The Development of the Hospitality Sector Facing the Digital Challenge
Abstract
:1. Introduction
2. Electronic Commerce and Tourism
3. Conceptual Model and Hypotheses
4. Methodology
4.1. Methods Used
4.2. Data Analysis Procedures
4.2.1. Socio-Demographic Profile
4.2.2. Respondents’ Profile
4.2.3. Means Used to Access the Internet
4.2.4. Respondents’ Behavior on Internet
5. Results and Discussion
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Alrawadieh, Z.; Alrawadieh, Z.; Cetin, G. Digital transformation and revenue management: Evidence from the hotel industry. Tour. Econ. 2020, 27, 328–345. [Google Scholar] [CrossRef]
- Kizildag, M.; Altin, M.; Ozdemir, O.; Demirer, I. What do we know about social media and firms’ financial outcomes so far? J. Hosp. Tour. Technol. 2017, 8, 39–54. [Google Scholar] [CrossRef]
- International Telecommunication Union. Measuring the Information Society Report; International Telecommunication Union: Geneva, Switzerland, 2018. [Google Scholar]
- Zeqiri, A.; Dahmani, M.; Ben Youssef, A. Digitalization of the tourism industry: What are the impacts of the new wave of technologies. Balk. Econ. Rev. 2020, 2, 63–82. [Google Scholar]
- Kotler, P.; Kartajaya, H.; Setiawan, I. Marketing 3.0: The Forces That Are Defining the New Human-Centered Marketing; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Jaremen, D. Advantages from ICTS usage in hotel industry. Czech J. Soc. Sci. Bus. Econ. 2016, 5, 6–17. [Google Scholar] [CrossRef]
- Altin, M.; Schwartz, Z.; Uysal, M. “Where you do it” matters: The impact of hotels’ revenue-management implementation strategies on performance. Int. J. Hosp. Manag. 2017, 67, 46–52. [Google Scholar] [CrossRef]
- World Tourism Organisation. E-Business for Tourism, 1st ed.; Bookman: Porto Alegre, Brazil, 2003. [Google Scholar]
- Ferreira, J.; Ferreira, L.; Paiva Neto, A. Analysis of the Official Websites of Tourism Destinations Classified Socioculturally by the Report the Economist Inteligence Unit Limited. Tour. Vis. Action 2016, 18, 557–583. [Google Scholar] [CrossRef]
- Del Pozo, R.; García-Lapresta, J. Managing the Smiley Face Scale Used by Booking.com in an Ordinal Way. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 128–139. [Google Scholar] [CrossRef]
- Guasti, P.; Monteiro, K.; Oliveira, J.; Gonçalves, A.; Froes, M.; Vieira, D.; Teramati, M.; Ketchum; Mayumi, R. Webshoppers, 38th ed.; EBIT|Nielsen Compay: New York, NY, USA, 2018. [Google Scholar]
- Teixeira, E.; Butragueno, R.; Szasz, A.; Monteiro, K.; Vilhena, F.; Achkar, B.; Paula, M.; Cardoso, A.; Vargas, A.; Guasti, P.; et al. Webshoppers, 39th ed.; EBIT|Nielsen Compay: New York, NY, USA, 2019. [Google Scholar]
- Globo. Ceará Will Generate Revenue of R$ 661 Thousand and is the Third Largest Market In the Northeast in E-Commerce. 2019. Available online: https://g1.globo.com/ce/ceara/noticia/2019/07/02/ceara-gera-faturamento-de-r-661-milhoes-e-e-terceiro-maior-mercado-do-nordeste-no-e-commerce.ghtml (accessed on 13 April 2022).
- Cabral, B. E-commerce: Revenue jumps more than 160% in Greater Fortaleza. In Diário do Nordeste; Diário do Nordeste: Fortaleza, Brazil, 7 June 2020. [Google Scholar]
- IBGE. Instituto Brasileiro de Geografia e Estatística. 2022. Available online: https://www.ibge.gov.br/ (accessed on 11 June 2022).
- Ministério do Turismo. Anuário Estatístico de Turismo, 2nd ed.; Ministério do Turismo: Brasília, Brazil, 2021.
