholar] [CrossRef]
- Vargas-Alzate, Y.F.; Pujades, L.G.; Barbat, A.H.; Hurtado, J.E.; Diaz, S.A.; Hidalgo-Leiva, D.A. Probabilistic seismic damage assessment of reinforced concrete buildings considering direccionality effects. Struct. Infrastruct. Eng. 2017, 14, 817–829. [Google Scholar] [CrossRef]
- Pinzón, L.A.; Pujades, L.G.; Diaz, S.A.; Alva, R.E. Do directionality effects influence expected damage? A case study of the 2017 Central Mexico earthquake. Bull. Seismol. Soc. Am. 2018, 108, 2543–2555. [Google Scholar] [CrossRef]
- Bianca, M.; Monaco, C.; Tortorici, L.; Cernobori, L. Quaternary normal faulting in southeastern Sicily (Italy): A seismic source for the 1693 large earthquake. Geophys. J. Int. 1999, 139, 370–394. [Google Scholar] [CrossRef]
- Baptista, M.A.; Miranda, J.M.; Chierici, F.; Zitellini, N. New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling. Nat. Hazards Earth Syst. Sci. 2010, 3, 333–340. [Google Scholar] [CrossRef]
- Amoruso, A.; Crescentini, L.; Scarpa, R. Source parameters of the 1908 Messina Straits, Italy, earthquake from geodetic and seismic data. J. Geophys. Res. Solid Earth 2002, 107, ESE 4-1–ESE 4-11. [Google Scholar] [CrossRef]
- Çelebi, M.; Bazzurro, P.; Chiaraluce, L.; Clemente, P.; Decanini, L.; Desortis, A.; Ellsworth, W.; Gorini, A.; Kalkan, E.; Marcucci, S.; et al. Recorded motions of the 6 April 2009 Mw 6.3 L’Aquila, Italy, earthquake and implications for building structural damage: Overview. Earthq. Spectra 2010, 26, 651–684. [Google Scholar] [CrossRef]
- Fiorentino, G.; Forte, A.; Pagano, E.; Sabetta, F.; Baggio, C.; Lavorato, D.; Nuti, C.; Santini, S. Damage patterns in the town of Amatrice after August 24th 2016 Central Italy earthquakes. Bull. Earthq. Eng. 2018, 16, 1399–1423. [Google Scholar] [CrossRef]
- De Luca, F.; Verderame, G.M.; Gómez-Martínez, F.; Pérez-García, A. The structural role played by masonry infills on RC building performances after the 2011 Lorca, Spain, earthquake. Bull. Earthq. Eng. 2014, 12, 1999–2026. [Google Scholar] [CrossRef]
- Alfaro, P.; Delgado, J.; García-Tortosa, F.J.; Lenti, L.; López, J.A.; López-Casado, C.; Martino, S. Widespread landslides induced by the Mw 5.1 earthquake of 11 May 2011 in Lorca, SE Spain. Eng. Geol. 2012, 137–138, 40–52. [Google Scholar] [CrossRef]
- Pinzón, L.A.; Pujades, L.G.; Macau, A.; Figueras, S. Increased seismic hazard in Barcelona (Spain) due to soil-building resonance effects. Soil Dyn. Earthq. Eng. 2019, 117, 245–250. [Google Scholar] [CrossRef]
- Angina, A.; Steri, A.; Stacul, S.; Lo Presti, D. Free-field seismic response analysis: The Piazza dei Miracoli in Pisa case study. Int. J. Geotech. Earthq. Eng. 2018, 9, 1–21. [Google Scholar] [CrossRef]
- Lo Presti, D.C.; Lai, C.G.; Puci, I. ONDA: Computer code for nonlinear seismic response analyses of soil deposits. J. Geotech. Geoenviron. Eng. 2006, 132, 223–236. [Google Scholar] [CrossRef]
- Fiorentino, G.; Quaranta, G.; Mylonakis, G.; Lavorato, D.; Pagliaroli, A.; Carlucci, G.; Sabetta, F.; Della Monica, G.; Lanzo, G.; Aprile, V.; et al. Seismic reassessment of the leaning tower of Pisa: Dynamic monitoring, site response, and SSI. Earthq. Spectra 2019, 35, 703–736. [Google Scholar] [CrossRef]
