Executive and Motor Functions in Older Individuals with Cognitive Impairment
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Participants
3.2. Materials
3.3. Procedure
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Auyeung, T.W.; Kwok, T.; Lee, J.; Leung, P.C.; Leung, J.; Woo, J. Functional decline in cognitive impairment—The relationship between physical and cognitive function. Neuroepidemiology 2008, 31, 167–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stijntjes, M.; Aartsen, M.J.; Taekema, D.G.; Gussekloo, J.; Huisman, M.; Meskers, C.; De Craen, A.J.M.; Maier, A.B. Temporal relationship between cognitive and physical performance in middle-aged to oldest old people. J. Gerontol. A Biol. Sci. Med. Sci. 2017, 72, 662–668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muir, S.W.; Beauchet, O.; Montero-Odasso, M.; Annweiler, C.; Fantino, B.; Speechley, M. Association of executive function impairment, history of falls and physical performance in older adults: A cross-sectional population-based study in eastern France. J. Nutr. Health Aging 2013, 17, 661–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Best, J.R.; Liu-Ambrose, T.; Boudreau, R.; Ayonayon, H.N.; Satterfield, S.; Simonsick, E.M.; Studenski, S.; Yaffe, K.; Newman, A.B.; Rosano, C. An evaluation of the longitudinal, bidirectional associations between gait speed and cognition in older women and men. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1616–1623. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pinillos, F.; Cozar-Barba, M.; Munoz-Jimenez, M.; Soto-Hermoso, V.; Latorre-Roman, P. Gait speed in older people: An easy test for detecting cognitive impairment, functional independence, and health state. Psychogeriatrics 2016, 16, 165–171. [Google Scholar] [CrossRef]
- Kikkert, L.H.; Vuillerme, N.; van Campen, J.P.; Hortobagyi, T.; Lamoth, C.J. Walking ability to predict future cognitive decline in old adults: A scoping review. Ageing Res. Rev. 2016, 27, 1–14. [Google Scholar] [CrossRef]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Weyandt, L.L. Executive functions and attention deficit hyperactivity disorder. ADHD Rep. 2009, 17, 1–7. [Google Scholar] [CrossRef]
- Goldstein, S.; Naglieri, J.A. Handbook of Executive Functioning; Springer: New York, NY, USA, 2014. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A.D.; Hitch, G.J. Working memory. In The Psychology of Learning and Motivation: Advances in Research and Theory; Bower, G.H., Ed.; Academic Press: Cambridge, UK, 1974; Volume 8, pp. 47–89. [Google Scholar]
- Norman, D.A.; Shallice, T. Attention to action: Willed and automatic control of behavior. In Consciousness and Self-Regulation; Davidson, R.J., Schwartz, G.E., Shapiro, D., Eds.; Plenum Press: New York, NY, USA, 1986; pp. 1–18. [Google Scholar]
- Chung, H.J.; Weyandt, L.L.; Swentosky, A. The physiology of executive functioning. In Handbook of Executive Functioning; Goldstein, S., Naglieri, J.A., Eds.; Springer: New York, NY, USA, 2014; pp. 13–27. [Google Scholar]
- Burzynska, A.Z.; Nagel, I.E.; Preuschhof, C.; Gluth, S.; Bäckman, L.; Li, S.-C.; Lindenberger, U.; Heekeren, H.R. Cortical thickness is linked to executive functioning in adulthood and aging. Hum. Brain Mapp. 2012, 33, 1607–1620. [Google Scholar] [CrossRef] [Green Version]