- Palos-Sanchez, P.; Correia, M. The Collaborative Economy Based Analysis of Demand: Study of Airbnb Case in Spain and Portugal. J. Theor. Appl. Electron. Commer. Res. 2018, 13, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Isa, N.; Rosli, N.; Hakim, F.; Akhir, I. Impact of web and digital experience on the stickiness of third party hotel website. J. Tour. Hosp. Culin. Arts 2017, 9, 399–410. [Google Scholar]
- Altin, M.; Koseoglu, M.A.; Yu, X.; Riasi, A. Performance measurement and management research in the hospitality and tourism industry. Int. J. Contemp. Hosp. Manag. 2018, 30, 1172–1189. [Google Scholar] [CrossRef]
- de Moura, A.C.; Gosling, M.d.S.; Christino, J.M.M.; Macedo, S.B. Acceptance and use of technology for the choice of touristic destinations by persons of the third age: A study using UTAUT2. Braz. J. Tour. Res. 2017, 11, 239–269. [Google Scholar] [CrossRef] [Green Version]
- Carneiro, S.; Freitas, A. The online consumer purchase intention, from Rio de Janeiro, in the purchase of tourist trips. Multidiscip. Res. Alm. 2014, 1, 126–138. [Google Scholar]
- Guardia, M. Factors Determining the Use of the Internet in the Purchase of Travel and Tourism Services: A study with Brazilian Tourists Visiting Natal-RN. Master’s Thesis, Federal University of Rio Grande do Norte, Natal, Brazil, 2006. [Google Scholar]
- Kim, M.J.; Chung, N.; Lee, C.K. The effect of perceived trust on electronic commerce: Shopping online for tourism products and services in South Korea. Tour. Manag. 2011, 32, 256–265. [Google Scholar] [CrossRef]
- Hees, F. The evolution of the negotiations on electronic commerce in the WTO: What are the main challenges? Lat. Am. Click Digit. Commer. 2016, 12, 6. [Google Scholar]
- Turban, E.; Outland, J.; King, D.; Lee, J.K.; Liang, T.-P.; Turban, D.C. Electronic Commerce 2018: A Managerial and Social Networks Prespective, 9th ed.; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Broeder, P.; Gkogka, A. The cultural impact of navigation design in global e-commerce. J. Tour. Herit. Serv. Mark. 2020, 6, 46–53. [Google Scholar] [CrossRef]
- Carvalho, M.; Santos, R.; Perinotto, A. Websites and tourism in Parnaíba—Piauí—Brazil. Electron. J. Adm. Tour. 2019, 13, 1927–1944. [Google Scholar]
- Halkiopoulos, C.; Antonopoulou, H.; Papadopoulos, D.; Giannoukou, I.; Gkintoni, E. Online reservation systems in e-Business: Analyzing decision making in e-Tourism. J. Tour. Herit. Serv. Mark. 2020, 6, 9–16. [Google Scholar] [CrossRef]
- Deloitte. Social Media in Companies: The Online Relationship with the Market. Deloitte Touche Tohmatsu. 6 June 2010. Available online: https://pt.slideshare.net/aboutferreira/mdias-sociais-nas-empresas-o-relacionamento-online-com-o-mercado (accessed on 24 March 2022).
- Churchill, G.; Peter, J. Marketing: Creating Value for Customers, 2nd ed.; Saraiva: Sao Paulo, Brazil, 2005. [Google Scholar]
- Vigolo, V.; Conferente, I. Older tourists: An exploratory study on online behaviour. In Information and Communication Technologies in Tourism 2014; Springer International Publishing: Dublin, Ireland, 2014; pp. 439–453. [Google Scholar]
- Arsal, I.; Woosnam, K.M.; Baldwin, E.D.; Backman, S.J. Residents as Travel Destination Information Providers: An Online Community Perspective. J. Travel Res. 2009, 49, 400–413. [Google Scholar] [CrossRef]
- García-Ruiz, R.; Ramírez-García, A.; Rodríguez-Rosell, M.-M. Educación en alfabetización mediática para una nueva ciudadanía prosumidora. Comun. Gr. 2014, 22, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Bagatini, V. The Attributes that Determine the Choice of Accommodation through the AIRBNB Booking Site; Graduate Project; Federal University of Rio Grande do Sul: Porte Alegre, Brasil, 2018. [Google Scholar]
- Kim, M.; Lee, C.; Chung, N. Investigating the Role of Trust and Gender in Online Tourism Shopping in South Korea. J. Hosp. Tour. Res. 2012, 37, 377–401. [Google Scholar] [CrossRef]
- Moral-Cuadra, S.; Solano-Sánchez, M.Á.; López-Guzmán, T.; Menor-Campos, A. Peer-to-Peer Tourism: Tourists’ Profile Estimation through Artificial Neural Networks. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 1120–1135. [Google Scholar] [CrossRef]
- Del Chiappa, G. Internet versus travel agencies: The perception of different groups of Italian online buyers. J. Vacat. Mark. 2013, 19, 55–66. [Google Scholar] [CrossRef]
- Toh, R.S.; Raven, P.; DeKay, F. Selling rooms: Hotels vs. third-party websites. Cornell Hosp. Q. 2011, 52, 181–189. [Google Scholar] [CrossRef]
- Bremner, C. What the Future Holds for Travel in 2020. Euromonitor International. 23 December 2019. Available online: https://www.euromonitor.com/article/what-the-future-holds-for-travel-in-2020 (accessed on 24 March 2022).
