Academic Self-Concept Wins the Race: The Prediction of Achievements in Three Major School Subjects by Five Subject-Specific Self-Related Variables
Abstract
:1. Introduction
1.1. Self-Related Constructs and Achievement
1.1.1. Academic Self-Concept (ASC)
1.1.2. Conscientiousness (CSN)
1.1.3. Need for Cognition (NFC)
1.1.4. Perseverance of Effort (POE) and Consistency of Interest (COI)
1.2. Redundancies
1.3. Domain Specifities
1.4. Recent Study
- (1)
- Within each of the five self-variables (ASC, CSN, NFC, POE, and COI), is it possible to separate three main school subjects (Chinese, mathematics, and English) via factor analyses (with the self-variable held constant in each case)?
- (2)
- Within each of the three main school subjects (Chinese, mathematics, and English), is it possible to separate the five self-variables (ASC, CSN, NFC, POE, and COI) via factor analyses (with the school subject held constant in each case)?
- (3)
- What is the joint explanatory power of the five subject-specific self-scales (ASC, CSN, NFC, POE, and COI) in predicting the linked academic achievement in three main school subjects (Chinese, mathematics, and English)?
- (4)
- What is the incremental (i.e., unique) validity of each of the five subject-specific self-variables (ASC, CSN, NFC, POE, and COI) in predicting their corresponding academic achievement in three main school subjects (Chinese, mathematics, and English) when the other four variables have been previously controlled? Or, to put it in another way, what is the extent to which each of the five variables, by itself and not in conjunction with the other predictors, statistically predicts school grades?
2. Materials and Methods
2.1. Sample and Procedure
2.2. Variables
2.2.1. Age, Sex, and Academic Achievement
2.2.2. Self-Variables
2.3. Statistical Data Treatment
3. Results
3.1. Factor Analyses
3.2. Psychometric Scale Properties
3.3. Intercorrelations
3.4. Statistical Prediction of Academic Achievement
4. Discussion
- (1)
- Within each of the five self-variables (ASC, CSN, NFC, POE, and COI), the three subjects (Chinese, mathematics, and English) were confirmed to be separate factors.
- (2)
- Similarly, within each of the three school subjects (Chinese, mathematics, and English), the five self-variables (ASC, CSN, NFC, POE, and COI) were confirmed to be separate factors.
- (3)
- Based on the results of the CFAs, fifteen approximately normally distributed scales (three subjects × five self-constructs) were formed, each with a good (ASC, CSN, and NFC), satisfactory (POE), or sufficient (COI) internal consistency. These self-scales served as predictors of achievement variance within each of the three school subjects. All five variables together statistically explained 7%, (Chinese), 16% (mathematics), and 33% (English) of the grade variances.
- (4)
- Hierarchical linear multiple regression analyses evidenced that CSN, NFC, POE, and COI, in addition to the ASC, contributed virtually nothing independently to the statistical explanation of the subject-specific grade variances (the increments were only 1% in English and less than 1% in the other two subjects, Chinese and mathematics). In other words, the increments were minuscule and completely negligible in all three subjects. For the ASC, on the other hand, the proportion of explained variance in academic performance that was not shared with the other scales was substantial and varied by school subject (Chinese: 5%, mathematics: 16%, and English: 24%).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morin, A. Toward a glossary of self-related terms. Front. Psychol. 2017, 8, 280. [Google Scholar] [CrossRef] [PubMed]
- Poropat, A.E. A meta-analysis of the five-factor model of personality and academic performance. Psychol. Bull. 2009, 135, 322–338. [Google Scholar] [CrossRef] [PubMed]
- Richardson, M.; Abraham, C.; Bond, R. Psychological correlates of university students’ academic performance: A systematic review and meta-analysis. Psychol. Bull. 2012, 138, 353–387. [Google Scholar] [CrossRef] [PubMed]
- Vedel, A. The big five and tertiary academic performance: A systematic review and meta-analysis. Personal. Individ. Differ. 2014, 71, 66–76. [Google Scholar] [CrossRef]
- Dumfart, B.; Neubauer, A.C. Conscientiousness is the most powerful noncognitive predictor of school achievement in adolescents. J. Individ. Differ. 2016, 37, 8–15. [Google Scholar] [CrossRef]
- Mammadov, S. Big five personality traits and academic performance: A meta-analysis. J. Personal. 2022, 90, 222–255. [Google Scholar] [CrossRef] [PubMed]
- Steinmayr, R.; Spinath, B. Predicting school achievement from motivation and personality. Z. Für Pädagogische Psychol. 2007, 21, 207–216. [Google Scholar] [CrossRef]
- Moschner, B.; Dickhäuser, O. Selbstkonzept [Self-concept]. In Handwörterbuch Pädagogische Psychologie, 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 750–756. [Google Scholar]
- Swann, W.B., Jr.; Chang-Schneider, C.; Larsen McClarty, K. Do people’s self-views matter? Self-concept and self-esteem in everyday life. Am. Psychol. 2007, 62, 84–94. [Google Scholar] [CrossRef]
- Hansford, B.C.; Hattie, J.A. The relationship between self and achievement/performance measures. Rev. Educ. Res. 1982, 52, 123–142. [Google Scholar] [CrossRef]
- Basarkod, G.; Marsh, H.W. Academic self-concept: A central motivational construct. In Motivation Science: Controversies and Insights; Bong, M., Reeve, F.S.-I., Kim, D.-S., Eds.; Oxford University Press: New York, NY, USA, 2023; p. 59–C1.10.P22. [Google Scholar] [CrossRef]
- Feng, X.; Wang, J.-L.; Rost, D.H. Akademische Selbstkonzepte und akademische Selbstwirksamkeiten: Interdependenzen und Beziehungen zu schulischen Leistungen [Academic self-concepts and academic self-efficacies: Their interdependencies and relationships to scholastic achievement]. Z. Pädagogische Psychol. 2018, 33, 23–38. [Google Scholar] [CrossRef]
- Feng, X.; Wang, J.-L.; Rost, D.H. Subject-specific interests and subject-specific self-concepts. Z. Pädagogische Psychol. 2023, 37, 322–335. [Google Scholar] [CrossRef]
- Hausen, J.E.; Möller, J.; Greiff, S.; Niepel, C. Students’ personality and state academic self-concept: Predicting differences in mean level and within-person variability in everyday school life. J. Educ. Psychol. 2022, 114, 1394–1411. [Google Scholar] [CrossRef]
- Kadir, M.S.; Yeung, A.S. Academic self-concept. In Encyclopedia of Personality and Individual Differences; Zeigler-Hill, V., Shackelford, T., Eds.; Springer: Cham, Switzerland, 2016; pp. 1–8. [Google Scholar] [CrossRef]
- Kriegbaum, K.; Becker, N.; Spinath, B. The relative importance of intelligence and motivation as predictors of school achievement: A meta-analysis. Educ. Res. Rev. 2018, 25, 120–148. [Google Scholar] [CrossRef]
- Marsh, H.W.; Pekrun, R.; Murayama, K.; Arens, A.K.; Parker, P.D.; Guo, J.; Dicke, T. An integrated model of academic self-concept development: Academic self-concept, grades, test scores, and tracking over 6 years. Dev. Psychol. 2018, 54, 263–280. [Google Scholar] [CrossRef]
- Marsh, H.W.; Seaton, M.; Dicke, T.; Parker, P.D.; Horwood, M.S. The centrality of academic self-concept to motivation and learning. In The Cambridge Handbook of Motivation and Learning; Renninger, K.A., Hidi, S.E., Eds.; Cambridge University Press: Cambridge, NY, USA, 2019; pp. 36–62. [Google Scholar] [CrossRef]
- Möller, J.; Pohlmann, B.; Köller, O.; Marsh, H.W. A meta-analytic path analysis of the internal/external frame of reference model of academic achievement and academic self-concept. Rev. Educ. Res. 2009, 79, 1129–1167. [Google Scholar] [CrossRef]
- Möller, J.; Zitzmann, S.; Helm, F.; Machts, N.; Wolff, F. A meta-analysis of relations between achievement and self-concept. Rev. Educ. Res. 2020, 90, 376–419. [Google Scholar] [CrossRef]
- Hattie, J. Visible Learning: A Synthesis of Over 800 Meta-Analyses Related to Achievement; Routledge: London, UK, 2009. [Google Scholar]
- Marsh, H.W. Content specificity of relations between academic achievement and academic self-concept. J. Educ. Psychol. 1992, 84, 35–42. [Google Scholar] [CrossRef]