- Gothe, N.P.; Fanning, J.; Awick, E.; Chung, D.; Wójcicki, T.R.; Olson, E.A.; Mullen, S.P.; Voss, M.; Erickson, K.I.; Kramer, A.; et al. Executive function processes predict mobility outcomes in older adults. J. Am. Geriatr. Soc. 2014, 62, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Poranen-Clark, M.T.; von Bonsdorff, M.; Rantakokko, M.; Portegijs, E.; Eronen, J.; Pynnönen, K.; Eriksson, J.G.; Viljanen, A.; Rantanen, T. The temporal association between executive function and life-space mobility in old age. J. Gerontol. A Biol. Sci. Med. Sci. 2018, 73, 835–839. [Google Scholar] [CrossRef]
- Tseng, B.Y.; Uh, J.; Rossetti, H.C.; Cullum, C.M.; Diaz-Arrastia, R.; Levine, B.D.; Lu, H.; Zhang, R. Masters athletes exhibit larger regional brain volume and better cognitive performance than sedentary older adults. J. Magn. Reson. Imaging 2013, 38, 1169–1176. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, A.M.; Voss, M.W.; Prakash, R.S.; Chaddock, L.; Szabo, A.; White, S.M.; Wójcicki, T.; Mailey, E.; McAuley, E.; Kramer, A.; et al. The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav. Immun. 2012, 26, 811–819. [Google Scholar] [CrossRef] [Green Version]
- Duara, R.; Loewenstein, D.A.; Potter, E.; Barker, W.; Raj, A.; Schoenberg, M.; Wu, Y.; Banko, J.; Potter, H.; Greig, M.T.; et al. Pre-MCI and MCI: Neuropsychological, clinical, and imaging features and progression rates. Am. J. Geriat. Psychiatry 2011, 19, 951–960. [Google Scholar] [CrossRef] [Green Version]
- Cajanus, A.; Solje, E.; Koikkalainen, J.; Lötjönen, J.; Suhonen, N.-M.; Hallikainen, I.; Vanninen, R.; Hartikainen, P.; De Marco, M.; Venneri, A.; et al. The Association between Distinct Frontal Brain Volumes and Behavioral Symptoms in Mild Cognitive Impairment, Alzheimer’s Disease and Frontotemporal Dementia. Front. Neurol. 2019, 10, 1059. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.H.; Park, S.; Jang, H.; Cho, S.H.; Kim, S.J.; Kim, J.P.; Kim, S.T.; Na, D.L.; Seo, S.W.; Kim, H.J. Frontal-executive dysfunction affects dementia conversion in patients with amnestic mild cognitive impairment. Sci. Rep. 2020, 10, 772. [Google Scholar] [CrossRef] [Green Version]
- Prince, F.; Corriveau, H.; Hébert, R.; Winter, D.A. Gait in the elderly. Gait Posture 1997, 5, 128–135. [Google Scholar] [CrossRef]
- Montero-Odasso, M.; Verghese, J.; Beauchet, O.; Hausdorff, J.M. Gait and Cognition: A Complementary Approach to Understanding Brain Function and the Risk of Falling. J. Am. Geriatr. Soc. 2012, 60, 2127–2136. [Google Scholar] [CrossRef] [Green Version]
- Amboni, M.; Barone, P.; Hausdorff, J.M. Cognitive contributions to gait and falls: Evidence and implications: Cognitive Contributions To Gait and Falls. Mov. Disord. 2013, 28, 1520–1533. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef]
- Shumway-Cook, A.; Brauer, S.; Woollacott, M. Predicting the Probability for Falls in Community-Dwelling Older Adults Using the Timed Up & Go Test. Phys. Ther. 2000, 80, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Christopher, A.; Kraft, E.; Olenick, H.; Kiesling, R.; Doty, A. The reliability and validity of the Timed Up and Go as a clinical tool in individuals with and without disabilities across a lifespan: A systematic review: Psychometric properties of the Timed Up and Go. Disabil. Rehabil. 2019, 43, 1799–1813. [Google Scholar] [CrossRef]
- Ibrahim, A.; Singh, D.K.A.; Shahar, S. ‘Timed Up and Go’ test: Age, gender and cognitive impairment stratified normative values of older adults. PLoS ONE 2017, 12, e0185641. [Google Scholar] [CrossRef]
