The Prevalence of Mild, Moderate, and Severe Nomophobia Symptoms: A Systematic Review, Meta-Analysis, and Meta-Regression
Abstract
:1. Introduction
2. Method
2.1. Screening, Data Extraction, Quality Assessment, and Data Analysis
2.2. Role of the Funding Source
3. Results
3.1. The Characteristics of the Included Studies
3.2. Prevalence of Nomophobia by Severity
3.2.1. All Symptoms (Cumulative or All Severities)
3.2.2. Mild Symptoms
3.2.3. Moderate Symptoms
3.2.4. Severe Symptoms
4. Discussion
Limitations and Directions for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- King, A.L.; Valença, A.M.; Nardi, A.E. Nomophobia: The mobile phone in panic disorder with agoraphobia: Reducing phobias or worsening of dependence? Cogn. Behav. Neurol. 2010, 23, 52–54. [Google Scholar] [CrossRef] [PubMed]
- Humood, A.; Altooq, N.; Altamimi, A.; Almoosawi, H.; Alzafiri, M.; Bragazzi, N.L.; Husni, M.; Jahrami, H. The Prevalence of Nomophobia by Population and by Research Tool: A Systematic Review, Meta-Analysis, and Meta-Regression. Psych 2021, 3, 249–258. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Parrish, A.-M.; Alotaibi, M.S.; Hosseinzadeh, H. Prevalence of Smartphone Addiction and Its Association with Sociodemographic, Physical and Mental Well-Being: A Cross-Sectional Study among the Young Adults of Bangladesh. Int. J. Environ. Res. Public Health 2022, 19, 16583. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, C. Exploring the Dimensions of Nomophobia: Developing and Validating a Questionnaire Using Mixed Methods Research. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 2014. [Google Scholar]
- Yildirim, C.; Correia, A.-P. Exploring the dimensions of nomophobia: Development and validation of a self-reported questionnaire. Comput. Hum. Behav. 2015, 49, 130–137. [Google Scholar] [CrossRef]
- Cochrane. Why Perform a Meta-Analysis in a Review? Available online: https://handbook-5-1.cochrane.org/chapter_9/9_1_3_why_perform_a_meta_analysis_in_a_review.htm (accessed on 12 August 2022).
- Prasad, M.; Patthi, B.; Singla, A.; Gupta, R.; Saha, S.; Kumar, J.K.; Malhi, R.; Pandita, V. Nomophobia: A cross-sectional study to assess mobile phone usage among dental students. J. Clin. Diagn. Res. JCDR 2017, 11, ZC34. [Google Scholar] [CrossRef] [PubMed]
- Sui, A.; Sui, W.; Irwin, J. Exploring the prevalence of nomophobia in a Canadian university: An environmental scan. J. Am. Coll. Health 2022, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Budd, J.; Miller, B.S.; Manning, E.M.; Lampos, V.; Zhuang, M.; Edelstein, M.; Rees, G.; Emery, V.C.; Stevens, M.M.; Keegan, N.; et al. Digital technologies in the public-health response to COVID-19. Nat. Med. 2020, 26, 1183–1192. [Google Scholar] [CrossRef]
- Nishikawa-Pacher, A. Research Questions with PICO: A Universal Mnemonic. Publications 2022, 10, 21. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Conn, V.S.; Valentine, J.C.; Cooper, H.M.; Rantz, M.J. Grey literature in meta-analyses. Nurs. Res. 2003, 52, 256–261. [Google Scholar] [CrossRef]
- van de Schoot, R.; de Bruin, J.; Schram, R.; Zahedi, P.; de Boer, J.; Weijdema, F.; Kramer, B.; Huijts, M.; Hoogerwerf, M.; Ferdinands, G.; et al. An open source machine learning framework for efficient and transparent systematic reviews. Nat. Mach. Intell. 2021, 3, 125–133. [Google Scholar] [CrossRef]
- Rathbone, J.; Hoffmann, T.; Glasziou, P. Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Syst. Rev. 2015, 4, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- PLOTCON. WebPlotDigitizer. Available online: https://automeris.io/WebPlotDigitizer/ (accessed on 12 August 2022).
- Luchini, C.; Stubbs, B.; Solmi, M.; Veronese, N. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. World J. Meta-Anal. 2017, 5, 80–84. [Google Scholar] [CrossRef]
- Shuster, J.J. Empirical vs. natural weighting in random effects meta-analysis. Stat. Med. 2010, 29, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Borenstein, M.; Hedges, L.V.; Higgins, J.P.; Rothstein, H.R. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods 2010, 1, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Clarke, M. Forest plots: Trying to see the wood and the trees. BMJ 2001, 322, 1479–1480. [Google Scholar] [CrossRef] [Green Version]
- Stroup, D.F.; Berlin, J.A.; Morton, S.C.; Olkin, I.; Williamson, G.D.; Rennie, D.; Moher, D.; Becker, B.J.; Sipe, T.A.; Thacker, S.B. Meta-analysis of Observational Studies in Epidemiology: A Proposal for Reporting. JAMA 2000, 283, 2008–2012. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef]
- Huedo-Medina, T.B.; Sánchez-Meca, J.; Marin-Martinez, F.; Botella, J. Assessing heterogeneity in meta-analysis: Q statistic or I2 index? Psychol. Methods 2006, 11, 193. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Chu, H.; Hodges, J.S. Alternative measures of between-study heterogeneity in meta-analysis: Reducing the impact of outlying studies. Biometrics 2017, 73, 156–166. [Google Scholar] [CrossRef]
- Mathur, M.B.; VanderWeele, T.J. Sensitivity analysis for publication bias in meta-analyses. J. R. Stat. Soc. Ser. C (Appl. Stat.) 2020, 69, 1091–1119. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, R.F. Some applications of radial plots. J. Am. Stat. Assoc. 1994, 89, 1232–1242. [Google Scholar] [CrossRef]
- Galbraith, R. Graphical display of estimates having differing standard errors. Technometrics 1988, 30, 271–281. [Google Scholar] [CrossRef]
- Galbraith, R. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat. Med. 1988, 7, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Doi, S.A. Rendering the Doi plot properly in meta-analysis. JBI Evid. Implement. 2018, 16, 242–243. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patsopoulos, N.A.; Evangelou, E.; Ioannidis, J.P. Sensitivity of between-study heterogeneity in meta-analysis: Proposed metrics and empirical evaluation. Int. J. Epidemiol. 2008, 37, 1148–1157. [Google Scholar] [CrossRef] [Green Version]
- Viechtbauer, W.; Cheung, M.W. Outlier and influence diagnostics for meta-analysis. Res. Synth. Methods 2010, 1, 112–125. [Google Scholar] [CrossRef]
- Gjerdevik, M.; Heuch, I. Improving the error rates of the Begg and Mazumdar test for publication bias in fixed effects meta-analysis. BMC Med. Res. Methodol. 2014, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sterne, J.A.; Egger, M. Regression methods to detect publication and other bias in meta-analysis. Publ. Bias Meta-Anal. Prev. Assess. Adjust. 2005, 1, 99–110. [Google Scholar]
- Copas, J.; Shi, J.Q. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics 2000, 1, 247–262. [Google Scholar] [CrossRef] [PubMed]
- Duval, S.; Tweedie, R. A nonparametric “trim and fill” method of accounting for publication bias in meta-analysis. J. Am. Stat. Assoc. 2000, 95, 89–98. [Google Scholar]
- Sedgwick, P. Meta-analyses: Heterogeneity and subgroup analysis. BMJ 2013, 346, F4040. [Google Scholar] [CrossRef] [Green Version]
- Thompson, S.G.; Higgins, J.P. How should meta-regression analyses be undertaken and interpreted? Stat. Med. 2002, 21, 1559–1573. [Google Scholar] [CrossRef]
- UN. Available online: https://www.un.org/dgacm/en/content/regional-groups (accessed on 12 August 2022).