- Marsh, H.W. Self-Concept Theory, Measurement and Research into Practice: The Role of Self-Concept in Educational Psychology; British Psychological Society: Leicester, UK, 2006. [Google Scholar]
- Orth, U.; Dapp, L.C.; Erol, R.Y.; Krauss, S.; Luciano, E.C. Development of domain-specific self-evaluations: A meta-analysis of longitudinal studies. J. Personal. Soc. Psychol. 2021, 120, 145–172. [Google Scholar] [CrossRef]
- Gorges, J.; Hollmann, J. The structure of academic self-concept when facing novel learning content: Multidimensionality, hierarchy, and change. Eur. J. Psychol. 2019, 15, 491–508. [Google Scholar] [CrossRef]
- Wan, S.; Lauermann, F.; Bailey, D.H.; Eccles, J.S. Developmental changes in students’ use of dimensional comparisons to form ability self-concepts in math and verbal domains. Child Dev. 2023, 94, 272–287. [Google Scholar] [CrossRef]
- Denissen, J.J.; Zarrett, N.R.; Eccles, J.S. I like to do it, I’m able, and I know I am: Longitudinal couplings between domain-specific achievement, self-concept, and interest. Child Dev. 2007, 78, 430–447. [Google Scholar] [CrossRef] [PubMed]
- Huang, C. Self-Concept and academic achievement: A meta-analysis of longitudinal relations. J. Sch. Psychol. 2011, 49, 505–528. [Google Scholar] [CrossRef] [PubMed]
- Hübner, N.; Wagner, W.; Zitzmann, S.; Nagengast, B. How strong is the evidence for a causal reciprocal effect? Contrasting traditional and new methods to investigate the reciprocal effects model of self-concept and achievement. Educ. Psychol. Rev. 2023, 35, 6. [Google Scholar] [CrossRef]
- Marsh, H.W.; Craven, R.G. Reciprocal effects of self-concept and performance from a multidimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspect. Psychol. Sci. 2006, 1, 133–163. [Google Scholar] [CrossRef] [PubMed]
- Marsh, H.W.; Martin, A.J. Academic self-concept and academic achievement: Relations and causal ordering. Br. J. Educ. Psychol. 2011, 81, 59–77. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Guo, Y.; Yang, Y.; Zhao, L.; Guo, C. A meta-analysis of the longitudinal relationship between academic self-concept and academic achievement. Educ. Psychol. Rev. 2021, 33, 1749–1778. [Google Scholar] [CrossRef]
- Niepel, C.; Brunner, M.; Preckel, F. The longitudinal interplay of students’ academic self-concepts and achievements within and across domains: Replicating and extending the reciprocal internal/external frame of reference model. J. Educ. Psychol. 2014, 106, 1170–1191. [Google Scholar] [CrossRef]
- Möller, J.; Köller, O. Die Genese akademischer Selbstkonzepte. Effekte dimensionaler und sozialer Vergleiche [On the development of academic self-concepts. The impact of social and dimensional comparisons]. Psychol. Rundsch. 2004, 55, 19–27. [Google Scholar] [CrossRef]
- Arens, A.K.; Jansen, M.; Preckel, F.; Schmidt, I.; Brunner, M. The structure of academic self-concept: A methodological review and empirical illustration of central models. Rev. Educ. Res. 2021, 91, 34–72. [Google Scholar] [CrossRef]
- Fang, J.; Huang, X.; Zhang, M.; Huang, F.; Li, Z.; Yuan, Q. The big-fish-little-pond effect on academic self-concept: A meta-analysis. Front. Psychol. 2018, 9, 1569. [Google Scholar] [CrossRef]
- Jansen, M.; Schroeders, U.; Lüdtke, O. Academic self-concept in science: Multidimensionality, relations to achievement measures, and gender differences. Learn. Individ. Differ. 2014, 30, 11–21. [Google Scholar] [CrossRef]
- Rost, D.H.; Sparfeldt, J.R.; Dickhäuser, O.; Schilling, S.R. Dimensional comparisons in subject-specific academic self-concepts and achievements: A quasi-experimental approach. Learn. Instr. 2005, 15, 557–570. [Google Scholar] [CrossRef]
- Rost, D.H.; Sparfeldt, J.R.; Buch, S.R. DISK-Gitter Mit SKSLF-8 [DISK Grid with SKSLF-8]; Hogrefe: Göttingen, Germany, 2007. [Google Scholar]
- Schilling, S.R.; Sparfeldt, J.R.; Rost, D.H.; Nickels, G. Schulische Selbstkonzepte. Zur Validität einer erweiterten Version des Differentiellen Selbstkonzept Gitters (DISK-Gitter) [Academic self-concepts. On the validity of an extended version of the Differential Self-Concept Grid (DISK-grid). Diagnostica 2005, 51, 21–28. [Google Scholar] [CrossRef]
- Schilling, S.R.; Sparfeldt, J.R.; Rost, D.H. Facetten schulischen Selbstkonzepts: Welchen Unterschied macht das Geschlecht? [Facets of academic self-concept. What difference does the sex make?]. Z. Pädagogische Psychol. 2006, 20, 9–18. [Google Scholar] [CrossRef]
- Lohbeck, A.; Möller, J. Social and dimensional comparison effects on math and reading self-concepts of elementary school children. Learn. Individ. Differ. 2017, 54, 73–81. [Google Scholar] [CrossRef]
- Habók, A.; Magyar, A.; Németh, M.; Csapo, B. Motivation and self-related beliefs as predictors of academic achievement in reading and mathematics: Structural equation models of longitudinal data. Int. J. Educ. Res. 2020, 103, 101634. [Google Scholar] [CrossRef]
- Schwabe, F.; Schlitter, T.; Igler, J.; Ohle-Peters, A.; Teerling, A.; Köller, O.; McElvany, N. Lesemotivation, Leseselbstkonzept und Leseverhalten am Ende der Grundschulzeit—Wirksamkeit und differenzielle Effekte der schulischen Teilnahme an einer bundesweiten Förderinitiative [Reading motivation, reading self-concept, and reading behavior at the end of elementary school-effectiveness and differential effects of school participation in a nationwide training initiative]. Z. Pädagogische Psychol. 2020, 35, 53–70. [Google Scholar] [CrossRef]
- Sarrazin, P.; Boiché, J.; Guay, F.; Chanal, J. Verbal, mathematics, and physical education self-concepts and achievements: An extension and test of the internal/external frame of reference model. Psychol. Sport Exerc. 2009, 10, 61–66. [Google Scholar] [CrossRef]
- Torppa, M.; Aro, T.; Eklund, K.; Psarilla, R.; Eloranta, A.-K.; Ahonen, T. Adolescent reading and math skills and self-concept beliefs as predictors of age 20 emotional well-being. Read. Writ. 2023. [Google Scholar] [CrossRef]
- Wolff, F. A longitudinal experiment examining the joint effects of social, dimensional, and temporal comparisons on self- and external assessments of students’ abilities. Soc. Psychol. Educ. 2023, 26, 1723–1758. [Google Scholar] [CrossRef]
- Wolff, F.; Möller, J. An individual participant data meta-analysis of the joint effects of social, dimensional, and temporal comparisons on students’ academic self-concepts. Educ. Psychol. Rev. 2022, 34, 2569–2608. [Google Scholar] [CrossRef]
- Van der Westhuizen, L.; Arens, A.K.; Greiff, S.; Fischbach, A. The generalized internal/external frame of reference model with academic self-concepts, interests, and anxieties in students from different language backgrounds. Contemp. Educ. Psychol. 2022, 68, 102037. [Google Scholar] [CrossRef]
- Steinmayr, R.; Spinath, B. The importance of motivation as a predictor of school achievement. Learn. Individ. Differ. 2009, 19, 80–90. [Google Scholar] [CrossRef]
- Susperreguy, M.I.; Davis-Kean, P.E.; Duckworth, K.; Chen, M. Self-concept predicts academic achievement across levels of the achievement distribution: Domain specificity for math and reading. Child Dev. 2018, 89, 2196–2214. [Google Scholar] [CrossRef] [PubMed]
- Lotz, C.; Schneider, R.; Sparfeldt, J.R. Differential relevance of intelligence and motivation for grades and competence tests in mathematics. Learn. Individ. Differ. 2018, 65, 30–40. [Google Scholar] [CrossRef]
- Lauermann, F.; Meißner, A.; Steinmayr, R. Relative importance of intelligence and ability self-concept in predicting test performance and school grades in the math and language arts domains. J. Educ. Psychol. 2020, 112, 364–383. [Google Scholar] [CrossRef]
- Marsh, H.W. Academic self-concept: Theory, measurement, and research. In The Self in Social Perspective; Suls, J.M., Ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1993; pp. 59–98. [Google Scholar]
- LaRoche, S.; Foy, P. Sample implementation in TIMSS 2019. In Methods and Procedures: TIMSS 2019 Technical Report; Martin, M.O., von Davier, I., Mullis, V.S., Eds.; TIMMS & PIRLS International Study Center, Boston College and International Association for the Evaluation of Educational Achievement (IEA): Chestnut Hill, MA, USA, 2020. [Google Scholar]