- Rajtar-Zembaty, A.; Rajtar-Zembaty, J.; Sałakowski, A.; Starowicz-Filip, A.; Skalska, A. Global cognitive functioning and physical mobility in older adults with and without mild cognitive impairment: Evidence and implications. Folia Med. Cracov. 2019, 1, 75–88. [Google Scholar] [CrossRef]
- Ansai, J.H.; de Andrade, L.P.; Nakagawa, T.H.; Vale, F.A.C.; Caetano, M.J.D.; Lord, S.R.; Rebelatto, J.R. Cognitive Correlates of Timed Up and Go Subtasks in Older People with Preserved Cognition, Mild Cognitive Impairment, and Alzheimer’s Disease. Am. J. Phys. Med. Rehabil. 2017, 96, 700–705. [Google Scholar] [CrossRef]
- De Melo, L.M.; Ansai, J.H.; Rossi, P.G.; Vale, F.A.C.; Takahashi, A.C.D.M.; de Andrade, L.P. Performance of an Adapted Version of the Timed Up-and-Go Test in People with Cognitive Impairments. J. Mot. Behav. 2019, 51, 647–654. [Google Scholar] [CrossRef]
- Van Patten, R.; Lee, E.E.; Graham, S.A.; Depp, C.A.; Kim, H.-C.; Jeste, D.V.; Twamley, E.W. The Utility of the Timed Up-and-Go Test in Predicting Cognitive Performance: A Cross-Sectional Study of Independent Living Adults in a Retirement Community. J. Appl. Gerontol. 2019, 39, 1163–1168. [Google Scholar] [CrossRef]
- Silva, F.D.O.; Ferreira, J.V.; Plácido, J.; Chagas, D.; Praxedes, J.; Guimarães, C.; Batista, L.A.; Marinho, V.; Laks, J.; Deslandes, A.C. Stages of mild cognitive impairment and Alzheimer’s disease can be differentiated by declines in timed up and go test: A systematic review and meta-analysis. Arch. Gerontol. Geriat. 2019, 85, 103941. [Google Scholar] [CrossRef]
- Nagamatsu, L.S.; Hsu, C.L.; Voss, M.W.; Chan, A.; Bolandzadeh, N.; Handy, T.C.; Graf, P.; Beattie, B.L.; Liu-Ambrose, T. The neurocognitive basis for impaired Dual-Task performance in senior fallers. Front. Aging Neurosci. 2016, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Muir, S.W.; Gopaul, K.; Montero-Odasso, M.M. The role of cognitive impairment in fall risk among older adults: A systematic review and meta-analysis. Age Ageing 2012, 41, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Kose, Y.; Ikenaga, M.; Yamada, Y.; Morimura, K.; Takeda, N.; Ouma, S.; Tsuboi, Y.; Yamada, T.; Kimura, M.; Kiyonaga, A.; et al. Timed Up and Go test, atrophy of medial temporal areas and cognitive functions in community-dwelling older adults with normal cognition and mild cognitive impairment. Exp. Gerontol. 2016, 85, 81–87. [Google Scholar] [CrossRef] [PubMed]
- Van der Wardt, V.; Logan, P.; Hood, V.; Booth, V.; Masud, T.; Harwood, R. The association of specific executive functions and falls risk in people with mild cognitive impairment and early-stage dementia. Dement. Geriatr. Cogn. Disord. 2015, 40, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Persad, C.C.; Jones, J.L.; Ashton-Miller, J.A.; Alexander, N.B.; Giordani, B. Executive function and gait in older adults with cognitive impairment. J. Gerontol. A Biol. Sci. Med. Sci. 2008, 63, 1350–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, E.C.; Weinstein, G.; Beiser, A.S.; Tan, Z.S.; DeCarli, C.; Kelly-Hayes, M.; Kase, C.; Murabito, J.M.; Seshadri, S. Association of Physical Function with clinical and subclinical brain disease: The Framingham offspring study. J. Alzheimer’s Dis. 2016, 53, 1597–1608. [Google Scholar] [CrossRef]