- OSC. Estimating the reproducibility of psychological science. Science 2015, 349, aac4716. [Google Scholar] [CrossRef] [Green Version]
- R. 4.1.1. Available online: https://www.R-project.org/ (accessed on 5 May 2020).
- Schwarzer, G.; Schwarzer, M.G. Package ‘meta’. R Found. Stat. Comput. 2012, 9, 1–94. [Google Scholar]
- Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 2010, 36, 1–48. [Google Scholar] [CrossRef] [Green Version]
- McGuinness, L.A.; Higgins, J.P. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef]
- Al-Balhan, E.M.; Khabbache, H.; Watfa, A.; Re, T.S.; Zerbetto, R.; Bragazzi, N.L. Psychometric evaluation of the Arabic version of the nomophobia questionnaire: Confirmatory and exploratory factor analysis—Implications from a pilot study in Kuwait among university students. Psychol. Res. Behav. Manag. 2018, 11, 471. [Google Scholar] [CrossRef] [Green Version]
- AlMarzooqi, M.A.; Alhaj, O.A.; Alrasheed, M.M.; Helmy, M.; Trabelsi, K.; Ebrahim, A.; Hattab, S.; Jahrami, H.A.; Ben Saad, H. Symptoms of Nomophobia, Psychological Aspects, Insomnia and Physical Activity: A Cross-Sectional Study of ESports Players in Saudi Arabia. Healthcare 2022, 10, 257. [Google Scholar] [CrossRef]
- Alwafi, H.; Naser, A.Y.; Aldhahir, A.M.; Fatani, A.I.; Alharbi, R.A.; Alharbi, K.G.; Almutwakkil, B.A.; Salawati, E.; Ekram, R.; Samannodi, M. Prevalence and predictors of nomophobia among the general population in two middle eastern countries. BMC Psychiatry 2022, 22, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ayar, D.; Gerçeker, G.Ö.; Özdemir, E.Z.; Bektas, M. The effect of problematic internet use, social appearance anxiety, and social media use on nursing students’ nomophobia levels. CIN Comput. Inform. Nurs. 2018, 36, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Bano, N.; Khan, M.A.; Asif, U.; de Beer, J.; Rawass, H. Effects of nomophobia on anxiety, stress and depression among Saudi medical students in Jeddah, Saudi Arabia. J. Pak. Med. Assoc. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Bartwal, J.; Nath, B. Evaluation of nomophobia among medical students using smartphone in north India. Med. J. Armed Forces India 2020, 76, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Bragazzi, N.L.; Re, T.S.; Zerbetto, R. The relationship between nomophobia and maladaptive coping styles in a sample of Italian young adults: Insights and implications from a cross-sectional study. JMIR Ment. Health 2019, 6, e13154. [Google Scholar] [CrossRef]
- Buctot, D.B.; Kim, N.; Kim, S.-H. Personal profiles, family environment, patterns of smartphone use, nomophobia, and smartphone addiction across low, average, and high perceived academic performance levels among high school students in The Philippines. Int. J. Environ. Res. Public Health 2021, 18, 5219. [Google Scholar] [CrossRef]
- Catone, G.; Senese, V.P.; Pisano, S.; Siciliano, M.; Russo, K.; Muratori, P.; Marotta, R.; Pascotto, A.; Broome, M.R. The drawbacks of Information and Communication Technologies: Interplay and psychopathological risk of nomophobia and cyber-bullying, results from the bullying and youth mental health Naples study (BYMHNS). Comput. Hum. Behav. 2020, 113, 106496. [Google Scholar] [CrossRef]
- Çelik İnce, S. Relationship between nomophobia of nursing students and their obesity and self-esteem. Perspect. Psychiatr. Care 2021, 57, 753–760. [Google Scholar] [CrossRef]
- Çevik-Durmaz, Y.; Yalçinkaya-Önder, E.; Timur, S. Preservice teachers’ nomophobia levels, sense of loneliness and adjustment to college life. Perspect. Psychiatr. Care 2021, 57, 1052–1072. [Google Scholar] [CrossRef]
- ÇIRAK, M.; Dost, M.T. Nomophobia in University Students: The Roles of Digital Addiction, Social Connectedness, and Life Satisfaction. Turk. Psychol. Couns. Guid. J. 2022, 12, 35–52. [Google Scholar] [CrossRef]
- Copaja-Corzo, C.; Aragón-Ayala, C.J.; Taype-Rondan, A.; Nomotest-Group. Nomophobia and Its Associated Factors in Peruvian Medical Students. Int. J. Environ. Res. Public Health 2022, 19, 5006. [Google Scholar] [CrossRef] [PubMed]
- Karademir Coskun, T.; Kaya, O. The Distribution of Variables That Affect Nomophobia in Adults’ Profiles. Int. J. Res. Educ. Sci. 2020, 6, 534–550. [Google Scholar] [CrossRef]