- Pinzón, L.A.; Mánica Malcom, M.Á.; Pujades, L.G.; Alva, R.E. A simplified approach to account for directionality effects on 2D dynamic soil-structure interaction analysis. In Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions; Silvestri, F., Moraci, N., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 4490–4497. [Google Scholar]
- Mezcua, J.; García Blanco, R.M.; Rueda, J. On the strong ground motion attenuation in Spain. Bull. Seismol. Soc. Am. 2008, 98, 1343–1353. [Google Scholar] [CrossRef]
Eurocode 8 (Europe) [3] | NCSE-02 (Spain) [4] | ASCE 7-16 (USA) [5] | ||||||
---|---|---|---|---|---|---|---|---|
Soil Type | Description | VS30 (m/s) | Soil Type | Description | VS30 (m/s) | Soil Type | Description | VS30 (m/s) |
A | Rock or other rock-like geological formation, including at most 5 m of weaker material at the surface. | Vs > 800 | I | Compact rock, very dense cemented or granular soil | Vs > 750 | A | Hard rock | Vs > 1500 |
B | Rock | 750 < Vs ≤ 1 500 | ||||||
B | Deposits of very dense sand, gravel, or very stiff clay, at least several tens of meters in thickness, characterized by a gradual increase of mechanical properties with depth. | 360 < Vs ≤ 800 | II | Very fractured rock, dense or cohesive hard granular soils. | 400 < Vs ≤ 750 | C | Very dense soil and soft rock | 360 < Vs ≤ 750 |
C | Deep deposits of dense or medium dense sand, gravel, or stiff clay with thickness from several tens to many hundreds of meters. | 180 < Vs ≤ 360 | III | Granular soil of medium compactness or cohesive soil of firm consistency to very firm. | 200 < Vs ≤ 400 | D | Stiff soil profile | 180 < Vs ≤ 360 |
D | Deposits of loose-to-medium cohesionless soil or of predominantly soft-to-firm cohesive soil. | Vs < 180 | IV | Loose granular soil or soft cohesive soil. | Vs < 200 | E | Soft soil profile | Vs < 180 |
E | A soil profile consisting of a surface alluvium layer with vs values of type C or D and thickness varying between about 5 m and 20 m, underlain by stiffer material with vs > 800 m/s. | - | - | - | - | F | Other. See ASCE 7-16 Table 20.3-1 | - |
S1 | Deposits consisting of or containing a layer at least 10 m thick of soft clays/silts with a high plasticity index (PI > 40) and high water content. | Vs < 100 | - | - | - | - | - | |
S2 | Deposits of liquefiable soils, sensitive clays or any other soil profile not included in types A–E or S1 | - | - | - | - | - | - |
Zhao et al. (2006) | Fukushima et al. (2007) | di Alessandro et al. (2012) | |||
---|---|---|---|---|---|
Site | Description | Site | Description | Site | Description |
SC-I | Tg < 0.2 s | SC-1 | Tg < 0.2 s | CL-I | Tg < 0.2 s |
SC-II | 0.2 s ≤ Tg < 0.4 s | SC-2 | 0.2 s ≤ Tg < 0.6 s | CL-II | 0.2 s ≤ Tg < 0.4 s |
SC-III | 0.4 s ≤ Tg < 0.6 s | SC-3 | 0.6 s ≤ Tg | CL-III | 0.4 s ≤ Tg < 0.6 s |
SC-IV | 0.6 s ≤ Tg | SC-4 | Tg not identifiable and original rock site | CL-IV | 0.6 s ≤ Tg |