- Taekema, D.G.; Gussekloo, J.; Maier, A.B.; Westendorp, R.G.; de Craen, A.J. Handgrip strength as a predictor of functional, psychological and social health. A prospective population-based study among the oldest old. Age Ageing 2010, 39, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Jang, J.Y.; Kim, J.; Jang, J.Y.; Kim, J. Association between handgrip strength and cognitive impairment in elderly Koreans: A population-based cross-sectional study. J. Phys. Ther. Sci. 2015, 27, 3911–3915. [Google Scholar] [CrossRef] [Green Version]
- Buracchio, T.; Dodge, H.H.; Howieson, D.; Wasserman, D.; Kaye, J. The Trajectory of Gait Speed Preceding Mild Cognitive Impairment. Arch. Neurol. 2010, 67, 980–986. [Google Scholar] [CrossRef]
- Hackett, R.A.; Davies-Kershaw, H.; Cadar, D.; Orrell, M.; Steptoe, A. Walking speed, cognitive function, and dementia risk in the English longitudinal study of ageing. J. Am. Geriatr. Soc. 2018, 66, 1670–1675. [Google Scholar] [CrossRef]
- Fastame, M.C.; Hitchcott, P.K.; Penna, M.P. The impact of leisure on mental health of Sardinian elderly from the ‘blue zone’: Evidence for ageing well. Aging Clin. Exp. Res. 2018, 30, 169–180. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Magni, E.; Binetti, G.; Bianchetti, A.; Rozzini, R.; Trabucchi, M. Mini-Mental State Examination: A normative study in Italian elderly population. Eur. J. Neurol. 1996, 3, 198–202. [Google Scholar] [CrossRef]
- Critchley, M. The Parietal Lobes; Hafner Press: New York, NY, USA, 1953. [Google Scholar]
- Mondini, S.; Mapelli, D.; Vestri, A.; Bisiacchi, P. Esame Neuropsicologico Breve [Brief Neuropsychological Exam]; Raffaello Cortina Editore: Milan, Italy, 2003. [Google Scholar]
- Novelli, G.; Papagno, C.; Capitani, E.; Laiacona, M. Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali [Three clinical tests for lexical research and production. Validation on normal subjects]. Arch. Psicol. Neurol. Psichiatr. 1986, 47, 477–506. [Google Scholar]
- Mioshi, E.; Dawson, K.; Mitchell, J.; Arnold, R.; Hodges, J.R. The Addenbrooke’s Cognitive Examination Revised (ACE-R): A brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry 2006, 21, 1078–1085. [Google Scholar] [CrossRef]
- Pigliautile, M.; Ricci, M.; Ercolani, S.; Radicchi, R.; Mangialasche, F.; Monastero, R.; Croce, M.F.; Federici, S.; Mioshi, E.; Mecocci, P. Studio di validazione dell’ACE-R in lingua italiana nella popolazione degli young-old e degli old-old. G Gerontol. 2012, 60, 134–141. [Google Scholar]
- Reitan, R.M.; Wolfson, D. The Halstead-Reitan Neuropsychological Test Battery: Therapy and Clinical Interpretation; Reitan Neuropsychology Laboratory: Tucson, AZ, USA, 1985. [Google Scholar]
- Giovagnoli, A.R.; Del Pesce, M.; Mascheroni, S.; Simoncelli, M.; Laiacona, M.; Capitani, E. Trail making test: Normative values from 287 normal adult controls. Ital. J. Neurol. Sci. 1996, 17, 305–309. [Google Scholar] [CrossRef]
- Spinnler, H.; Tognoni, G. Standardizzazione e taratura italiana di test neuropsicologici [Italian standardization and classification of Neuropsychological tests]. Italy J. Neurol. Sci. 1987, 8, 1–120. [Google Scholar]
- Pau, M.; Porta, M.; Pilloni, G.; Corona, F.; Fastame, M.C.; Hitchcott, P.K.; Penna, M.P. Texting While Walking Induces Gait Pattern Alterations in Healthy Older Adults. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2018, 62, 1908–1912. [Google Scholar] [CrossRef] [Green Version]