- Daei, A.; Ashrafi-Rizi, H.; Soleymani, M.R. Nomophobia and health hazards: Smartphone use and addiction among university students. Int. J. Prev. Med. 2019, 10, 202. [Google Scholar]
- Denprechavong, V.; Ngamchaliew, P.; Buathong, N. Prevalence of Nomophobia and Relationship with Anxiety and Depression among University Students in Southern Thailand. J. Med. Assoc. Thail. 2022, 105, 359–367. [Google Scholar]
- Essel, H.B.; Vlachopoulos, D.; Tachie-Menson, A.; Nunoo, F.K.N.; Johnson, E.E. Nomophobia among Preservice Teachers: A descriptive correlational study at Ghanaian Colleges of Education. Educ. Inf. Technol. 2022, 27, 9541–9561. [Google Scholar] [CrossRef]
- Farchakh, Y.; Hallit, R.; Akel, M.; Chalhoub, C.; Hachem, M.; Hallit, S.; Obeid, S. Nomophobia in Lebanon: Scale validation and association with psychological aspects. PLoS ONE 2021, 16, e0249890. [Google Scholar] [CrossRef]
- Farooq, M.; Rizvi, M.A.; Wajid, W.A.; Ashraf, M.; Farooq, M.; Javed, H.; Sadiq, M.A.; Jafar, H.M.; Hameed, F.; Rizvi, M.A. Prevalence of Nomophobia and an Analysis of Its Contributing Factors in the Undergraduate Students of Pakistan. Cyberpsychology Behav. Soc. Netw. 2022, 25, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, I.A.; Pore, P.; Gothankar, J. Nomophobia: An emerging issue in medical institutions? J. Ment. Health 2018, 27, 438–441. [Google Scholar] [CrossRef] [PubMed]
- Fidancı, İ.; Aksoy, H.; Ayhan Başer, D.; Yengil Taci, D.; Cankurtaran, M. Evaluation of Nomophobia and Smartphone Addiction Levels among University Students in terms of Alcohol and Drug Abuse Risk. Anatol. J. Fam. Med. 2021, 4, 159–164. [Google Scholar]
- Gurbuz, I.B.; Ozkan, G. What is your level of nomophobia? An investigation of prevalence and level of nomophobia among young people in Turkey. Community Ment. Health J. 2020, 56, 814–822. [Google Scholar] [CrossRef]
- Hoşgör, H.; Coşkun, F.; Çalişkan, F. Relationship between nomophobia, fear of missing out, and perceived work overload in nurses in Turkey. Perspect. Psychiatr. Care 2020, 57, 1026–1033. [Google Scholar] [CrossRef]
- Işcan, G.; Yildirim Baş, F.; Özcan, Y.; Özdoğanci, C. Relationship between “nomophobia” and material addiction “cigarette” and factors affecting them. Int. J. Clin. Pract. 2021, 75, e13816. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.; Rashed, M.; AlRasheed, M.M.; Bragazzi, N.L.; Saif, Z.; Alhaj, O.; BaHammam, A.S.; Vitiello, M.V. Nomophobia is associated with insomnia but not with age, sex, bmi, or mobile phone screen size in young adults. Nat. Sci. Sleep 2021, 13, 1931. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.; Abdelaziz, A.; Binsanad, L.; Alhaj, O.A.; Buheji, M.; Bragazzi, N.L.; Saif, Z.; BaHammam, A.S.; Vitiello, M.V. The association between symptoms of nomophobia, insomnia and food addiction among young adults: Findings of an exploratory cross-sectional survey. Int. J. Environ. Res. Public Health 2021, 18, 711. [Google Scholar] [CrossRef] [PubMed]
- Jahrami, H.A.; Fekih-Romdhane, F.; Saif, Z.Q.; Alhaj, O.A.; AlRasheed, M.M.; Pandi-Perumal, S.R.; BaHammam, A.S.; Vitiello, M.V. Sleep dissatisfaction is a potential marker for nomophobia in adults. Sleep Med. 2022, 98, 152–157. [Google Scholar] [CrossRef]
- Jilisha, G.; Venkatachalam, J.; Menon, V.; Olickal, J.J. Nomophobia: A mixed-methods study on prevalence, associated factors, and perception among college students in Puducherry, India. Indian J. Psychol. Med. 2019, 41, 541–548. [Google Scholar] [CrossRef]
- Kaur, A.; Ani, A.; Sharma, A.; Kumari, V. Nomophobia and social interaction anxiety among university students. Int. J. Afr. Nurs. Sci. 2021, 15, 100352. [Google Scholar] [CrossRef]
- Kaviani, F.; Robards, B.; Young, K.L.; Koppel, S. Nomophobia: Is the fear of being without a smartphone associated with problematic use? Int. J. Environ. Res. Public Health 2020, 17, 6024. [Google Scholar] [CrossRef]
- Kaviani, F.; Young, K.; Koppel, S. Using nomophobia severity to predict illegal smartphone use while driving. Comput. Hum. Behav. Rep. 2022, 6, 100190. [Google Scholar] [CrossRef]
- Koppel, S.; Stephens, A.N.; Kaviani, F.; Peiris, S.; Young, K.L.; Chambers, R.; Hassed, C. It’s all in the mind: The relationship between mindfulness and nomophobia on technology engagement while driving and aberrant driving behaviours. Transp. Res. Part F Traffic Psychol. Behav. 2022, 86, 252–262. [Google Scholar] [CrossRef]