- Ustun, U. How well does self-concept predict science achievement across cultures? The mediating effect of autonomous motivation. Int. J. Sci. Educ. 2023, 45, 541–570. [Google Scholar] [CrossRef]
- Bandura, A. Self-efficacy: Toward a unifying theory of behavioral change. Psychol. Rev. 1977, 84, 191–215. [Google Scholar] [CrossRef]
- Bandura, A. Self-Efficacy. The Exercise of Control; Freeman & Company: New York, NY, USA, 1997. [Google Scholar]
- Bong, M.; Skaalvik, E.M. Academic self-concept and self-efficacy: How different are they really? Educ. Psychol. Rev. 2003, 15, 1–40. [Google Scholar] [CrossRef]
- Köller, O.; Möller, J. Selbstwirksamkeit [Self-efficacy]. In Handwörterbuch Pädagogische Psychologie, 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 1998; pp. 757–763. [Google Scholar]
- McCrae, R.R.; Costa, P.T., Jr. Personality in Adulthood: A Five-Factor Theory Perspective, 2nd ed.; Guilford Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- McCrae, R.R.; Costa, P.T., Jr. The five-factor theory of personality. In Handbook of Personality: Theory and Research; John, O.P., Robins, R.W., Pervin, A., Eds.; Guilford Press: New York, NY, USA, 2008; pp. 159–181. [Google Scholar]
- Kim, L.E.; Poropat, A.E.; MacCann, C. Conscientiousness in education: Its conceptualization, assessment, and utility. In Psychosocial Skills and School Systems in the 21st Century: Theory, Research, and Practice; Lipnevich, A.A., Preckel, F., Roberts, R.D., Eds.; Springer: Cham, Switzerland, 2016; pp. 155–185. [Google Scholar] [CrossRef]
- Spielmann, J.; Yoon, H.J.R.; Ayoub, M.; Chen, Y.; Eckland, N.S.; Trautwein, U.; Zheng, A.; Roberts, B.W. An in-depth review of conscientiousness and educational issues. Educ. Psychol. Rev. 2022, 34, 2745–2781. [Google Scholar] [CrossRef]
- Hessen, R.P.; Kuncel, N.R. Beyond grades: A meta-analysis of personality predictors of academic behavior in middle school and high school. Personal. Individ. Differ. 2022, 199, 111809. [Google Scholar] [CrossRef]
- O’Connor, M.C.; Paunonen, S.V. Big five personality predictors of post-secondary academic performance. Personal. Individ. Differ. 2007, 43, 971–990. [Google Scholar] [CrossRef]
- Zell, E.; Lesick, T.L. Big five personality traits and performance: A quantitative synthesis of 50+ meta-analyses. J. Personal. 2022, 90, 559–573. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Jansen, T.; Hübner, N.; Lüdtke, O. Disentangling the association between the big five personality traits and student achievement: Meta-analytic evidence on the role of domain specificity and achievement measures. Educ. Psychol. Rev. 2023, 35, 12. [Google Scholar] [CrossRef]
- Ivcevic, Z.; Brackett, M. Predicting school success: Comparing conscientiousness, grit, and emotion regulation ability. J. Res. Personal. 2014, 52, 29–36. [Google Scholar] [CrossRef]
- Noftle, E.E.; Robins, R.W. Personality predictors of academic outcomes: Big five c of GPA and SAT Scores. J. Personal. Soc. Psychol. 2007, 93, 116–130. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, M.; Grades, G.N. Cognitive ability and conscientiousness are more important than SES for educational attainment: An analysis of the UK millennium cohort study. Personal. Individ. Differ. 2022, 188, 111471. [Google Scholar] [CrossRef]
- Bittmann, F. Are cognitive ability and conscientiousness really more important for educational attainment than SES? A replication and extension of O’Connell and Grades. Collabra Psychol. 2022, 8, 37460. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Petty, R.E. The need for cognition. J. Personal. Soc. Psychol. 1982, 42, 116–131. [Google Scholar] [CrossRef]
- Cacioppo, J.T.; Petty, R.E.; Kao, C.F. The efficient assessment of need for cognition. J. Personal. Assess. 1984, 48, 306–307. [Google Scholar] [CrossRef]
- Dickhäuser, O.; Reinhard, M.-A. How students build their performance expectancies: The importance of need for cognition. Eur. J. Psychol. Educ. 2010, 25, 399–409. [Google Scholar] [CrossRef]
- Petty, R.E.; Jarvis, W.B.G. An individual differences perspective on assessing cognitive processes. In Answering Questions: Methodology for Determining Cognitive and Communicative Processes in Survey Research; Schwarz, N., Sudman, S., Eds.; Jossey-Bass: San Francisco, CA, USA, 1996; pp. 221–257. [Google Scholar]
- Stenlund, T.; Jönsson, F.U.; Jonsson, B. Group discussions and test-enhanced learning: Individual learning outcomes and personality characteristics. Educ. Psychol. 2017, 37, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Weissgerber, S.C.; Reinhard, M.-A.; Schindler, S. Learning the hard way: Need for cognition influences attitudes toward and self-reported use of desirable learning difficulties. Educ. Psychol. 2018, 38, 176–202. [Google Scholar] [CrossRef]
- Liu, Q.; Nesbit, J.C. The relation between need for cognition and academic achievement: A meta-analysis. Rev. Educ. Res. 2023. [Google Scholar] [CrossRef]
- Von Stumm, S.; Ackerman, P.L. Investment and intellect: A review and meta-analysis. Psychol. Bull. 2013, 139, 841–869. [Google Scholar] [CrossRef]
- Colling, J.; Wollschläger, R.; Keller, U.; Preckel, F.; Fischbach, A. Need for Cognition and its relation to academic achievement in different learning environments. Learn. Individ. Differ. 2022, 93, 102110. [Google Scholar] [CrossRef]
- Keller, U.; Strobel, A.; Martin, R.; Preckel, F. Domain-specificity of need for cognition among high school students. Eur. J. Psychol. Assess. 2019, 35, 607–616. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Peterson, C.; Matthews, M.D.; Kelley, D.R. Grit: Perseverance and passion for long term goals. J. Personal. Soc. Psychol. 2007, 92, 1087–1101. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Quinn, P.D. Development and validation of the Short Grit Scale (GRIT–S). J. Personal. Assess. 2009, 91, 166–174. [Google Scholar] [CrossRef]
- Eskreis-Winkler, L.; Shulman, E.P.; Beal, S.A.; Duckwrth, A.L. The grit effect: Predicting retention in the military, the workplace, school and marriage. Front. Psychol. 2014, 5, 36. [Google Scholar] [CrossRef]
- Duckworth, A.L. Grit. The Power of Passion and Perseverance; Scribner: New York, NY, USA, 2013. [Google Scholar]
- Duckworth, A.L. Grit–the Power of Passion and Perseverance. TED Talks Education 2013. Available online: https://www.ted.com/talks/angela_lee_duckworth_grit_the_power_of_passion_and_perseverance (accessed on 9 September 2023).
- Deary, I.J.; Strand, S.; Smith, P.; Fernandes, C. Intelligence and educational achievement. Intelligence 2007, 35, 13–21. [Google Scholar] [CrossRef]
- Gottfredson, L.S. Where and why g matters: Not a mystery. Hum. Perform. 2002, 15, 25–46. [Google Scholar] [CrossRef]
- Jensen, A.R. The G Factor: The Science of Mental Ability; Praeger: Westport, CT, USA, 1998. [Google Scholar]
- Lozano-Blasco, R.; Quílez-Robres, A.; Usán, P.; Salavera, C.; Casanovas-López, R. Types of intelligence and academic performance: A systematic review and meta-analysis. J. Intell. 2022, 10, 123. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.C.; Opriessnig, S. The development of talent and excellence. Do not dismiss psychometric intelligence, the (potentially) most powerful predictor. Talent. Dev. Excell. 2014, 6, 1–15. [Google Scholar]
- Rost, D.H. Intelligenz: Fakten und Mythen [Intelligence: Facts and Myths]; Beltz: Weinheim, Germany, 2009. [Google Scholar]
- Rost, D.H. Handbuch Intelligenz [Handbook Intelligence]; Beltz: Weinheim, Germany, 2013. [Google Scholar]
- Roth, B.; Becker, N.; Romeyke, S.; Schäfer, S.; Domnick, F.; Spinath, F.M. Intelligence and school grades: A meta-analysis. Intelligence 2015, 53, 118–137. [Google Scholar] [CrossRef]
- Süß, H.-M. Prädiktive Validität der Intelligenz im schulischen und außerschulischen Bereich [Predictive validity of intelligence in and out of school]. In Perspektiven der Intelligenzforschung; Stern, E., Guthke, J., Eds.; Pabst: Lengerich, Germany, 2001; pp. 109–135. [Google Scholar]
- Miller, M.S. Book Review: Grit by Angela Duckworth. Tabletalk. 1 August 2018. Available online: https://tabletalkmagazine.com/posts/book-review-grit-by-angela-duckworth/ (accessed on 8 September 2023).