- Porta, M.; Pilloni, G.; Corona, F.; Fastame, M.C.; Hitchott, P.K.; Penna, M.P.; Pau, M. Relationships between objectively assessed functional mobility and handgrip strength in healthy older adults. Eur. Geriatr. Med. 2018, 9, 201–209. [Google Scholar] [CrossRef]
- Fastame, M.C.; Hitchcott, P.K.; Corona, F.; Pilloni, G.; Porta, M.; Pau, M.; Penna, M.P. Memory, subjective memory and motor functioning in non-demented elders with and without Parkinson’s disease. Eur. J. Psychol. 2019, 15, 404–420. [Google Scholar] [CrossRef] [Green Version]
- Mangano, G.R.A.; Valle, M.S.; Casabona, A.; Vagnini, A.; Cioni, M. Age-Related Changes in Mobility Evaluated by the Timed Up and Go Test Instrumented through a Single Sensor. Sensors 2020, 20, 719. [Google Scholar] [CrossRef] [Green Version]
- Shechtman, O.; Gestewitz, L.; Kimble, C. Reliability and validity of the DynEx dynamometer. J. Hand Ther. 2005, 18, 339–347. [Google Scholar] [CrossRef]
- Gaszynska, E.; Godala, M.; Szatko, F.; Gaszynski, T. Masseter muscle tension, chewing ability, and selected parameters of physical fitness in elderly care home residents in Lodz, Poland. Clin. Interv. Aging 2014, 9, 1197–1203. [Google Scholar] [CrossRef] [Green Version]
- Reuben, D.B.; Rubenstein, L.V.; Hirsch, S.H.; Hays, R.D. Value of functional status as a predictor of mortality: Results of a prospective study. Am. J. Med. 1992, 93, 663–669. [Google Scholar] [CrossRef]
- Zijlstra, A.; Mancini, M.; Lindemann, U.; Chiari, L.; Zijlstra, W. Sit-stand and stand-sit transitions in older adults and patients with Parkinson’s disease: Event detection based on motion sensors versus force plates. J. Neuroeng. Rehabil. 2012, 7, 9–75. [Google Scholar] [CrossRef] [Green Version]
- Galán-Mercant, A.; Cuesta-Vargas, A.I. Differences in trunk accelerometry between frail and nonfrail elderly persons in sit-to-stand and stand-to-sit transitions based on a mobile inertial sensor. JMIR Mhealth Uhealth 2013, 1, e21. [Google Scholar] [CrossRef] [Green Version]
- Parvaneh, S.; Mohler, J.; Toosizadeh, N.; Grewal, G.S.; Najafi, B. Postural transitions during activities of daily living could identify frailty status: Application of wearable technology to identify frailty during unsupervised condition. Gerontology 2017, 63, 479–487. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, E.; Gorus, E.; Van Schelvergem, N.; De Vriendt, P. The relationship between basic, instrumental, and advanced activities of daily living and executive functioning in geriatric patients with neurocognitive disorders. Int. J. Geriatr. Psychiatry 2019, 34, 889–899. [Google Scholar] [CrossRef]
- Morris, R.; Lord, S.; Bunce, J.; Burn, D.; Rochester, L. Gait and cognition: Mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci. Biobehav. Rev. 2016, 64, 326–345. [Google Scholar] [CrossRef]
- Kuck, J.; Pantke, M.; Flick, U. Effects of social activation and physical mobilization on sleep in nursing home residents. Geriatr. Nurs. 2014, 35, 455–461. [Google Scholar] [CrossRef]
- Jansen, C.P.; Diegelmann, M.; Schnabe, E.L.; Wahl, H.W.; Hauer, K. Life-space and movement behavior in nursing home residents: Results of a new sensor-based assessment and associated factors. BMC Geriatr. 2017, 17, 36. [Google Scholar] [CrossRef] [Green Version]
- Patterson, C. World Alzheimer Report 2018; Alzheimer’s Disease International: London, UK, 2018. [Google Scholar]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Mukadam, N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Vostrý, M. Selected opportunities for access to geriatric clients from the perspective of assisting professions. J. Educ. Cult. Soc. 2018, 9, 89–95. [Google Scholar] [CrossRef]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 MMSE | — | |||||||||||||