- Kundu, A.; Patnaik, L.; Pattanaik, S.; Sahu, T. Prevalence of nomophobia and use of social networking sites and applications—A cross-sectional study among undergraduate students in a medical college of Eastern India. J. Datta Meghe Inst. Med. Sci. Univ. 2022, 17, 69. [Google Scholar]
- Lupo, R.; Zacchino, S.; Caldararo, C.; Calabrò, A.; Carriero, M.C.; Santoro, P.; Carvello, M.; Conte, L. The use of electronical devices and relative levels of Nomophobia within a group of Italian nurses: An Observational Study. Epidemiol. Biostat. Public Health 2020, 17, 1–10. [Google Scholar] [CrossRef]
- Ma, J.; Liu, C. Evaluation of the factor structure of the Chinese version of the nomophobia questionnaire. Curr. Psychol. 2021, 40, 1367–1373. [Google Scholar] [CrossRef]
- Polat, F.; Delibas, L.; Bilir, İ. The relationship between nomophobia level and worry severity in future healthcare professional candidates. Perspect. Psychiatr. Care 2021, 58, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Qutishat, M.; Lazarus, E.R.; Razmy, A.M.; Packianathan, S. University students’ nomophobia prevalence, sociodemographic factors and relationship with academic performance at a University in Oman. Int. J. Afr. Nurs. Sci. 2020, 13, 100206. [Google Scholar] [CrossRef]
- Ramos-Soler, I.; López-Sánchez, C.; Quiles-Soler, C. Nomophobia in teenagers: Digital lifestyle, social networking and smartphone abuse. Commun. Soc. 2021, 34, 17–32. [Google Scholar] [CrossRef]
- Santl, L.; Brajkovic, L.; Kopilaš, V. Relationship between nomophobia, various emotional difficulties, and distress factors among students. Eur. J. Investig. Health Psychol. Educ. 2022, 12, 716–730. [Google Scholar] [CrossRef]
- Schwaiger, E.; Tahir, R. Nomophobia and its predictors in undergraduate students of Lahore, Pakistan. Heliyon 2020, 6, e04837. [Google Scholar] [CrossRef]
- Schwaiger, E.; Tahir, R. The impact of nomophobia and smartphone presence on fluid intelligence and attention. Cyberpsychology J. Psychosoc. Res. Cyberspace 2022, 16, 5. [Google Scholar] [CrossRef]
- Sevim-Cirak, N.; Islim, O.F. Investigation into nomophobia amongst Turkish pre-service teachers. Educ. Inf. Technol. 2021, 26, 1877–1895. [Google Scholar] [CrossRef]
- Sui, W.; Sui, A.; Munn, J.; Irwin, J.D. Comparing the prevalence of nomophobia and smartphone addiction among university students pre-COVID-19 and during COVID-19. J. Am. Coll. Health 2022, 6, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Sui, W.; Munn, J.; Irwin, J.D. Exploring and predicting Canadian university students’ trait anxiety and nomophobia during COVID-19. Int. J. Health Promot. Educ. 2022, 4, 1–13. [Google Scholar] [CrossRef]
- Tomczyk, Ł.; Lizde, E.S. Nomophobia and Phubbing: Wellbeing and new media education in the family among adolescents in Bosnia and Herzegovina. Child. Youth Serv. Rev. 2022, 137, 106489. [Google Scholar] [CrossRef]
- Torpil, B.; Ünsal, E.; Yıldız, E.; Pekçetin, S. Relationship between nomophobia and occupational performance among university students. Br. J. Occup. Ther. 2021, 84, 441–445. [Google Scholar] [CrossRef]
- Torpil, B.; Pekçetin, S. The effectiveness of two different occupational therapy interventions on time management and on perceived occupational performance and satisfaction in university students with severe Nomophobia: A Single-blind, randomized controlled trial. Occup. Ther. Ment. Health 2022, 38, 86–102. [Google Scholar] [CrossRef]
- Torpil, B.; Bahadir, Z.; Yilmaz, G.G.; Pekçetin, S. Comparison of sleep quality and sleepiness in university students with different levels of nomophobia. Int. J. Disabil. Sport. Health Sci. 2022, 5, 9–15. [Google Scholar] [CrossRef]
- Yavuz, M.; Altan, B.; Bayrak, B.; Gündüz, M.; Bolat, N. The relationships between nomophobia, alexithymia and metacognitive problems in an adolescent population. Turk. J. Pediatr. 2019, 61, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Durak, H.Y. Investigation of nomophobia and smartphone addiction predictors among adolescents in Turkey: Demographic variables and academic performance. Soc. Sci. J. 2019, 56, 492–517. [Google Scholar]
- León-Mejía, A.C.; Gutiérrez-Ortega, M.; Serrano-Pintado, I.; González-Cabrera, J. A systematic review on nomophobia prevalence: Surfacing results and standard guidelines for future research. PLoS ONE 2021, 16, e0250509. [Google Scholar] [CrossRef]