- Shechtman, N.; deBarger, A.H.; Dornsife, C.; Rosier, S.; Yarnall, L. Promoting Grit, Tenacity, and Perseverance: Critical Factors for Success in the 21st Century; U.S. Department of Education, Office of Educational Technology: Menlo Park, CA, USA, 2013. [Google Scholar]
- Van Zyl, L.E.; Olckers, C.; van der Vaart, L. (Eds.) Multidisciplinary Perspectives on Grit; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Fleckenstein, J.; Schmidt, F.T.C.; Möller, J. Wer hat Biss? Beharrlichkeit und beständiges Interesse von Lehramtsstudierenden. Eine deutsche Adaptation der 12-ltem Grit Scale [Who’s got grit? Perseverance and consistency of interest in pre-service teachers. A German adaptation of the 12-item grit scale]. Psychol. Erzieh. Unterr. 2014, 61, 281–286. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Kong, F.; Du, S.; Yang, S.; Wang, S. Psychometric assessment of the Short Grit Scale among Chinese adolescents. J. Psychoeduc. Assess. 2018, 36, 291–296. [Google Scholar] [CrossRef]
- Schmidt, F.T.C.; Fleckenstein, J.; Retelsdorf, J.; Eskreis-Winkler, L.; Möller, J. Measuring grit: A German validation and a domain-specific approach to grit. Eur. J. Psychol. Assess. 2019, 35, 436–447. [Google Scholar] [CrossRef]
- Schmidt, F.T.C.; Sudzina, F.; Botek, M. Psychometric assessment of the Short Grit Scale among Czech young adults. J. Psychoeduc. Assess. 2021, 39, 508–513. [Google Scholar] [CrossRef]
- Sordia, N.; Martskvishvili, K. Psychometric properties of the Georgian version of the Grit Scale. Prizren Soc. Sci. J. 2020, 4, 8–13. [Google Scholar] [CrossRef]
- Sudina, E.; Brown, J.; Datzman, B.; Oki, Y.; Song, K.; Cavanaugh, R.; Thiruchelvam, B.; Plonsky, L. Language-specific grit: Exploring psychometric properties, predictive validity, and differences across contexts. Innov. Lang. Learn. Teach. 2021, 15, 334–351. [Google Scholar] [CrossRef]
- Credé, M.; Tynan, M.C.; Harms, P.D. Much ado about grit: A meta-analytic synthesis of the grit literature. J. Personal. Soc. Psychol. 2017, 113, 492–511. [Google Scholar] [CrossRef] [PubMed]
- Credé, M. What shall we do about grit? A critical review of what we know and what we don’t know. Educ. Res. 2018, 47, 606–611. [Google Scholar] [CrossRef]
- Credé, M.; Harms, P.D. 25 years of higher order confirmatory factor analysis in the organizational sciences: A critical review and development of reporting recommendations. J. Organ. Behav. 2015, 36, 845–872. [Google Scholar] [CrossRef]
- Credé, M.; Tynan, M.C. Should language acquisition researchers study “grit”? A cautionary note and some suggestions. J. Psychol. Lang. Learn. 2021, 3, 37–44. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Quinn, P.D.; Tsukayama, E. Revisiting the factor structure of grit: A commentary on Duckworth and Quinn (2009). J. Personal. Assess. 2021, 103, 573–575. [Google Scholar] [CrossRef]
- Feng, X. Academic Self-Cognitions and Achievements: A Study of Students of German Studies; Science Press: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Feng, X.; Rost, D.H. Grit bei Adoleszenten: Eine „neue“ leistungsthematisch-motivationale Eigenschaft? [Adolescents’ grit: A “new” achievement-related motivational trait?]. Z. Pädagogische Psychol. 2019, 33, 241–256. [Google Scholar] [CrossRef]
- Larkin, P.; Cocić, D.; Hendry, D.T.; Williams, A.M.; O’Connor, D.; Bilalić, M. Gritting one’s way to success—Grit explains skill in elite youth soccer players beyond (deliberate) practice. Psychol. Sport Exerc. 2023, 64, 102328. [Google Scholar] [CrossRef]
- Midkiff, B.; Langer, M.; Demetriou, C.; Panter, A.T. Measuring grit among first-generation college students: A psychometric analysis. In Quantitative Psychology, Proceedings of the 81st Annual Meeting of the Psychometric Society, Asheville, NC, USA, 11–17 July 2016; van der Ark, A.L., Wiberg, M., Culpepper, S.A., Douglas, J.A., Wang, W.-C., Eds.; Springer: Cham, Switzerland, 2017; pp. 407–420. [Google Scholar]
- Muenks, K.; Wigfield, A.; Yang, J.S.; O’Neal, C.R. How true is grit? Assessing its relations to high school and college students’ personality characteristics, self-regulation, engagement, and achievement. J. Educ. Psychol. 2017, 109, 599–620. [Google Scholar] [CrossRef]
- Steinmayr, R.; Weidinger, A.F.; Wigfield, A. Does students’ grit predict their school achievement above and beyond their personality, motivation, and engagement? Contemp. Educ. Psychol. 2018, 53, 106–122. [Google Scholar] [CrossRef]
- Tyumeneva, Y.; Kardanova, E.; Kuzmina, J. Grit: Two related but independent constructs instead of one. Evidence from item response theory. Eur. J. Psychol. Assess. 2019, 35, 469–478. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D. Grit, emotions, and their effects on ethnic minority students’ English language learning achievements: A structural equation modeling analysis. System 2023, 13, 102979. [Google Scholar] [CrossRef]
- Zhong, C.; Wang, M.-C.; Shou, Y.; Ren, F.; Zhang, X.; Li, M.; Yang, W. Assessing construct validity of the Grit-S in Chinese employees. PLoS ONE 2018, 13, e0209319. [Google Scholar] [CrossRef] [PubMed]
- Teuber, Z.; Nussbeck, F.; Wild, E. The bright side of grit in burnout-prevention: Exploring grit in the context of demands-resources model among Chinese high school studente. Child Psychiatry Hum. Dev. 2021, 55, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Krapp, A. An educational-psychological conception of interest. Int. J. Educ. Vocat. Guid. 2007, 7, 5–21. [Google Scholar] [CrossRef]
- Krapp, A. Interesse [Interest]. In Handwörterbuch Pädagogische Psychologie, 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 750–756. [Google Scholar]
- Krapp, A.; Prenzel, M. Research on interest in science: Theories, methods, and findings. Int. J. Sci. Educ. 2011, 33, 27–50. [Google Scholar] [CrossRef]
- O’Keefe, P.A.; Harackiewicz, J.M. (Eds.) The Science of Interest; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Lettau, W.D. Schulisches Interesse als Forschungsgegenstand. Über den theoretischen Anspruch und die empirische Umsetzung von Studien am Beispiel des Interesses [Academic Interest as an Object of Research. About the Theoretical Claim and the Empirical Implementation of Studies Using the Example of Interest]. Ph.D. Thesis, University of Rostock, Rostock, Germany, 2018. [Google Scholar] [CrossRef]
- Rounds, J.; Su, R. The nature and power of interests. Curr. Dir. Psychol. Sci. 2014, 23, 98–103. [Google Scholar] [CrossRef]
- Schiefele, U.; Krapp, A.; Winteler, A. Interest as a predictor of academic achievement: A meta-analysis of research. In The Role of Interest in Learning and Development; Renninger, K.A., Hidi, S., Krapp, A., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1992; pp. 183–212. [Google Scholar]
- Jansen, M.; Lüdtke, O.; Schroeders, U. Evidence for a positive relation between interest and achievement: Examining between-person and within-person variation in five domains. Contemp. Educ. Psychol. 2016, 46, 116–127. [Google Scholar] [CrossRef]
- Ponnock, A.; Muenks, K.; Morell, M.; Seung Yang, J.; Gladstone, J.R.; Wigfield, A. Grit and conscientiousness: Another jangle fallacy. J. Res. Personal. 2020, 89, 104021. [Google Scholar] [CrossRef]
- Schmidt, F.T.C.; Nagy, G.; Fleckenstein, J.; Möller, J.; Retelsdorf, J. Same same, but different? Relations between facets of conscientiousness and grit. Eur. J. Personal. 2018, 32, 705–720. [Google Scholar] [CrossRef]
- Wang, R.; Shirvan, M.E.; Taherian, T. Perseverance of effort and consistency of interest: A longitudinal perspective. Front. Psychol. 2023, 12, 743414. [Google Scholar] [CrossRef] [PubMed]
- Andronie, M.; Wildemann, A. Need for Cognition, subjektives Wohlbefinden und akademisches Selbstkonzept bei Grundschulkindern [Need for cognition, subjective well-being, and academic self-concept in elementary school children]. In Grundschulpädagogik zwischen Wissenschaft und Transfer; Donie, C., Foerster, F.F., Obermeyer, M., Deckwerth, A., Kammermeyer, K., Lenske, G., Leuchter, M., Wildeman, A., Eds.; Springer VS.: Wiesbaden, Germany, 2019; pp. 219–226. [Google Scholar]