- Tacco, F. The Impact of Social Influence on the Intention to Use Collective Shopping Sites: A Study Based on the UTAUT Model. Master’s Thesis, Methodist University of São Paulo, Sao Paulo, Brazil, 2011. [Google Scholar]
- Bhatiasevi, V. An extended UTAUT model to explain the adoption of mobile banking. Inf. Dev. 2015, 32, 799–814. [Google Scholar] [CrossRef]
- Nysveen, H.; Pedersen, P.E. Consumer adoption of RFID-enabled services. Applying an extended UTAUT model. Inf. Syst. Front. 2016, 18, 293–314. [Google Scholar] [CrossRef]
- Slade, E.L.; Dwivedi, Y.K.; Piercy, N.C.; Williams, M.D. Modeling Consumers’ Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychol. Mark. 2015, 32, 860–873. [Google Scholar] [CrossRef]
- Vera, L. Motivating Factors of Collective Purchases on the Internet: A Study Based on the Oil Model and the Use of 2.0 Technology. Master’s Thesis, School of Administration, Federal University of Bahia, Salvador, Brazil, 2014. [Google Scholar]
- Faria, L.; Giuliani, A.; Pizzinatto, N.; Pizzinatto, A. Applicability of Unified Theory of Acceptance and Use of Technology Extended to the Consumer Use Context (UTAUT2) in Brazil: An Evaluation of the Model Using a Sample of Internet Users on Smartphones. J. Adm. UFSM 2014, 7. [Google Scholar] [CrossRef]
- Christino, J.; Silva, T.; Cardozo, E.; Lopes, A. Adoption of online shared hosting platforms: A study of Airbnb usage behavior. Tour. Vis. Action 2019, 21, 165–185. [Google Scholar] [CrossRef] [Green Version]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User acceptance of information technology: Toward a unified view. MIS Q. Manag. Inf. Syst. 2003, 27, 425–478. [Google Scholar] [CrossRef] [Green Version]
- Morgado, M. Comportamento do Consumidor Online: Perfil, Uso da Internet e Atitudes. Ph.D. Thesis, School of Business Administration of São Paulo, São Paulo, Brazil, 2003. [Google Scholar]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Q. 2012, 36, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Ge, Y.; Xiong, H.; Tuzhilin, A.; Liu, Q. Cost-Aware Collaborative Filtering for Travel Tour Recommendations. ACM Trans. Inf. Syst. 2014, 32, 2559169. [Google Scholar] [CrossRef]
- Liu, Q.; Chen, E.; Xiong, H.; Ge, Y.; Li, Z.; Wu, X. A Cocktail Approach for Travel Package Recommendation. IEEE Trans. Knowl. Data Eng. 2014, 26, 278–293. [Google Scholar] [CrossRef]
- He, J.; Liu, H.; Xiong, H. SocoTraveler: Travel-package recommendations leveraging social influence of different relationship types. Inf. Manag. 2016, 53, 934–950. [Google Scholar] [CrossRef]
- Buhalis, D.; Parra López, E.; Martinez-Gonzalez, J.A. Influence of young consumers’ external and internal variables on their e-loyalty to tourism sites. J. Destin. Mark. Manag. 2020, 15, 100409. [Google Scholar] [CrossRef]
- Silva, C.; Napiri, O. Mozambican E-Commerce Online Consumer Profile in Pemba. Int. Res. J. Eng. Technol. 2020, 7, 345–349. [Google Scholar]
- Punj, G. Impulse buying and variety seeking: Similarities and differences. J. Bus. Res. 2011, 64, 745–748. [Google Scholar] [CrossRef]
- Richa, D. Impact of demographic factors of consumers on online shopping behaviour: A study of consumers in India. Int. J. Eng. Manag. Sci. 2012, 3, 43–52. [Google Scholar]
- Sultan, F.; Henrichs, R.B. Consumer preferences for Internet services over time: Initial explorations. J. Consum. Mark. 2000, 17, 386–402. [Google Scholar] [CrossRef]