- Sharma, M.; Amandeep; Mathur, D.M.; Jeenger, J. Nomophobia and its relationship with depression, anxiety, and quality of life in adolescents. Ind. Psychiatry J. 2019, 28, 231–236. [Google Scholar] [CrossRef]
- Darvishi, M.; Noori, M.; Nazer, M.R.; Sheikholeslami, S.; Karimi, E. Investigating Different Dimensions of Nomophobia among Medical Students: A Cross-Sectional Study. Open Access Maced. J. Med. Sci. 2019, 7, 573–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, W.; Chen, J.-S.; Gan, W.Y.; Poon, W.C.; Tung, S.E.H.; Lee, L.J.; Xu, P.; Chen, I.-H.; Griffiths, M.D.; Lin, C.-Y. Associations of Problematic Internet Use, Weight-Related Self-Stigma, and Nomophobia with Physical Activity: Findings from Mainland China, Taiwan, and Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 12135. [Google Scholar] [CrossRef] [PubMed]
- Güneş, N.A.; Özdemir, Ç. The relationship between nomophobia and anxiety levels in healthy young individuals. J. Psychosoc. Nurs. Ment. Health Serv. 2021, 59, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Khan, F.A.; Waqar, A.; Niazi, S.N.K. Text neck syndrome among students of a medical and dental college in Lahore. J. Sharif. Med. Dent. Coll. 2020, 6, 5–8. [Google Scholar]
- Ahmed, S.; Akter, R.; Pokhrel, N.; Samuel, A.J. Prevalence of text neck syndrome and SMS thumb among smartphone users in college-going students: A cross-sectional survey study. J. Public Health 2021, 29, 411–416. [Google Scholar] [CrossRef]
- Kaviani, F.; Young, K.L.; Robards, B.; Koppel, S. Nomophobia and self-reported smartphone use while driving: An investigation into whether nomophobia can increase the likelihood of illegal smartphone use while driving. Transp. Res. Part F Traffic Psychol. Behav. 2020, 74, 212–224. [Google Scholar] [CrossRef]
- Jahrami, H.; Fekih-Romdhane, F.; Saif, Z.; Bragazzi, N.L.; Pandi-Perumal, S.R.; BaHammam, A.S.; Vitiello, M.V. A social media outage was associated with a surge in nomophobia, and the magnitude of change in nomophobia during the outage was associated with baseline insomnia. Clocks Sleep 2022, 4, 508–519. [Google Scholar] [CrossRef]
SN | Ref | Study | Country | Population | Sample (N) | Male:Female | Age (Years) | Tool | Nomophobia (%) | NOS (Stars) |
---|---|---|---|---|---|---|---|---|---|---|
1 | [44] | Al-Balhan, 2018 | Kuwait | University Students | 512 | 50:50% | 20 | NMP-Q | 100.0 | 8 |
2 | [45] | Almarzooqi, 2022 | Saudi Arabia | General Population | 893 | 74:26% | 24 | NMP-Q | 99.4 | 8 |
3 | [46] | Alwafi, 2022 | Saudi Arabia | General Population | 5191 | 31:69% | 24 | Others | 51.0 | 7 |
4 | [47] | Ayar, 2018 | Turkey | University Students | 755 | 17:83% | 21 | NMP-Q | 99.7 | 8 |
5 | [48] | Bano, 2021 | Saudi Arabia | Adolescents | 230 | 47:53% | 22 | NMP-Q | 100.0 | 6 |
6 | [49] | Bartwal, 2020 | India | University Students | 451 | 38:62% | 21 | NMP-Q | 100.0 | 8 |
7 | [50] | Bragazzi, 2019 | Italy | University Students | 403 | 40:60% | 28 | NMP-Q | 100.0 | 8 |
8 | [51] | Buctot, 2021 | Philippines | Adolescents | 3374 | 42:58% | 15 | NMP-Q | 99.5 | 8 |
9 | [52] | Catone, 2020 | Italy | Adolescents | 2959 | 52:48% | 15 | Others | 69.0 | 7 |
10 | [53] | Çelik İnce, 2021 | Turkey | University Students | 607 | 25:75% | 21 | NMP-Q | 99.7 | 8 |
11 | [54] | Çevik-Durmaz, 2021 | Turkey | University Students | 234 | 18:82% | 22 | NMP-Q | 100.0 | 6 |
12 | [55] | Çırak, 2022 | Turkey | University Students | 451 | 33:67% | 20 | NMP-Q | 100.0 | 8 |
13 | [56] | Copaja-Corzo, 2022 | Peru | University Students | 3139 | 39:61% | 22 | NMP-Q | 96.0 | 8 |
14 | [57] | Coskun, 2020 | Turkey | General Population | 210 | 51:49% | 33 | NMP-Q | 98.1 | 6 |
15 | [58] | Daei, 2019 | Iran | University Students | 320 | 41:59% | 23 | Others | 100.0 | 5 |
16 | [59] | Denprechavong, 2022 | Thailand | University Students | 638 | 82:18% | 20 | NMP-Q | 76.2 | 8 |
17 | [60] | Essel, 2022 | Ghana | General Population | 345 | 43:57% | 20 | NMP-Q | 100.0 | 6 |
18 | [61] | Farchakh, 2021 | Lebanon | General Population | 2260 | 0:100% | 28 | NMP-Q | 97.7 | 8 |
19 | [62] | Farooq, 2022 | Pakistan | University Students | 455 | 31:69% | 22 | NMP-Q | 100.0 | 8 |
20 | [63] | Farooqui, 2018 | India | University Students | 145 | 46:54% | 19 | NMP-Q | 100.0 | 6 |