- Fleischhauer, M.; Enge, S.; Brocke, B.; Ullrich, J.; Strobel, A.; Strobel, A. Same or different? Clarifying the relationship of need for cognition to personality and intelligence. Personal. Soc. Psychol. Bull. 2009, 36, 82–96. [Google Scholar] [CrossRef] [PubMed]
- Hu, H. The need for cognition as it relates to personality traits of openness to experience and conscientiousness. BCP Educ. Psychol. 2022, 7, 241244. [Google Scholar] [CrossRef]
- Korhonen, J.; Tapola, A.; Linnanmäki, K.; Aunio, P. Gendered pathways to educational aspirations: The role of academic self-concept, school burnout, achievement and interest in mathematics and reading. Learn. Instr. 2016, 46, 21–33. [Google Scholar] [CrossRef]
- Lohbeck, A.; Nitkowski, D.; Petermann, F. A control-value theory approach: Relationships between academic self-concept, interest, and test anxiety in elementary school children. Child Youth Care Forum 2016, 45, 887–904. [Google Scholar] [CrossRef]
- Rösler, L.; Retelsdorf, J. Entwicklung und Determinanten von Interesse und Selbstkonzept im Studienverlauf [Development and determinants of interest and self-concept in the course of study]. In PaLea: Professionelle Kompetenzen und Studienstrukturen im Lehramtsstudium; Kauper, T., Bernholt, A., Möller, J., Köller, O., Eds.; Waxmann: Münster, Germany, 2023; pp. 205–226. [Google Scholar]
- Haag, L.; Götz, T. Mathe ist schwierig und Deutsch aktuell: Vergleichende Studie zur Charakterisierung von Schulfächern aus Schülersicht [Maths is difficult and German up to date: A study on the characterization of subject domains from students’ perspective]. Psychol. Erzieh. Unterr. 2012, 59, 32–46. [Google Scholar] [CrossRef]
- Stevens, R.; Wineburg, S.; Herrenkohl, L.R.; Bell, P. Comparative understanding of school subjects: Past, present, and future. Rev. Educ. Res. 2005, 75, 125–157. [Google Scholar] [CrossRef]
- Bong, M. Between- and within-domain relations of academic motivation among middle and high school students: Self-efficacy, task value, and achievement goals. J. Educ. Psychol. 2001, 93, 23–34. [Google Scholar] [CrossRef]
- Green, J.; Martin, A.J.; Marsh, H.W. Motivation and engagement in English, mathematics and science high school subjects: Towards an understanding of multidimensional domain specificity. Learn. Individ. Differ. 2007, 17, 269–279. [Google Scholar] [CrossRef]
- Sparfeldt, J.R.; Brunnemann, N.; Wirthwein, L.; Buch, S.R.; Schult, J.; Rost, D.H. General versus specific achievement goals: A re-examination. Learn. Individ. Differ. 2015, 43, 170–177. [Google Scholar] [CrossRef]
- Tett, R.P.; Steele, J.R.; Beauregard, R.S. Broad and narrow measures on both sides of the personality-job performance relationship. J. Organ. Behav. 2003, 24, 335–356. [Google Scholar] [CrossRef]
- Wittmann, W.W. Multivariate reliability theory: Principles of symmetry and successful validation strategies. In Handbook of Multivariate Experimental Psychology, 2nd ed.; Nesselroade, J.R., Cattell, R.B., Eds.; Plenum Press: New York, NY, USA, 1988; pp. 505–560. [Google Scholar]
- Wittmann, W.W. Brunswik-Symmetrie: Ein Schlüsselkonzept für erfolgreiche psychologische Forschung [Brunswik-symmetry: A key concept for successful psychological research]. In Die Person im Biologischen und Sozialen Kontext; Myrtek, M., Ed.; Hogrefe: Göttingen, Germany, 2002; pp. 163–186. [Google Scholar]
- Sticca, F.; Goetz, T.; Möller, J.; Eberle, F.; Murayama, K.; Shavelson, R. Same same but different: The role of subjective domain similarity in the longitudinal interplay among achievement and self-concept in multiple academic domains. Learn. Individ. Differ. 2023, 102, 102270. [Google Scholar] [CrossRef]
- Sparfeldt, J.R.; Rost, D.H. Content-specific achievement motives. Personal. Individ. Differ. 2011, 50, 496–501. [Google Scholar] [CrossRef]
- Mächel, L.; Steinmayr, R.; Christiansen, H.; Wirthwein, L. On the association between students’ (domain-specific) subjective well-being and academic achievement–disentangling mixed findings. Curr. Psychol. 2022, 42, 30825–30839. [Google Scholar] [CrossRef]
- Talić, I.; Sparfeldt, J.R.; Möller, J.; Renner, K.-H.; Greiff, S.; Niepel, C. Social and dimensional comparison effects in general and domain-specific test anxiety: A nested factor modeling approach. Curr. Psychol. 2023. [Google Scholar] [CrossRef]
- Slutzky, C.B.; Simpkins, S.D. The link between children’s sport Participation and self-esteem: Exploring the mediating role of sport self-concept. Psychol. Sport Exerc. 2009, 10, 381–389. [Google Scholar] [CrossRef]
- Tietjens, M. Physisches Selbstkonzept im Sport [Physical Self-Concept in Sport]; Czwalina: Hamburg, Germany, 2009. [Google Scholar]
- Pfeiffer, W. Musikalisches Selbstkonzept. Eine empirische Untersuchung [Musical self-concept. An empirical study]. Diskuss. Musik. 2006, 29, 53–57. [Google Scholar]
- Pfeiffer, W. Das musikalische Selbstkonzept. Effekte und Wirkungen [The Musical Self-concept. Effects and Impacts]. Diskuss. Musik. 2007, 33, 40–44. [Google Scholar]
- Fiedler, D.; Spychiger, M. Measuring “musical self-concept” throughout the years of adolescence with MUSCI_youth: Validation and adjustment of the Musical Self-Concept Inquiry (MUSCI) by investigating samples of students at secondary education schools. Psychomusicol. Music. Mind Brain 2017, 27, 167–179. [Google Scholar] [CrossRef]
- Spychiger, M. From musical experience to musical identity: Musical self-concept as a mediating psychological structure. In Handbook of Musical Identities; MacDonald, R., Hargreaves, D.J., Miell, D., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 267–287. [Google Scholar]
- Rudi, H.; Steinberg, C. Das tänzerische Selbstkonzept bei Kindern. Empirische Annäherungen an ein bisher vernachlässigtes Konstrukt [The Dance Self-concept in Children. Empirical Approaches to a Previously Neglected Construct]. In Bewegung, Spiel und Sport im Kindesalter; Schwier, J., Seyda, M., Eds.; Transcript: Bielefeld, Germany, 2022; pp. 157–168. [Google Scholar]
- Burleson, K.; Leach, C.W.; Harrington, D.M. Upward social comparison and self-concept: Inspiration and inferiority among art students in an advanced programme. Br. J. Soc. Psychol. 2005, 44, 109–123. [Google Scholar] [CrossRef]
- Asendorpf, J.B.; van Aken, M.A.G. Validity of big five personality judgements in childhood: A 9 year longitudinal study. Eur. J. Personal. 2003, 17, 1–17. [Google Scholar] [CrossRef]
- DeYoung, C.G.; Quilty, L.C.; Peterson, J.B. Between facets and domains: 10 aspects of the big five. J. Personal. Soc. Psychol. 2007, 93, 880–896. [Google Scholar] [CrossRef] [PubMed]
- Franzen, P.; Arens, A.K.; Greiff, S.; van der Westhuizen, L.; Fischbach, A.; Wollschläger, R.; Niepel, C. Developing and validating a short-form questionnaire for the assessment of seven facets of conscientiousness in large-scale assessments. J. Personal. Assess. 2022, 104, 759–773. [Google Scholar] [CrossRef] [PubMed]
- Laros, J.A.; Peres, A.J.S.; de Andrade, J.M.; Passos, M.F.D. Validity evidence of two short scales measuring the big five personality factors. Psicol. Reflex. Crít. 2018, 31, 32. [Google Scholar] [CrossRef] [PubMed]
- MacCann, C.; Duckworth, A.L.; Roberts, R.D. Empirical identification of the major facets of conscientiousness. Learn. Individ. Differ. 2009, 19, 451–458. [Google Scholar] [CrossRef]
- Rammstedt, B.; John, O.P. Kurzversion des Big Five Inventory (BFI-K): Entwicklung und Validierung eines ökonomischen Inventars zur Erfassung der fünf Faktoren der Persönlichkeit [Short-version of the Big Five Inventory (BFI-K): Development and validation of an economic measure to assess the big five personality dimensions]. Diagnostica 2005, 51, 195–206. [Google Scholar] [CrossRef]
- Satow, L. Big-Five-Persönlichkeitstest (B5T). Test-und Skalendokumentation 2012 [Big-Five-Personality Test (B5T). Test and Scale Documentation 2012]. Available online: https://www.drsatow.de (accessed on 18 November 2023).