- | - | SC-5 | Tg not identifiable and original soil site | CL-V | Tg not identifiable with flat H/V ratio and amplitude < 2 |
- | - | - | - | CL-VI | Broad amplification with multiple peaks @ Tg > 0.2 s |
- | - | - | - | CL-VII | Tg not identifiable with multiple peaks over all periods |
Number of | CL-I | CL-II | CL-III | CL-IV | CL-V | CL-VI | CL-VII |
---|---|---|---|---|---|---|---|
Stations | 9 (10.5%) | 24 (27.9%) | 16 (18.6%) | 14 (16.3%) | 2 (2.3%) | 4 (4.6%) | 17 (19.8%) |
Records | 167 (24.1%) | 138 (20.0%) | 176 (25.4%) | 62 (9.0%) | 31 (4.5%) | 32 (4.6%) | 86 (12.4%) |
Station Code | Geology IGN | Site Class Mezcua et al. 2008 | Site Class of this Study | Station Code | Geology IGN | Site class Mezcua et al. 2008 | Site Class of this Study |
---|---|---|---|---|---|---|---|
ABU | H | 3 | IV | JAE | S | 2 | II |
ADR | R | 1 | V | JAY | S | 3 | III |
AGE | S | - | IV | JUM | S | 2 | VI |
AGR | H | 3 | III | LA2 | H | 2 | II |
AHA | R | 1 | IV | LOJ | H | 3 | I |
AHM | R | 3 | V | LOQ | S | 3 | I |
ALB | H | 3 | III | LOR | R | 2 | III |
ALC | H | 2 | VII | LUC | S | 3 | II |
ALG | S | 2 | IV | M04 | S | 3 | VII |
ALH | R | 1 | IV | MAL | R | 1 | II |
ALM | H | 1 | III | MEL | R | 1 | VI |
AM2 | S | - | VI | MON | H | 1 | IV |
ARE | H | 3 | III | MOT | S | 3 | VII |
AROQ | H | - | I | MPD | S | 3 | IV |
ASAB | S | - | VII | MTC | S | 3 | II |
ATIG | S | - | I | MUL | H | 3 | VII |
BAD | S | 3 | VII | NIJ | R | 2 | IV |
BEC | H | 1 | II | OLO | R | 1 | III |
BNL | H | 2 | VI | OLU | H | 2 | II |
CAB | R | 3 | IV | ORI | S | 3 | II |
CAC | S | 3 | II | OSU | H | 2 | II |
CAR | H | 1 | II | PAM | S | 3 | I |
CBN | S | 3 | II | PTO | S | - | VII |
CHI | H | 2 | III | PUI | H | 2 | III |
CHU | S | 3 | III | RON | H | 3 | IV |
CIE | S | 3 | VII | SAR | R | 1 | I |
CNS | H | 1 | I | SCT | S | - | IV |
COR | S | 3 | II | SEV | S | 3 | III |
DIL | S | 3 | VII | SF2 | S | - | III |
DUR | S | 3 | II | STF | S | 3 | III |
EJI | S | 3 | VII | STS | R | 2 | VII |
ELD | S | 2 | IV | TOR | S | 2 | IV |
ELX | S | 2 | III | TOT | H | - | VII |
EST | H | 3 | IV | TUI | R | 1 | VII |
FAC | R | 3 | II | UGI | H | - | II |
FOR | S | - | II | VEN | S | 3 | VII |
GAN | S | 3 | II | VER | H | 3 | III |
GDX | S | 3 | II | VI3 | S | 2 | I |
GER | R | 1 | III | VIE | S | 3 | II |
GUA | S | 3 | II | VLM | H | 3 | VII |
HUE | S | 3 | VII | VLR | H | 2 | VII |
HUO | S | - | II | XAT | H | 3 | II |
ITO | H | 1 | I | ZAR | H | 2 | II |
Period (s) | Geometric Mean Values of H/V Response Spectral Ratios | ||||||
---|---|---|---|---|---|---|---|
CL-I | CL-II | CL-III | CL-IV | CL-V | CL-VI | CL-VII | |
0.01 | 1.631 | 1.455 | 1.437 | 1.155 | 1.167 | 1.404 | 1.630 |
0.05 | 1.374 | 1.232 | 1.223 | 1.040 | 1.205 | 1.397 | 1.392 |
0.07 | 1.350 | 1.100 | 1.107 | 0.943 | 1.177 | 1.266 | 1.406 |
0.10 | 1.926 | 1.182 | 1.240 | 1.044 | 1.246 | 1.143 | 1.594 |
0.15 | 1.998 | 1.619 | 1.447 | 1.071 | 1.180 | 1.356 | 1.780 |
0.20 | 1.645 | 2.030 | 1.615 | 1.166 | 1.444 | 1.959 | 1.632 |
0.25 | 1.494 | 2.157 | 1.789 | 1.309 | 1.484 | 1.990 | 1.693 |
0.30 | 1.527 | 2.316 | 2.013 | 1.409 | 1.508 | 1.585 | 1.801 |