- Lubis, A.N. Evaluating the customer preferences of online shopping: Demographic factors and online shop application issue. Acad. Strateg. Manag. J. 2018, 17, 1–13. [Google Scholar]
- Cadavez, C. “Mas que mundo é este?”, ou de como tem de ser diferente a divulgação das práticas de fruição cultural para os turistas millennial—Um estudo de caso pensando nos museus. RITUR Rev. Iberoam. Tur. 2017, 7, 215–228. [Google Scholar] [CrossRef]
- Yang, K. Determinants of US consumer mobile shopping services adoption: Implications for designing mobile shopping services. J. Consum. Mark. 2010, 27, 262–270. [Google Scholar] [CrossRef]
- Luo, X.; Li, H.; Zhang, J.; Shim, J.P. Examining multi-dimensional trust and multi-faceted risk in initial acceptance of emerging technologies: An empirical study of mobile banking services. Decis. Support Syst. 2010, 49, 222–234. [Google Scholar] [CrossRef]
- Hew, J.J.; Lee, V.H.; Ooi, K.B.; Wei, J. What catalyses mobile apps usage intention: An empirical analysis. Ind. Manag. Data Syst. 2015, 115, 1269–1291. [Google Scholar] [CrossRef]
- Williams, M.; Rana, N.; Dwivedi, Y.; Lal, B. Is Utaut Really Used or Just Cited for The Sake of it? A Systematic Review of Citations of Utaut’s Originating Article. In Proceedings of the 19th European Conference on Information Systems, ECIS 2011, Helsinki, Finland, 9–11 June 2011. [Google Scholar]
- Thakur, R.; Srivastava, M. Adoption readiness, personal innovativeness, perceived risk and usage intention across customer groups for mobile payment services in India. Internet Res. 2014, 24, 369–392. [Google Scholar] [CrossRef]
- Alalwan, A.A.; Dwivedi, Y.K.; Rana, N.P. Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. Int. J. Inf. Manag. 2017, 37, 99–110. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, S.; Chau, P.Y.K.; Cao, Y. Dynamics between the trust transfer process and intention to use mobile payment services: A cross-environment perspective. Inf. Manag. 2011, 48, 393–403. [Google Scholar] [CrossRef]
- Zhou, T. An empirical examination of continuance intention of mobile payment services. Decis. Support Syst. 2013, 54, 1085–1091. [Google Scholar] [CrossRef]
- Dosek, T. Snowball Sampling and Facebook: How Social Media Can Help Access Hard-to-Reach Populations. PS Polit. Sci. Polit. 2021, 54, 651–655. [Google Scholar] [CrossRef]
- Purz, M. Números Atuais do WhatsApp no Brasil e o Potencial do app para Negócios—MessengerPeople by Sinch. Messenger People. 2022. Available online: https://www.messengerpeople.com/pt-br/whatsapp-no-brasil/ (accessed on 11 June 2022).
- Dewes, J. Snowball Sampling and Respondent-Driven Sampling: A Description of the Methods; Graduate Project; Federal University of Rio Grande do Sul: Porte Alegre, Brasil, 2013. [Google Scholar]
- Costa, F. Measurement and Development of Scales: Applications in Administration, 1st ed.; Modern Science: Rio de Janeiro, Brazil, 2011. [Google Scholar]
- IBGE. Estimativas da População Residente nos Municípios Brasileiros com Data de Referência em 1 de Julho de 2020; IBGE: Rio de Janeiro, Brazil, 2020. [Google Scholar]
- Herculano, D. Fortaleza Ultrapassa Salvador e se Torna Maior Economia do Nordeste—Governo do Estado do Ceará. In Governo do Estado do Ceará; 16 December 2020. Available online: https://www.ceara.gov.br/2020/12/16/fortaleza-ultrapassa-salvador-e-se-torna-maior-economia-do-nordeste/ (accessed on 11 June 2022).