- Rubinstein, S. Das Interesse [The interest]. In Die Motivation Menschlichen Handelns, 6th ed.; Thomae, H., Ed.; Kiepenheuer & Witsch: Köln, Germany, 1970; pp. 137–144. [Google Scholar]
- Gogol, K.; Brunner, M.; Martin, R.; Preckel, F.; Goetz, T. Affect and motivation within and between school subjects: Development and validation of an integrative structural model of academic self-concept, interest, and anxiety. Contemp. Educ. Psychol. 2017, 49, 46–65. [Google Scholar] [CrossRef]
- Katz, M.R.; Norris, L.; Halpern, G. The Measurement of Academic Interests, Part 1. Characteristics of the Academic Interests Measures; Educational Testing Service: Princeton, NJ, USA, 1970; Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1002/j.2333-8504.1970.tb00786.x (accessed on 10 September 2023).
- Lu, Z.; Dang, Y.; Xu, W. Academic interest scale for adolescents: Development, validation, and measurement invariance with Chinese students. Front. Psychol. 2019, 10, 2301. [Google Scholar] [CrossRef]
- Sparfeldt, J.R.; Rost, D.H.; Schilling, S.R. Schulfachspezifische Interessen—Ökonomisch gemessen [Subject-specific interests–measured economically]. Psychol. Erzieh. Unterr. 2004, 51, 213–220. [Google Scholar]
- Todt, E. Das Interesse [The Interest]; Huber: Bern, Switzerland, 1978. [Google Scholar]
- Botes, E.; Azari Noughabi, M.; Amirian, S.M.R.; Greiff, S. New wine in new bottles: L2 grit in comparison to domain-general grit, conscientiousness, and cognitive ability as a predictor of language learning. PsyArXiv 2023. [Google Scholar] [CrossRef]
- Mikami, H. Revalidation of the L2-Grit Scale: A conceptual replication of Teimouri, Y., Plonsky, L., & Tabandeh, F. L2 grit: Passion and perseverance for second-language learning. Lang. Teach. 2023, 1–16. [Google Scholar] [CrossRef]
- Oxford, R.; Khajavy, G.H. Exploring grit: “Grit linguistics” and research on domain-general grit and L2 grit. J. Psychol. Lang. Learn. 2021, 3, 7–36. [Google Scholar] [CrossRef]
- Paradowski, M.B.; Jelińska, M. The predictors of L2 grit and their complex interactions in online foreign language earning: Motivation, self-directed learning, autonomy, curiosity, and language mindsets. Comput. Assist. Lang. Learn. 2023, 1–38. [Google Scholar] [CrossRef]
- Teimouri, Y.; Plonsky, L.; Tabandeh, F. L2 grit: Passion and perseverance for second language learning. Lang. Teach. Res. 2022, 26, 893–918. [Google Scholar] [CrossRef]
- Teimouri, Y.; Sudina, E.; Plonsky, L. On domain-specific conceptualization and measurement of grit in L2 learning. J. Psychol. Lang. Learn. 2021, 3, 156–165. [Google Scholar] [CrossRef]
- Yu, Y.; Hua, L.; Feng, X.; Wang, Y.; Yu, Z.; Zi, T.; Zhao, Y.; Li, J. True grit in learning math: The math anxiety-achievement link is mediated by math-specific grit. Front. Psychol. 2021, 12, 645793. [Google Scholar] [CrossRef] [PubMed]
- Mosewich, A.D.; Dunn, J.G.H.; Causgrove Dunn, J.; Wright, K.S. Domain-specific grit, identity, and self-compassion in intercollegiate athletes. Sport Exerc. Perform. Psychol. 2021, 10, 257–272. [Google Scholar] [CrossRef]
- Rumbold, J.L.; Dunn, J.G.H.; Olusoga, P. Examining the predictive validity of the Grit Scale-Short (Grit-S) using domain-general and domain-specific approaches with student-athletes. Front. Psychol. 2022, 13, 837321. [Google Scholar] [CrossRef]
- Pechtl, H. Anmerkungen zur Operationalisierung und Messung des Konstrukts ‘Need for Cognition’ [Notes on the Operationalization and Measurement of the Construct ‘Need for Cognition’]; Wirtschaftswissenschaftliche Diskussionspapiere; Universität Greifswald: Greifswald, Germany, 2009; Available online: https://www.econstor.eu/handle/10419/41073 (accessed on 7 September 2023).
- Schuler, H.; Funke, U.; Baron-Boldt, J. Predictive validity of school grades. A meta-analysis. Appl. Psychol. 1990, 39, 89–103. [Google Scholar] [CrossRef]
- Schuler, H.; Schult, J. Prädiktoren von Studien- und Berufserfolg [Predictors of academic and career success]. In Handwörterbuch Pädagogische Psychologie, 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 645–653. [Google Scholar]
- Tent, L.; Birkel, P. Zensuren [School grades]. In Handwörterbuch Pädagogische Psychologie, 4th ed.; Rost, D.H., Ed.; Beltz: Weinheim, Germany, 2010; pp. 949–958. [Google Scholar]
- Sparfeldt, J.R.; Buch, S.R.; Wirthwein, L.; Rost, D.H. Zielorientierungen: Zur Relevanz der Schulfächer [Goal orientations: On the relevance of school subjects]. Z. Entwicklungspsychol. Pädagogische Psychol. 2007, 39, 165–176. [Google Scholar] [CrossRef]
- Sparfeldt, J.R.; Schilling, S.R.; Rost, D.H.; Stelzl, I.; Peipert, D. Leistungsängstlichkeit: Facetten, Fächer, Fachfacetten? Zur Trennbarkeit nach Angstfacette und Inhaltsbereich [Test anxiety: The relevance of anxiety facets as well as school subjects]. Z. Pädagogische Psychol. 2005, 19, 225–236. [Google Scholar] [CrossRef]
- Baudson, T.G.; Jung, N.; Freund, P.A. Measurement invariance in a grid-based measure of academic self-concept. Eur. J. Psychol. Assess. 2017, 33, 467–470. [Google Scholar] [CrossRef]
- Schneider, R.; Sparfeldt, J.R.; Niepel, C.; Buch, S.R.; Rost, D.H. Measurement invariance of test anxiety across four school subjects. Eur. J. Psychol. Assess. 2022, 38, 356–364. [Google Scholar] [CrossRef]
- Brislin, R.W. Back-translation for cross-cultural research. J. Cross Cult. Psychol. 1970, 1, 185–216. [Google Scholar] [CrossRef]
- Jones, P.S.; Lee, J.W.; Phillips, L.R.; Zhang, X.E.; Jaceldo, K.B. An adaptation of Brislin’s translation model for cross-cultural research. Nurs. Res. 2001, 50, 300–304. [Google Scholar] [CrossRef] [PubMed]
- Buch, S.R.; Sparfeldt, J.R.; Rost, D.H. Diagnostik schulfachspezifischer Selbstkonzepte. Differentielles Schulisches Selbstkonzept-Gitter (DISK-Gitter) [Diagnostics of school subject-specific self-concepts. Differential Academic Self-Concept Grid (DISK Grid)]. In Diagnostik und Förderung von Motivation und Volition; Gaspard, H., Trautwein, U., Hasselhorn, M., Eds.; Hogrefe: Göttingen, Germany, 2019; pp. 69–86. [Google Scholar]
- Preckel, F. Assessing need for cognition in early adolescence: Validation of a German adaption of the Cacioppo/Petty scale. Eur. J. Psychol. Assess. 2014, 30, 65–72. [Google Scholar] [CrossRef]
- Enders, C.K.; Tofighi, D. Centering predictor variables in cross-sectional multilevel models: A new look at an old issue. Psychol. Methods 2007, 12, 121–138. [Google Scholar] [CrossRef]
- Fisher, R. The correlation between relatives on the supposition of mendelian inheritance. Earth Environ. Sci. Trans. R. Soc. Edinb. 1919, 52, 399–433. [Google Scholar] [CrossRef]