21 | [64] | Fidanci, 2021 | Turkey | University Students | 386 | 51:49% | 22 | NMP-Q | 96.6 | 8 |
22 | [65] | Gurbuz, 2020 | Turkey | General Population | 400 | 42:58% | 28 | Others | 100.0 | 7 |
23 | [66] | Hoşgör, 2021 | Turkey | General Population | 178 | 10:90% | 31 | NMP-Q | 96.1 | 6 |
24 | [67] | Işcan, 2021 | Turkey | University Students | 641 | 27:73% | 21 | NMP-Q | 99.7 | 8 |
25 | [68] | Jahrami, 2021 | Bahrain | General Population | 549 | 46:54% | 27 | NMP-Q | 100.0 | 8 |
26 | [69] | Jahrami, 2021 | Bahrain | General Population | 654 | 46:54% | 27 | NMP-Q | 100.0 | 8 |
27 | [70] | Jahrami, 2022 | Bahrain | General Population | 549 | 49:51% | 27 | NMP-Q | 100.0 | 8 |
28 | [71] | Jilisha, 2019 | India | University Students | 774 | 41:59% | 19 | NMP-Q | 98.8 | 8 |
29 | [72] | Kaur, 2021 | Pakistan | University Students | 209 | 52:48% | 21 | NMP-Q | 100.0 | 6 |
30 | [73] | Kaviani, 2020 | Australia | General Population | 2838 | 47:53% | 25 | NMP-Q | 99.2 | 8 |
31 | [74] | Kaviani, 2022 | Australia | General Population | 2773 | 47:53% | 20 | NMP-Q | 99.2 | 8 |
32 | [75] | Koppel, 2022 | Australia | General Population | 990 | 30:70% | 51 | NMP-Q | 98.9 | 8 |
33 | [76] | Kundu, 2022 | India | University Students | 338 | 50:50% | 21 | NMP-Q | 100.0 | 6 |
34 | [77] | Lupo, 2020 | Italy | General Population | 540 | 27:73% | 33 | NMP-Q | 91.3 | 8 |
35 | [78] | Ma, 2021 | China | University Students | 473 | 32:68% | 19 | NMP-Q | 82.9 | 8 |
36 | [79] | Polat, 2022 | Turkey | Adolescents | 745 | 24:76% | 21 | NMP-Q | 100.0 | 8 |
37 | [7] | Prasad, 2017 | India | University Students | 554 | 47:53% | 22 | Others | 24.9 | 7 |
38 | [80] | Qutishat, 2020 | Oman | University Students | 740 | 34:66% | 33 | NMP-Q | 99.3 | 8 |
39 | [81] | Ramos-Soler, 2021 | Spain | Adolescents | 850 | 52:48% | 15 | NMP-Q | 100.0 | 8 |
40 | [82] | Santl, 2022 | Croatia | Adolescents | 257 | 14:86% | 22 | NMP-Q | 100.0 | 6 |
41 | [83] | Schwaiger, 2020 | Pakistan | University Students | 138 | 33:67% | 20 | NMP-Q | 100.0 | 6 |
42 | [84] | Schwaiger, 2022 | Pakistan | University Students | 138 | 33:67% | 20 | NMP-Q | 97.1 | 6 |
43 | [85] | Sevim-Cirak, 2021 | Turkey | Adolescents | 1066 | 32:68% | 20 | NMP-Q | 100.0 | 8 |
44 | [86] | Sui, 2022 | Canada | University Students | 258 | 20:80% | 22 | NMP-Q | 100.0 | 6 |
45 | [8] | Sui, 2022 | Canada | University Students | 1002 | 21:79% | 23 | NMP-Q | 100.0 | 8 |
46 | [87] | Sui, 2022 | Canada | University Students | 1221 | 28:72% | 23 | NMP-Q | 100.0 | 8 |
47 | [88] | Tomczyk, 2022 | Bosnia and Herzegovina | Adolescents | 1083 | 40:60% | 15 | NMP-Q | 29.5 | 8 |
48 | [89] | Torpil, 2021 | Turkey | University Students | 181 | 15:85% | 20 | NMP-Q | 100.0 | 6 |
49 | [90] | Torpil, 2022 | Turkey | University Students | 46 | 33:67% | 21 | NMP-Q | 100.0 | 6 |
50 | [91] | Torpil, 2022 | Turkey | University Students | 215 | 10:90% | 23 | NMP-Q | 100.0 | 6 |
51 | [92] | Yavuz, 2019 | Italy | Adolescents | 1817 | 46:54% | 15 | NMP-Q | 99.2 | 8 |
52 | [93] | Yildiz Durak, 2019 | Turkey | Adolescents | 612 | 52:48% | 13 | Others, NMP-Q | 53.4 | 7 |
Analysis | Descriptive | Random-Effects Meta-Analysis | Adjusted Meta-Analysis | Heterogeneity | Publication Bias | Moderators | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K | N | Pooled Results (95%CI) | I2 | τ2 | τ | H | Q | p | Egger’s Test | Rank Test | Age | Sex | Int | ||
Prevalence of all nomophobia symptoms (all severity) | 53 | 47,399 | 93.92% (93.19%; 94.66%) | 99.78 % (98.86%; 100.00%) | 99.6% | 0.001 | 0.03 | 15.38 | 12,293.72 (df = 52) | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.61 |
Prevalence of all nomophobia symptoms (mild symptoms only) | 42 | 33,780 | 25.80% (19.83%; 31.78%) | 04.17 % (01.00%; 09.97%) | 99.8% | 0.04 | 0.20 | 20.81 | 17,747.07 (df = 41) | 0.001 | 0.001 | 0.22 | 0.47 | 0.80 | 0.94 |
Prevalence of all nomophobia symptoms (moderate symptoms only) | 42 | 33,780 | 52.40% (44.21%; 60.60%) | 74.66 % (65.59%; 83.73%) | 99.7% | 0.07 | 0.27 | 17.86 | 13,080.70 (df = 41) | 0.001 | 0.01 | 0.12 | 0.89 | 0.82 | 0.79 |
Prevalence of all nomophobia symptoms (severe symptoms only) | 42 | 33,780 | 20.35% (16.51%; 24.20%) | 04.62 % (00.77%; 08.47%) | 99.6% | 0.02 | 0.13 | 15.75 | 10,176.69 (df = 41) | 0.001 | 0.001 | 0.33 | 0.37 | 0.91 | 0.66 |