- Santos, G. Sample calculation: Online calculator. Gen. 1 December 2017. Available online: https://praticaclinica.com.br/anexos/ccolaborativa-calculo-amostral/ccolaborativa-calculo-amostral.php (accessed on 24 March 2022).
- Morás, A. Consumer Decision Process: An Analysis of the Role of the Internet in the Purchase of Durable Goods. Master’s Thesis, Pontifical Catholic University of São Paulo, São Paulo, Brasil, 2009. [Google Scholar]
- Varella, C.; Souza-Esquerdo, V. Marketing research on organic food: A study on the Piracicabano profile and the limitations of consumption. Espacios 2015, 36, 19. [Google Scholar]
- Tozi, O.M.; Jair, J.; Viana, S.; Hall, R.J. E-commerce in supermarkets: Perception and purchase intention of two students from an academic unit of a public univer-sity in Dourados/MS. In Cooperation and Development; International Congress of Administration: Sucre, Bolivia, 2018. [Google Scholar]
- Hair Júnior, J.; Black, W.; Babin, B.; Anderson, R. Multivariate Data Analysis Global Edition, 7th ed.; Pearson Education: Saddle River, NJ, USA, 2010. [Google Scholar]
- Sousa, C. Determinants of Online Accommodation Booking among Generations X and Y. Master’s Thesis, Instituto Politécnico de Lisboa, Escola Superior de Comunicação Social, School of Social Communication, Lisbon, Portugal, 2019. [Google Scholar]
- Moura, D. Ceará has the highest average IDH Municipality of the Northeast. O POVO, 18 April 2019. [Google Scholar]
- Valente, J. Brazil Has 134 Million Internet Users, According to Research. AgênciaBrasil. 26 May 2020. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2020-05/brasil-tem-134-milhoes-de-usuarios-de-internet-aponta-pesquisa (accessed on 24 March 2022).
- Poggi, M. Digital Tourism: Travel in the 4.0 Era. Linkedin. 10 August 2017. Available online: https://www.linkedin.com/pulse/turismo-digital-viagens-na-era-40-marta-poggi-e-borges/ (accessed on 24 March 2022).
- FEBRABAN. FEBRABAN Banking Technology 2020 Survey; Deloitte Touche Tohmatsu: London, UK, 2019. [Google Scholar]
- Larson, R.; Farber, B. Applied Statistics, 6th ed.; Pearson Publishers: London, UK, 2015. [Google Scholar]
- Corrar, L.; Paulo, E.; Dias Filho, J. Multivariate Analysis for Courses in Administration, Accounting, and Economics, 1st ed.; Atlas: São Paulo, Brasil, 2007. [Google Scholar]
- Hair Júnior, J.; Babin, B.; Money, A.; Samouel, P. Fundamentals of Research Methods in Administration; Bookman: Porto Alegre, Brazil, 2005. [Google Scholar]
- Kim, Y.A.; Srivastava, J. Impact of social influence in e-commerce decision making. In Proceedings of the Ninth International Conference on Electronic Commerce, Minneapolis, MN, USA, 19–22 August 2007; Volume 258, pp. 293–302. [Google Scholar]
- Tzavlopoulos, Ι.; Gotzamani, K.; Andronikidis, A.; Vassiliadis, C. Determining the impact of e-commerce quality on customers’ perceived risk, satisfaction, value and loyalty. Int. J. Qual. Serv. Sci. 2019, 11, 576–587. [Google Scholar] [CrossRef]
- Jo, Y.J.; Matsumura, M.; Weinstein, D.E. The Impact of E-Commerce on Relative Prices and Consumer Welfare, 1st ed.; National Bureau of Economic Research: Cambridge, MA, USA; Boston, MA, USA, 2019. [Google Scholar]
- Occhialini, L. The “New Normal” for Leisure Travel, According to Global Body. Travel and Tourism. 6 May 2020. Available online: https://viagemeturismo.abril.com.br/materias/o-novo-normal-para-a-volta-das-viagens-de-lazer-segundo-o-wttc/ (accessed on 24 March 2022).