- Silver, N.C.; Dunlap, W.P. Averaging correlation coefficients: Should Fisher’s z transformation be used? J. Appl. Psychol. 1987, 72, 146–148. [Google Scholar] [CrossRef]
- Koran, J. Preliminary proactive sample size determination for confirmatory factor analysis models. Meas. Eval. Couns. Dev. 2016, 49, 296–308. [Google Scholar] [CrossRef]
- Koran, J. Indicators per factor in confirmatory factor analysis: More is not always better. Struct. Equ. Model. A Multidiscip. J. 2020, 27, 765–772. [Google Scholar] [CrossRef]
- Mat Roni, S.; Djajadikerta, H.G. Data Analysis with SPSS for Survey-Based Research; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Knofczynski, G.T.; Mundfrom, D. Sample sizes when using multiple linear regression for prediction. Educ. Psychol. Meas. 2008, 68, 431–442. [Google Scholar] [CrossRef]
- Kelley, K.; Anderson, S.F.; Maxwell, S.E. Sample-size planning. In APA Handbook of Research Methods in Psychology: Foundations, Planning, Measures, and Psychometrics; Cooper, H., Coutanche, M.N., McMullen, L.M., Panter, A.T., Rindskopf, D., Sher, K.J., Eds.; American Psychological Association: Washington, DC, USA, 2023; pp. 189–209. [Google Scholar]
- Jobst, L.J.; Bader, M.; Moshagen, M. A tutorial on assessing statistical power and determining sample size for structural equation models. Psychol. Methods 2023, 28, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Urban, D.; Mayerl, J. Angewandte Regressionsanalyse: Theorie, Technik und Praxis [Applied Regression Analysis: Theory, Technique, and Practice], 4th ed.; Springer: Wiesbaden, Germany, 2018. [Google Scholar] [CrossRef]
- Rost, D.H. Interpretation und Bewertung Pädagogischer und Psychologischer Studien. Eine Einführung [Interpretation and Evaluation of Educational and Psychological Studies. An Introduction], 4th ed.; Klinkhardt: Bad Heilbrunn, Germany, 2023. [Google Scholar]
- Hooper, D.; Coughlan, J.; Mullen, M.R. Structural equation modelling: Guidelines for determining model fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar] [CrossRef]
- Hu, L.-t.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 5th ed.; Guilford Press: New York, NY, USA, 2023. [Google Scholar]
- Goodboy, A.K.; Kline, R.B. Statistical and practical concerns with published communication research featuring structural equation modeling. Commun. Res. Rep. 2017, 34, 68–77. [Google Scholar] [CrossRef]
- Marsh, H.W.; Hau, K.-T.; Grayson, D. Goodness of fit evaluation in structural equation modeling. In Contemporary Psychometrics. A Festschrift for Roderick P. McDonald; Maydeu-Olivares, A., McArdle, J., Eds.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2005; pp. 275–340. [Google Scholar]
- Marsh, H.W.; Hau, K.-T.; Wen, Z. In search of golden rules: Comment on hypothesis-testing approaches to setting cutoff values for fit indexes and dangers in overgeneralizing Hu and Bentler’s (1999) findings. Struct. Equ. Model. 2004, 11, 320–341. [Google Scholar] [CrossRef]
- Bühner, M. Einführung in Die Test- und Fragebogenkonstruktion [Introduction to Test and Questionnaire Construction], 4th ed.; Pearson: München, Germany, 2021. [Google Scholar]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Akaike, H. Factor analysis and AIC. Psychometrika 1987, 52, 317–332. [Google Scholar] [CrossRef]
- Cavanaugh, J.E.; Neah, A.A. The Akaike information criterion: Background, derivation, propertis, application, interpretation, and refinements. WIREs Comput. Stat. 2019, 11, e1460. [Google Scholar] [CrossRef]
- Hau, K.-T.; Ho, I.T. Chinese students’ motivation and achievement. In The Oxford Handbook of Chinese Psychology; Bond, M.H., Ed.; Oxford University Press: New York, NY, USA, 2010; pp. 187–204. [Google Scholar]
- Baron, S.; Yin-Baron, G. Die Chinesen. Programm einer Weltmacht [The Chinese. Program of a World Power]; Ullstein: München, Germany, 2019. [Google Scholar]
- Reeve, J. The interest-enjoyment distinction in intrinsic motivation. Motiv. Emot. 1989, 13, 83–103. [Google Scholar] [CrossRef]
- Krapp, A. Intrinsische Lernmotivation und Interesse. Forschungsansätze und konzeptuelle Überlegungen [Intrinsic learning motivation and interest. Research approaches and conceptual thoughts]. Z. Pädagogik 1999, 45, 387–406. [Google Scholar]
- Weber, K. The relationship of interest to internal and external motivation. Commun. Res. Rep. 2003, 20, 376–383. [Google Scholar] [CrossRef]
- Renninger, K.A. Individual interest and its implications for understanding intrinsic motivation. In Intrinsic and Extrinsic Motivation: The Search for Optimal Motivation and Performance; Sansone, C., Harackiewicz, J.M., Eds.; Academic Press: San Diego, CA, USA, 2000; pp. 373–404. [Google Scholar] [CrossRef]
- Schiefele, U.; Köller, O.; Schaffner, E. Intrinsische und extrinsische Motivation [Intrinsic and extrinsic motivation]. In Handwörterbuch Pädagogische Psychologie, 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 309–319. [Google Scholar]
- Schiefele, U.; Schreyer, I. Intrinsische Lernmotivation und Lernen. Ein Überblick zu Ergebnissen der Forschung [Intrinsic motivation to learn and learning: A review of recent research findings]. Z. Pädagogische Psychol. 1994, 8, 1–13. [Google Scholar]
- Klauer, K.J.; Sparfeldt, J.R. Intelligenz und Begabung. [Intelligence and giftedness]. In Handwörterbuch Pädagogische Psychologie, 5th ed.; Rost, D.H., Sparfeldt, J.R., Buch, S.R., Eds.; Beltz: Weinheim, Germany, 2018; pp. 278–286. [Google Scholar]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.-Y.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef]
- Brannick, M.T.; Chan, D.; Conway, J.M.; Lance, C.E.; Spector, P.E. What is method variance and how can we cope with it? A panel discussion. Organ. Res. Methods 2010, 13, 407–420. [Google Scholar] [CrossRef]
χ2 (df) | CFI | SRMR | RMSEA [90% CI] | AIC | |
---|---|---|---|---|---|
Academic self-concept (ASC) | |||||
(18 items, 6 per subject) | |||||
General factor | 5567.58 (135) | 0.35 | 0.19 | 0.23 [0.22, 0.23] | 5675 |
Three subject factors: | |||||
Chinese, mathematics, and English | 397.83 (114) | 0.97 | 0.06 | 0.06 [0.05, 0.06] | 547 |
Conscientiousness (CSN) | |||||
(24 items, 8 per subject) | |||||
General factor | 7750.12 (252) | 0.38 | 0.13 | 0.19 [0.18, 0.19] | 7594 |
Three subject factors: | |||||
Chinese, mathematics, and English | 472.28 (225) | 0.98 | 0.05 | 0.04 [0.03, 0.04] | 670 |
Need for cognition (NFC) | |||||
(24 items, 8 per subject) | |||||