Part 1—All Symptoms | ||||||||
---|---|---|---|---|---|---|---|---|
Analysis | Descriptive | Random-Effects Meta-Analysis | Heterogeneity | |||||
K | N | Pooled Results (95%CI) | I2 | τ2 | τ | Q | p | |
By Country | ||||||||
| 3 | 6601 | 99.18% (98.96%; 99.40%) | 0.0% | 0.001 | 0.001 | 0.86 | 0.001 |
| 3 | 1752 | 100.00% (99.86%; 100.00%) | 0.0% | 0.001 | 0.001 | 0.001 | 0.001 |
| 3 | 2481 | 100.00% (99.91%; 100.00%) | 0.0% | 0.001 | 0.001 | 0.001 | 0.001 |
| 5 | 2760 | 85.74% (80.36%; 91.11%) | 99.8% | 0.001 | 0.06 | 1667.12 | 0.001 |
| 4 | 5719 | 89.96% (83.49%; 96.42%) | 99.8% | 0.001 | 0.07 | 1317.43 | 0.001 |
| 4 | 940 | 99.94% (99.53%; 100.00%) | 26.5% | 0.001 | 0.001 | 4.08 | 0.001 |
| 3 | 6314 | 83.49% (64.23%; 100.00%) | 100.0% | 0.03 | 0.17 | 4568.08 | 0.001 |
| 16 | 7339 | 96.29% (95.35%; 97.24%) | 98.7% | 0.001 | 0.02 | 1195.41 | 0.001 |
By Culture | ||||||||
| 8 | 10,372 | 95.30% (94.04%; 96.56%) | 99.5% | 0.001 | 0.02 | 1501.00 | 0.02 |
| 45 | 37,027 | 93.38% (92.44%; 94.32%) | 99.6% | 0.001 | 0.03 | 10,771.87 | 0.02 |
By Population | ||||||||
| 14 | 18,370 | 95.15% (93.06%; 97.25%) | 99.7% | 0.001 | 0.04 | 5048.44 | 0.001 |
| 28 | 15,424 | 97.38% (96.72%; 98.04%) | 98.7% | 0.001 | 0.02 | 2121.92 | 0.001 |
| 11 | 13,605 | 84.17% (82.11%; 86.22%) | 99.8% | 0.001 | 0.03 | 5071.85 | 0.001 |
By Tool | ||||||||
| 47 | 37,975 | 97.59% (97.13%; 98.05%) | 98.8% | 0.001 | 0.02 | 3844.29 | 0.001 |
| 6 | 9424 | 66.52% (53.66%; 79.37%) | 99.9% | 0.03 | 0.16 | 7961.51 | 0.001 |
By Year | ||||||||
| 4 | 1966 | 82.30% (76.20%; 88.40%) | 99.8% | 0.001 | 0.06 | 1661.68 | 0.001 |
| 6 | 4538 | 85.35% (81.71%; 89.00%) | 99.6% | 0.001 | 0.04 | 1163.34 | 0.001 |
| 8 | 8276 | 94.77% (92.13%; 97.42%) | 99.5% | 0.001 | 0.04 | 1352.49 | 0.001 |
| 15 | 11,892 | 99.46% (99.12%; 99.79%) | 92.4% | 0.001 | 0.01 | 184.09 | 0.001 |
| 20 | 20,727 | 93.01% (91.55%; 94.47%) | 99.8% | 0.001 | 0.03 | 7886.39 | 0.001 |
Part 2—Mild Symptoms | ||||||||
Analysis | Descriptive | Random-effects meta-analysis | Heterogeneity | |||||
K | N | Pooled results (95%CI) | I2 | τ2 | τ | Q | p | |
By Country | ||||||||
| 3 | 6601 | 36.24% (33.83%; 38.66%) | 74.6% | 0.001 | 0.02 | 7.88 | 0.001 |
| 3 | 1752 | 6.45% (5.30%; 7.60%) | 0.0% | 0.001 | 0.001 | 0.03 | 0.001 |
| 4 | 1708 | 19.13% (15.94%; 22.33%) | 61.4% | 0.001 | 0.03 | 7.77 | 0.001 |
| 3 | 2760 | 51.79% (36.42%; 67.16%) | 98.1% | 0.02 | 0.13 | 107.81 | 0.001 |
| 4 | 940 | 10.17% (8.24%; 12.10%) | 0.0% | 0.001 | 0.001 | 1.78 | 0.001 |
| 2 | 1123 | 17.45% (15.23%; 19.67%) | 0.0% | 0.001 | 0.001 | 0.05 | 0.001 |
| 13 | 5881 | 28.68% (18.03%; 39.33%) | 99.3% | 0.04 | 0.19 | 1809.78 | 0.001 |
By Culture | ||||||||
| 5 | 5934 | 46.70% (8.91%; 84.48%) | 99.9% | 0.19 | 0.43 | 7683.16 | 0.22 |
| 37 | 27,846 | 22.95% (18.24%; 27.66%) | 99.2% | 0.02 | 0.14 | 4341.57 | 0.22 |
By Population | ||||||||
| 13 | 13,179 | 28.57% (19.58%; 37.55%) | 99.4% | 0.03 | 0.16 | 1988.47 | 0.82 |
| 23 | 12,519 | 24.36% (14.11%; 34.60%) | 99.7% | 0.06 | 0.25 | 8590.29 | 0.82 |
| 6 | 8082 | 25.30% (11.04%; 39.55%) | 99.7% | 0.03 | 0.18 | 1854.42 | 0.82 |
By Tool | ||||||||
| 40 | 33,060 | 26.10% (19.95%; 32.25%) | 99.8% | 0.04 | 0.20 | 17,607.12 | 0.07 |
| 2 | 720 | 19.86% (16.95%; 22.77%) | 0.0% | 0.001 | 0.001 | 0.01 | 0.07 |
By Year | ||||||||
| 3 | 1412 | 23.47% (11.72%; 35.23%) | 96.0% | 0.01 | 0.10 | 50.33 | 0.65 |
| 4 | 3314 | 32.91% (19.43%; 46.38%) | 98.5% | 0.02 | 0.14 | 197.64 | 0.65 |
| 7 | 5317 | 31.79% (18.36%; 45.22%) | 99.1% | 0.03 | 0.18 | 693.36 | 0.65 |
| 14 | 11,658 | 24.20% (17.33%; 31.07%) | 98.9% | 0.02 | 0.13 | 1168.32 | 0.65 |
| 14 | 12,079 | 22.86% (12.23%; 33.49%) | 99.9% | 0.04 | 0.20 | 8692.36 | 0.65 |
Part 3—Moderate symptoms | ||||||||
Analysis | Descriptive | Random-effects meta-analysis | Heterogeneity | |||||
K | N | Pooled results (95%CI) | I2 | τ2 | τ | Q | p | |
By Country | ||||||||
| 3 | 6601 | 48.69% (47.48%; 49.90%) | 0.0% | 0.001 | 0.001 | 0.08 | 0.001 |
| 3 | 1752 | 72.95% (70.87%; 75.03%) | 0.0% | 0.001 | 0.001 | 0.01 | 0.001 |
| 4 | 1708 | 60.78% (54.40%; 67.15%) | 85.2% | 0.001 | 0.06 | 20.26 | 0.001 |
| 3 | 2760 | 36.31% (18.72%; 53.90%) | 98.8% | 0.02 | 0.15 | 164.49 | 0.001 |
| 4 | 940 | 56.13% (49.52%; 62.75%) | 74.2% | 0.001 | 0.06 | 11.63 | 0.001 |