0.40 | 1.355 | 2.156 | 2.174 | 1.578 | 1.445 | 1.830 | 1.806 |
0.50 | 1.266 | 1.996 | 2.290 | 1.659 | 1.359 | 1.970 | 1.782 |
0.60 | 1.262 | 1.774 | 2.021 | 1.902 | 1.310 | 1.836 | 1.693 |
0.70 | 1.186 | 1.678 | 1.904 | 2.021 | 1.428 | 1.864 | 1.768 |
0.80 | 1.156 | 1.577 | 1.730 | 1.965 | 1.363 | 1.786 | 1.812 |
0.90 | 1.106 | 1.434 | 1.633 | 1.801 | 1.325 | 1.708 | 1.750 |
1.00 | 1.081 | 1.455 | 1.558 | 1.806 | 1.243 | 1.812 | 1.771 |
1.25 | 1.196 | 1.348 | 1.441 | 1.878 | 1.312 | 1.808 | 1.717 |
1.50 | 1.207 | 1.264 | 1.342 | 1.751 | 1.271 | 1.720 | 1.609 |
2.00 | 1.130 | 1.246 | 1.327 | 1.639 | 1.410 | 1.765 | 1.350 |
Period (s) | Standard Deviation of H/V Spectral Ratios | ||||||
---|---|---|---|---|---|---|---|
CL-I | CL-II | CL-III | CL-IV | CL-V | CL-VI | CL-VII | |
0.01 | 0.325 | 0.376 | 0.269 | 0.263 | 0.128 | 0.226 | 0.480 |
0.05 | 0.403 | 0.397 | 0.213 | 0.237 | 0.000 | 0.250 | 0.437 |
0.07 | 0.597 | 0.296 | 0.209 | 0.324 | 0.051 | 0.335 | 0.420 |
0.10 | 0.573 | 0.503 | 0.256 | 0.291 | 0.120 | 0.355 | 0.493 |
0.15 | 0.672 | 0.344 | 0.390 | 0.225 | 0.125 | 0.323 | 0.599 |
0.20 | 0.488 | 0.518 | 0.483 | 0.305 | 0.230 | 0.300 | 0.582 |
0.25 | 0.309 | 0.446 | 0.406 | 0.276 | 0.295 | 0.358 | 0.600 |
0.30 | 0.276 | 0.523 | 0.453 | 0.319 | 0.258 | 0.351 | 0.581 |
0.40 | 0.377 | 0.443 | 0.460 | 0.228 | 0.244 | 0.425 | 0.416 |
0.50 | 0.409 | 0.310 | 0.438 | 0.338 | 0.314 | 0.438 | 0.269 |
0.60 | 0.371 | 0.332 | 0.454 | 0.277 | 0.335 | 0.364 | 0.353 |
0.70 | 0.412 | 0.279 | 0.359 | 0.460 | 0.215 | 0.428 | 0.429 |
0.80 | 0.389 | 0.288 | 0.331 | 0.405 | 0.161 | 0.258 | 0.453 |
0.90 | 0.329 | 0.322 | 0.371 | 0.413 | 0.255 | 0.336 | 0.436 |
1.00 | 0.324 | 0.266 | 0.332 | 0.244 | 0.288 | 0.385 | 0.478 |
1.25 | 0.253 | 0.240 | 0.271 | 0.254 | 0.239 | 0.385 | 0.705 |
1.50 | 0.369 | 0.229 | 0.246 | 0.330 | 0.165 | 0.424 | 0.509 |
2.00 | 0.279 | 0.293 | 0.301 | 0.438 | 0.028 | 0.526 | 0.482 |
Site Class | EC-8 Soils with Similarities |
---|---|
CL-I | A and B |
CL-II | B and C |
CL-III | B and C |
CL-IV | B, C, and D |
CL-V | A and B |
CL-VI | B and C |
CL-VII | A and B |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinzón, L.A.; Pujades, L.G.; Macau, A.; Carreño, E.; Alcalde, J.M. Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database. Geosciences 2019, 9, 294. https://doi.org/10.3390/geosciences9070294
Pinzón LA, Pujades LG, Macau A, Carreño E, Alcalde JM. Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database. Geosciences. 2019; 9(7):294. https://doi.org/10.3390/geosciences9070294
Chicago/Turabian StylePinzón, Luis A., Luis G. Pujades, Albert Macau, Emilio Carreño, and Juan M. Alcalde. 2019. "Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database" Geosciences 9, no. 7: 294. https://doi.org/10.3390/geosciences9070294
APA StylePinzón, L. A., Pujades, L. G., Macau, A., Carreño, E., & Alcalde, J. M. (2019). Seismic Site Classification from the Horizontal-to-Vertical Response Spectral Ratios: Use of the Spanish Strong-Motion Database. Geosciences, 9(7), 294. https://doi.org/10.3390/geosciences9070294