General factor | 6938.08 (252) | 0.39 | 0.14 | 0.18 [0.18, 0.19] | 7082 |
Three subject factors: | |||||
Chinese, mathematics, and English | 516.81 (225) | 0.97 | 0.05 | 0.05 [0.04, 0.05] | 714 |
Perseverance of effort (POE) | |||||
(12 items, 4 per subject) | |||||
General factor | 2186.30 (54) | 0.53 | 0.13 | 0.22 [0.21, 0.23] | 2258 |
Three subject factors: | |||||
Chinese, mathematics, and English | 109.01 (39) | 0.99 | 0.04 | 0.05 [0.04, 0.06] | 212 |
Consistency of interest (COI) | |||||
(12 items, 4 per subject) | |||||
General factor | 2129,49 (54) | 0.53 | 0.13 | 0.22 [0.21, 0.23] | 2201 |
Three subject factors: | |||||
Chinese, mathematics, and English | 75.45 (39) | 0.99 | 0.03 | 0.03 [0.02, 0.05] | 177 |
χ2 (df) | CFI | SRMR | RMSEA [90% CI] | AIC | |
---|---|---|---|---|---|
Subject: Chinese | |||||
General factor | 2326.85 (405) | 0.78 | 0.07 | 0.08 [0.07, 0.09] | 2507 |
Five factors: ASC, CSN, NFC, PER, and COI | 1254.36 (395) | 0.90 | 0.05 | 0.05 [0.05, 0.06] | 1454 |
Subject: Mathematics | |||||
General factor | 2356.23 (405) | 0.79 | 0.06 | 0.08 [0.06, 0.08] | 2545 |
Five factors: ASC, CSN, NFC, PER, and COI | 1236.28 (395) | 0.91 | 0.05 | 0.05 [0.05, 0.06] | 1483 |
Subject: English | |||||
General factor | 2322.57 (405) | 0.81 | 0.06 | 0.08 [0.07, 0.08] | 2503 |
Five factors: ASC, CSN, NFC, PER, and COI | 1377.68 (395) | 0.90 | 0.05 | 0.06 [0.05, 0.06] | 1578 |
Min. Score a | Max. Score a | M a | SD a | Mean rit b | Skewness b | Kurtosis b | α b | |
---|---|---|---|---|---|---|---|---|
Academic self-concept c | ||||||||
Chinese | 6 | 36 | 19.35 | 5.97 | 0.64 | 0.24 | −0.34 | 0.84 |
Mathematics | 6 | 36 | 17.99 | 7.00 | 0.69 | 0.48 | −0.40 | 0.88 |
English | 6 | 38 | 17.61 | 7.16 | 0.69 | 0.30 | −0.59 | 0.88 |
Conscientiousness d | ||||||||
Chinese | 8 | 48 | 30.47 | 7.23 | 0.53 | −0.07 | −0.31 | 0.80 |
Mathematics | 8 | 48 | 30.66 | 7.98 | 0.52 | −0.11 | −0.51 | 0.80 |
English | 8 | 48 | 28.64 | 8.36 | 0.55 | −0.17 | −0.44 | 0.82 |
Need for cognition d | ||||||||
Chinese | 8 | 48 | 30.62 | 7.58 | 0.57 | −0.18 | −0.24 | 0.84 |
Mathematics | 8 | 48 | 31.44 | 8.34 | 0.58 | −0.15 | −0.47 | 0.84 |
English | 8 | 48 | 28.38 | 8.72 | 0.60 | −0.09 | −0.50 | 0.85 |
Perseverance of effort e | ||||||||
Chinese | 4 | 24 | 14.88 | 3.92 | 0.51 | 0.07 | −0.34 | 0.71 |
Mathematics | 4 | 24 | 14.66 | 4.53 | 0.52 | −0.05 | −0.61 | 0.73 |
English | 4 | 24 | 13.76 | 4.56 | 0.53 | 0.07 | −0.59 | 0.73 |
Consistency of interest e | ||||||||
Chinese | 4 | 24 | 14.30 | 4.26 | 0.45 | −0.10 | −0.30 | 0.66 |
Mathematics | 4 | 24 | 14.32 | 4.39 | 0.41 | −0.04 | −0.46 | 0.62 |
English | 4 | 24 | 14.11 | 4.34 | 0.36 | −0.18 | −0.41 | 0.58 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Age | — | 04 | 00 | −01 | −04 | −01 | 00 | −03 | 04 | 04 | 03 | −01 | 01 | −01 | 02 | 03 | 02 | −01 | −03 | −02 |
2 | Sex | — | 15 | −04 | 28 | 11 | −16 | 17 | 07 | −09 | 11 | 15 | −11 | 20 | 08 | −08 | 12 | 03 | −06 | 04 | |
3 | Grade-C | — | 15 | 20 | 24 | −04 | 04 | 13 | −00 | 02 | 15 | −04 | 02 | 14 | −00 | 02 | 02 | −03 | −03 | ||
4 | Grade-M | — | 12 | −00 | 40 | −01 | −02 | 25 | −01 | −04 | 28 | −04 | 01 | 28 | 00 | 00 | 13 | −01 | |||
5 | Grade-E | — | 05 | −11 | 53 | −04 | −13 | 30 | 00 | −13 | 37 | −02 | −11 | 27 | 03 | −04 | 14 | ||||
6 | ASC-C | — | 28 | 34 | 53 | 21 | 25 | 66 | 18 | 28 | 59 | 22 | 27 | 18 | 08 | 10 | |||||
7 | ASC-M | — | 16 | 16 | 59 | 11 | 20 | 70 | 12 | 24 | 64 | 14 | 08 | 27 | 06 | ||||||
8 | ASC-E | — | 16 | 06 | 61 | 20 | 02 | 72 | 23 | 08 | 63 | 07 | 03 | 24 | |||||||
9 | CSN-C | — | 62 | 62 | 68 | 28 | 35 | 76 | 44 | 45 | 24 | 18 | 19 | ||||||||
10 | CSN-M | — | 50 | 36 | 67 | 24 | 49 | 77 | 34 | 15 | 29 | 13 | |||||||||
11 | CSN-E | — | 36 | 17 | 72 | 48 | 34 | 78 | 14 | 15 | 28 | ||||||||||
12 | NFC-C | — | 46 | 51 | 68 | 35 | 33 | 20 | 12 | 15 | |||||||||||
13 | NFC-M | — | 30 | 32 | 69 | 19 | 07 | 23 | 04 | ||||||||||||
14 | NFC-E | — | 38 | 24 | 73 | 09 | 08 | 27 | |||||||||||||
15 | POE-C | — | 58 | 58 | 24 | 21 | 24 | ||||||||||||||
16 | POE-M | — | 42 | 14 | 32 | 14 | |||||||||||||||
17 | POE-E | — | 13 | 15 | 28 | ||||||||||||||||
18 | COI-C | — | 73 | 69 | |||||||||||||||||
19 | COI-M | — | 68 | ||||||||||||||||||
20 | COI-E | — |
Chinese Grade | Mathematics Grade | English Grade | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 1 | β | P | R2 | ∆R2 | p-Value | β | p | R2 | ∆R2 | p-Value | β | p-Value | ∆R2 | p-Value | |
Sex | 0.15 | <0.001 | −0.04 | 0.283 | 0.28 | <0.001 | |||||||||
Age | −0.01 | 0.761 | −0.01 | 0.862 | −0.03 | 0.434 | |||||||||
0.02 | 0.02 | <0.001 | <0.01 | <0.01 | 0.556 | 0.08 | 0.08 | <0.001 | |||||||
Model 2 | |||||||||||||||
Sex | 0.13 | <0.001 | 0.03 | 0.402 | 0.20 | <0.001 | |||||||||
Age | −0.01 | 0.772 | −0.01 | 0.783 | −0.02 | 0.529 | |||||||||
ASC | 0.22 | <0.001 | 0.40 | <0.001 | 0.50 | <0.001 | |||||||||
0.07 | 0.05 | <0.001 | 0.16 | 0.16 | <0.001 | 0.32 | 0.24 | <0.001 | |||||||
Model 3 | |||||||||||||||
Sex | 0.13 | <0.001 | 0.03 | 0.413 | 0.20 | <0.001 | |||||||||
Age | −0.01 | 0.731 | −0.01 | 0.777 | −0.02 | 0.619 | |||||||||
ASC | 0.24 | <0.001 | 0.38 | <0.001 | 0.56 | <0.001 | |||||||||
CSN | 0.03 | 0.622 | 0.01 | 0.878 | 0.06 | 0.253 | |||||||||
NFC | −0.04 | 0.480 | −0.02 | 0.687 | −0.03 | 0.601 | |||||||||
POE | 0.01 | 0.912 | 0.04 | 0.528 | −0.13 | 0.011 | |||||||||
COI | −0.03 | 0.373 | 0.02 | 0.583 | 0.02 | 0.479 | |||||||||
0.07 | <0.01 | 0.854 | 0.16 | <0.01 | 0.33 | 0.01 | 0.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rost, D.H.; Feng, X. Academic Self-Concept Wins the Race: The Prediction of Achievements in Three Major School Subjects by Five Subject-Specific Self-Related Variables. Behav. Sci. 2024, 14, 40. https://doi.org/10.3390/bs14010040
Rost DH, Feng X. Academic Self-Concept Wins the Race: The Prediction of Achievements in Three Major School Subjects by Five Subject-Specific Self-Related Variables. Behavioral Sciences. 2024; 14(1):40. https://doi.org/10.3390/bs14010040
Chicago/Turabian StyleRost, Detlef H., and Xiaoli Feng. 2024. "Academic Self-Concept Wins the Race: The Prediction of Achievements in Three Major School Subjects by Five Subject-Specific Self-Related Variables" Behavioral Sciences 14, no. 1: 40. https://doi.org/10.3390/bs14010040
APA StyleRost, D. H., & Feng, X. (2024). Academic Self-Concept Wins the Race: The Prediction of Achievements in Three Major School Subjects by Five Subject-Specific Self-Related Variables. Behavioral Sciences, 14(1), 40. https://doi.org/10.3390/bs14010040