| 2 | 1123 | 51.47% (48.55%; 54.39%) | 0.0% | 0.001 | 0.001 | 0.63 | 0.001 |
| 13 | 5881 | 47.95% (25.86%; 70.04%) | 99.8% | 0.16 | 0.41 | 7057.22 | 0.001 |
By Culture | ||||||||
| 5 | 5934 | 40.44% (19.85%; 61.04%) | 99.6% | 0.05 | 0.23 | 1080.70 | 0.23 |
| 37 | 27,846 | 54.03% (45.66%; 62.39%) | 99.6% | 0.07 | 0.26 | 9897.15 | 0.23 |
By Population | ||||||||
| 13 | 13,179 | 53.01% (45.73%; 60.30%) | 98.6% | 0.02 | 0.13 | 871.24 | 0.80 |
| 23 | 12,519 | 50.48% (41.23%; 59.72%) | 99.2% | 0.05 | 0.22 | 2849.63 | 0.80 |
| 6 | 8082 | 58.49% (35.16%; 81.81%) | 99.9% | 0.08 | 0.29 | 3811.99 | 0.80 |
By Tool | ||||||||
| 40 | 33,060 | 51.40% (42.93%; 59.87%) | 99.7% | 0.07 | 0.27 | 13,028.81 | 0.001 |
| 2 | 720 | 72.38% (69.12%; 75.65%) | 0.0% | 0.001 | 0.001 | 0.34 | 0.001 |
By Year | ||||||||
| 3 | 1412 | 55.11% (50.89%; 59.34%) | 55.2% | 0.001 | 0.03 | 4.46 | 0.95 |
| 4 | 3314 | 54.06% (42.90%; 65.22%) | 97.3% | 0.01 | 0.11 | 112.58 | 0.95 |
| 7 | 5317 | 52.88% (39.56%; 66.20%) | 98.9% | 0.03 | 0.18 | 530.86 | 0.95 |
| 14 | 11,658 | 52.19% (45.97%; 58.42%) | 97.8% | 0.01 | 0.12 | 585.36 | 0.95 |
| 14 | 12,079 | 51.20% (31.59%; 70.81%) | 99.9% | 0.14 | 0.37 | 10,854.13 | 0.95 |
Part 4—Severe symptoms | ||||||||
Analysis | Descriptive | Random-effects meta-analysis | Heterogeneity | |||||
K | N | Pooled results (95%CI) | I2 | τ2 | τ | Q | p | |
By Country | ||||||||
| 3 | 6601 | 14.08% (12.23%; 15.94%) | 77.4% | 0.001 | 0.01 | 8.84 | 0.001 |
| 3 | 1752 | 20.60% (18.71%; 22.50%) | 0.0% | 0.001 | 0.001 | 0.05 | 0.001 |
| 4 | 1708 | 19.67% (15.77%; 23.57%) | 73.7% | 0.001 | 0.03 | 11.42 | 0.001 |
| 3 | 2760 | 8.77% (5.11%; 12.42%) | 89.8% | 0.001 | 0.03 | 19.65 | 0.001 |
| 4 | 940 | 31.68% (23.14%; 40.22%) | 86.7% | 0.01 | 0.08 | 22.63 | 0.001 |
| 2 | 1123 | 30.95% (27.31%; 34.59%) | 29.0% | 0.001 | 0.02 | 1.41 | 0.001 |
| 13 | 5881 | 22.45% (14.12%; 30.78%) | 99.8% | 0.02 | 0.15 | 5522.01 | 0.001 |
By Culture | ||||||||
| 5 | 5934 | 10.22% (5.19%; 15.25%) | 97.7% | 0.001 | 0.06 | 172.29 | 0.001 |
| 37 | 27,846 | 21.75% (17.25%; 26.26%) | 99.6% | 0.02 | 0.14 | 9784.91 | 0.001 |
By Population | ||||||||
| 13 | 13,179 | 16.66% (11.43%; 21.88%) | 99.1% | 0.01 | 0.09 | 1312.05 | 0.33 |
| 23 | 12,519 | 23.65% (15.37%; 31.93%) | 99.4% | 0.04 | 0.20 | 3877.84 | 0.33 |
| 6 | 8082 | 15.81% (6.35%; 25.27%) | 99.7% | 0.01 | 0.12 | 1639.16 | 0.33 |
By Tool | ||||||||
| 40 | 33,060 | 20.99% (17.01%; 24.98%) | 99.6% | 0.02 | 0.13 | 10,153.29 | 0.001 |
| 2 | 720 | 7.70% (5.75%; 9.65%) | 0.0% | 0.001 | 0.001 | 0.67 | 0.001 |
By Year | ||||||||
| 3 | 1412 | 20.34% (11.53%; 29.16%) | 93.3% | 0.01 | 0.07 | 29.63 | 0.04 |
| 4 | 3314 | 12.41% (6.23%; 18.58%) | 96.4% | 0.001 | 0.06 | 82.29 | 0.04 |
| 7 | 5317 | 12.78% (6.09%; 19.47%) | 99.0% | 0.01 | 0.09 | 575.38 | 0.04 |
| 14 | 11,658 | 21.29% (17.05%; 25.54%) | 97.2% | 0.01 | 0.08 | 464.88 | 0.04 |
| 14 | 12,079 | 25.22% (15.70%; 34.75%) | 99.8% | 0.03 | 0.18 | 6590.38 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahrami, H.; Trabelsi, K.; Boukhris, O.; Hussain, J.H.; Alenezi, A.F.; Humood, A.; Saif, Z.; Pandi-Perumal, S.R.; Seeman, M.V. The Prevalence of Mild, Moderate, and Severe Nomophobia Symptoms: A Systematic Review, Meta-Analysis, and Meta-Regression. Behav. Sci. 2023, 13, 35. https://doi.org/10.3390/bs13010035
Jahrami H, Trabelsi K, Boukhris O, Hussain JH, Alenezi AF, Humood A, Saif Z, Pandi-Perumal SR, Seeman MV. The Prevalence of Mild, Moderate, and Severe Nomophobia Symptoms: A Systematic Review, Meta-Analysis, and Meta-Regression. Behavioral Sciences. 2023; 13(1):35. https://doi.org/10.3390/bs13010035
Chicago/Turabian StyleJahrami, Haitham, Khaled Trabelsi, Omar Boukhris, Jumana Hasan Hussain, Ahmad F. Alenezi, Ali Humood, Zahra Saif, Seithikurippu R. Pandi-Perumal, and Mary V. Seeman. 2023. "The Prevalence of Mild, Moderate, and Severe Nomophobia Symptoms: A Systematic Review, Meta-Analysis, and Meta-Regression" Behavioral Sciences 13, no. 1: 35. https://doi.org/10.3390/bs13010035
APA StyleJahrami, H., Trabelsi, K., Boukhris, O., Hussain, J. H., Alenezi, A. F., Humood, A., Saif, Z., Pandi-Perumal, S. R., & Seeman, M. V. (2023). The Prevalence of Mild, Moderate, and Severe Nomophobia Symptoms: A Systematic Review, Meta-Analysis, and Meta-Regression. Behavioral Sciences, 13(1), 35. https://doi.org/10.3390/bs13010035