2 Clock | 0.656 *** | — | ||||||||||||
3 Semantic fluency | 0.361 *** | 0.393 *** | — | |||||||||||
4 ACE-R Fluency | 0.658 *** | 0.606 *** | 0.458 *** | — | ||||||||||
5 Attentional Matrices | 0.276 ** | 0.421 *** | 0.295 ** | 0.441 *** | — | |||||||||
6 TMT-A | −0.244 * | −0.443 *** | −0.170 | −0.326 ** | −0.552 *** | — | ||||||||
7 TUG overall duration s | −0.128 | −0.187 | 0.072 | −0.164 | −0.050 | 0.188 | — | |||||||
8 TUG Sit-to-stand time s | −0.179 * | −0.231 * | −0.204 | −0.180 * | −0.063 | 0.272 * | −0.012 | — | ||||||
9 TUG Stand-to-sit time s | −0.189 * | −0.214 * | −0.222 * | −0.257 ** | −0.196 | 0.182 | 0.418 *** | 0.170 | — | |||||
10 TUG Intermediate-turn s | 0.020 | −0.088 | 0.221 * | −0.087 | −0.037 | 0.048 | 0.702 *** | −0.330 *** | 0.073 | — | ||||
11 TUG Final-turn s | 0.051 | −0.189 | −0.001 | −0.083 | −0.054 | 0.235 * | 0.554 *** | 0.202 * | 0.276 ** | 0.331 *** | — | |||
12 Walking speed m/s | 0.081 | −0.170 | −0.133 | 0.020 | −0.050 | 0.023 | 0.061 | 0.135 | 0.235 ** | −0.178 * | 0.125 | — | ||
13 Step length m | −0.164 | −0.060 | −0.217 * | −0.083 | −0.037 | 0.092 | −0.131 | 0.154 | 0.053 | −0.170 | −0.193 * | 0.211 * | — | |
14 Handgrip strength (kgf) | 0.226 * | 0.215 * | −0.083 | 0.230 * | 0.126 | −0.321 ** | −0.291 *** | −0.238 ** | −0.264 ** | −0.159 | −0.232 ** | −0.010 | −0.034 | — |
95% Confidence Interval | |||||||
---|---|---|---|---|---|---|---|
Predictor | Estimate | SE | Z | p | Odds Ratio | Lower | Upper |
Intercept | −9.26513 | 3.4358 | −2.6967 | 0.007 | 9.47e-5 | 1.13e-7 | 0.0796 |
BMI | −0.14562 | 0.0768 | −1.8958 | 0.058 | 0.864 | 0.744 | 1.0049 |
Gender | −0.03763 | 0.9271 | −0.0406 | 0.968 | 0.963 | 0.156 | 5.9267 |
MMSE | 0.56221 | 0.1056 | 5.3225 | <0.001 | 1.755 | 1.426 | 2.1581 |
Handgrip strength | 0.00485 | 0.0552 | 0.0880 | 0.930 | 1.005 | 0.902 | 1.1196 |
Walking speed | −0.11830 | 0.0580 | −2.0409 | 0.041 | 0.888 | 0.793 | 0.9953 |
Step length | −0.20824 | 0.8112 | −0.2567 | 0.797 | 0.812 | 0.166 | 3.9819 |
TUG Sit-to-stand | 1.13580 | 0.5647 | 2.0112 | 0.044 | 3.114 | 1.029 | 9.4182 |
TUG Stand-to-sit | −0.29784 | 0.1321 | −2.2546 | 0.024 | 0.742 | 0.573 | 0.9618 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fastame, M.C.; Mulas, I.; Putzu, V.; Asoni, G.; Viale, D.; Mameli, I.; Pau, M. Executive and Motor Functions in Older Individuals with Cognitive Impairment. Behav. Sci. 2022, 12, 214. https://doi.org/10.3390/bs12070214
Fastame MC, Mulas I, Putzu V, Asoni G, Viale D, Mameli I, Pau M. Executive and Motor Functions in Older Individuals with Cognitive Impairment. Behavioral Sciences. 2022; 12(7):214. https://doi.org/10.3390/bs12070214
Chicago/Turabian StyleFastame, Maria Chiara, Ilaria Mulas, Valeria Putzu, Gesuina Asoni, Daniela Viale, Irene Mameli, and Massimiliano Pau. 2022. "Executive and Motor Functions in Older Individuals with Cognitive Impairment" Behavioral Sciences 12, no. 7: 214. https://doi.org/10.3390/bs12070214
APA StyleFastame, M. C., Mulas, I., Putzu, V., Asoni, G., Viale, D., Mameli, I., & Pau, M. (2022). Executive and Motor Functions in Older Individuals with Cognitive Impairment. Behavioral Sciences, 12(7), 214. https://doi.org/10.3390/bs12070214