Comparative Data between Fortaleza and Brazil | |||
---|---|---|---|
Population | GDP per Capita 1 | Foreign Tourist Arrivals 2 | |
Fortaleza | 2,686,612 | 478,458 | 112,920 |
Brazil | 213,317,639 | 666,156 | 6,353,142 |
Construct | Item | Author | |
---|---|---|---|
Social influence | SI1 | People who are important to me use the Internet to purchase accommodation services. | Venkatesh et al. [49] |
SI2 | People I have a lot of contact with use the Internet to purchase accommodation services. | ||
SI3 | People whose opinions I value use the Internet to purchase accommodation services. | ||
Price | P1 | The prices offered on the Internet are reasonable for purchasing accommodation services. | |
P2 | The prices offered on the Internet have great costs/benefits for purchasing accommodation services. | ||
P3 | At current prices, the Internet offers good value for purchasing accommodation services. | ||
Perceived risk | PR1 | I feel unsafe providing personal information on the Internet to purchase accommodation services. | Slade et al. [43] |
PR2 | I worry about using the Internet to purchase accommodation services, as other people may be able to access my account. | ||
PR3 | I do not feel safe about sending sensitive information over the Internet to purchase accommodation services. | ||
Trust | T1 | I trust the information and transactions made through the Internet to purchase accommodation services. | |
T2 | I believe that the information I find on the Internet is reliable for purchasing accommodation services. | ||
T3 | I believe that the Internet is safe for purchasing accommodation services. | ||
Consumer’s profile | CP1 | Age | Morgado [48] |
CP2 | Income level | ||
CP3 | Educational level | ||
Use of the Internet | UI1 | Frequency | |
UI2 | Means of access | ||
UI3 | Attitude |
Characteristics | Type | Frequency | % |
---|---|---|---|
Age group | 19 to 25 years old | 7 | 3.59 |
26 to 30 years old | 19 | 9.74 | |
31 to 40 years old | 67 | 34.36 | |
41 to 50 years old | 50 | 25.64 | |
51 to 59 years old | 33 | 16.93 | |
Over 60 years old | 19 | 9.74 | |
Educational level | Complete high school | 6 | 3.08 |
Incomplete higher education | 20 | 10.26 | |
Complete higher education | 46 | 23.59 | |
Bachelor’s degree | 79 | 40.51 | |
Master’s degree | 36 | 18,46 | |
Doctorate degree | 8 | 4.10 | |
Salary range | Up to 2 minimum wages (SM, per month) | 7 | 3.59 |
More than 2 to 5 SM | 25 | 12.82 | |
More than 5 to 10 SM | 52 | 26.67 | |
More than 10 to 15 SM | 41 | 21.02 | |
More than 15 to 20 SM | 25 | 12.82 | |
More than 20 SM | 45 | 23.08 |
Usually Accesses Websites via: | Frequency | Valid Responses (%) |
---|---|---|
Mobile (mobile version of the website) | 58 | 29.74 |
Mobile application | 37 | 18.97 |
Computer (classic version of the website) | 27 | 13.84 |
Application on mobile phone and/or smartphone (mobile version of the website) | 21 | 10.76 |
Computer (classic version of the website) and/or mobile application and/or mobile (mobile version of the website) | 20 | 10.26 |
Computer (classic version of the website) and/or mobile (mobile version of the website) | 16 | 8.21 |
Computer (classic version of the website) and/or mobile application | 15 | 7.69 |
Computer (classic version of the website) and/or application on mobile and/or tablet | 1 | 0.51 |
Construct | Item | Mean | Standard Deviation | Agree | Neither Agree nor Disagree | Disagree |
---|---|---|---|---|---|---|
Social influence | SI1 | 3.93 | 1.099 | 71.13% | 15.98% | 12.89% |
SI2 | 4.11 | 0.991 | 80.72% | 9.38% | 9.90% | |
SI3 | 4.02 | 1.021 | 76.31% | 11.58% | 12.11% | |
Price | P1 | 3.99 | 1.031 | 79.17% | 7.81% | 13.02% |
P2 | 3.97 | 1.065 | 75.77% | 9.79% | 14.44% | |
P3 | 3.95 | 1.017 | 76.80% | 9.28% | 13.92% | |
Perceived risk | PR1 | 3.10 | 1.303 | 50.26% | 9.33% | 40.4% |
PR2 | 3.17 | 1.278 | 49.74% | 13.99% | 36.27% | |
PR3 | 3.22 | 1.324 | 50.52% | 13.02% | 36.46% | |
T1 | 3.59 | 1.138 | 67.88% | 8.29% | 23.83% | |
Trust | T2 | 3.38 | 1.161 | 61.58% | 7.89% | 30.53% |
T3 | 3.54 | 1.136 | 64.77% | 12.44% | 22.80% |
Model | Non-Standard Coefficients | Standard Coefficients | T | Sig. | Collinearity Statistics | ||
---|---|---|---|---|---|---|---|
B | Standard Error | Beta | Tolerance | VIF | |||
(Constant) | 1.179 | 1.219 | 0.967 | 0.335 | |||
Frequency | 0.572 | 0.407 | 0.097 | 1.406 | 0.161 | 0.978 | 1.023 |
Attitude | 0.086 | 0.02 | 0.295 | 4.291 | 0 | 0.99 | 1.01 |
Means of access | −0.15 | 0.126 | −0.082 | −1.194 | 0.234 | 0.985 | 1.016 |
Indicators | Factor Loads | KMO 1 | Bartlett’s Test 2 | Explained Variance 3 | Cronbach’s Alpha 4 |
---|---|---|---|---|---|
S1 | 0.928 | 0.757 | 398.50 (0.000) | 85.6% | |
S2 | 0.933 | 0.916 | |||
S3 | 0.915 | ||||
P1 | 0.952 | 0.764 | 541.62 (0.000) | 92.6% | 0.964 |
P2 | 0.973 | ||||
P3 | 0.963 | ||||
PR1 | 0.870 | 0.716 | 299.11 (0.000) | 82.5% | 0.890 |
PR2 | 0.939 | ||||
PR3 | 0.915 | ||||
T1 | 0.877 | 0.725 | 283.83 (0.000) | 82.6% | 0.905 |
T2 | 0.914 | ||||
T3 | 0.934 |
R | R Square | Adjusted R Square | Standard Error of the Estimate |
---|---|---|---|
0.467 | 0.218 | 0.202 | 1.116 |
Model | Non-standard Coefficients | Standard Coefficients | T. | Sig. | Collinearity Statistics | ||
---|---|---|---|---|---|---|---|
B | Standard Error | Beta | Tolerance | VIF | |||
(Constant) | 1.990 | 0.397 | 5.008 | 0.000 | |||
Social influence | 0.102 | 0.032 | 0.250 | 3.231 | 0.001 | 0.688 | 1.454 |
Perceived risk | −0.059 | 0.023 | −0.168 | −2.553 | 0.011 | 0.946 | 1.057 |
Trust | 0.053 | 0.033 | 0.132 | 1.620 | 0.107 | 0.622 | 1.609 |
Price | 0.079 | 0.035 | 0.192 | 2.275 | 0.024 | 0.579 | 1.728 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perinotto, A.R.C.; Araújo, S.M.; Borges, V.d.P.C.; Soares, J.R.R.; Cardoso, L.; Lima Santos, L. The Development of the Hospitality Sector Facing the Digital Challenge. Behav. Sci. 2022, 12, 192. https://doi.org/10.3390/bs12060192
Perinotto ARC, Araújo SM, Borges VdPC, Soares JRR, Cardoso L, Lima Santos L. The Development of the Hospitality Sector Facing the Digital Challenge. Behavioral Sciences. 2022; 12(6):192. https://doi.org/10.3390/bs12060192
Chicago/Turabian StylePerinotto, André Riani Costa, Sávio Machado Araújo, Vicente de Paula Censi Borges, Jakson Renner Rodrigues Soares, Lucília Cardoso, and Luís Lima Santos. 2022. "The Development of the Hospitality Sector Facing the Digital Challenge" Behavioral Sciences 12, no. 6: 192. https://doi.org/10.3390/bs12060192
APA StylePerinotto, A. R. C., Araújo, S. M., Borges, V. d. P. C., Soares, J. R. R., Cardoso, L., & Lima Santos, L. (2022). The Development of the Hospitality Sector Facing the Digital Challenge. Behavioral Sciences, 12(6), 192. https://doi.org/10.3390/bs12060192