Quality of Life in Metabolic Syndrome Patients Based on the Risk of Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Variables
2.2.1. QoL
2.2.2. MetS
- (1)
- Abdominal obesity: A waist circumference of ≥90 cm for men, and of ≥85 cm for women;
- (2)
- Hypertriglyceridemia: A triglyceride concentration of ≥150 mg/dL or, the reception of a specific treatment for this lipid abnormality;
- (3)
- High-density lipoprotein cholesterol: A serum high-density lipoprotein cholesterol concentration of <40 mg/dL for men, and of <50 mg/dL for women, or the reception of a specific treatment for lipid abnormality;
- (4)
- High blood pressure: A systolic blood pressure ≥ 130 mmHg and a diastolic blood pressure ≥ 85 mmHg, or the reception of treatment with antihypertensive agents;
- (5)
- High fasting glucose: A fasting serum glucose level of ≥100 mg/dL or the reception of treatment through antidiabetic medication
2.2.3. OSA
2.2.4. Demographic Characteristics
2.2.5. Health-Related Factors
2.2.6. Disease-Related Factors
2.2.7. Depression
2.3. Statistical Analysis
2.4. Ethical Consideration
3. Results
3.1. QoL
3.2. Sociodemographic Characteristics of the Participants According to Risk Factors for OSA
3.3. Health- and Disease-Related Characteristics of Participants According to Risk Factors for OSA
3.4. Factors Influencing QoL by Group
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hirode, G.; Wong, R.J. Trends in the prevalence of metabolic syndrome in the United States, 2011–2016. JAMA 2020, 323, 2526–2528. [Google Scholar] [CrossRef]
- Huh, J.H.; Kang, D.R.; Kim, J.Y.; Koh, K.K. Metabolic syndrome fact sheet 2021: Executive report. Cardiometab Syndr. J. 2021, 1, 125–134. [Google Scholar] [CrossRef]
- Grundy, S.M.; Cleeman, J.I.; Daniels, S.R.; Donato, K.A.; Eckel, R.H.; Franklin, B.A.; Gordon, D.J.; Krauss, R.M.; Savage, P.J.; Smith, S.C.; et al. Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute scientific statement. Circulation 2005, 112, 2735–2752. [Google Scholar] [CrossRef]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- World Health Organization. World Health Statistics 2022: Monitoring Health for the SDGs. Sustainable Development Goals. Available online: https://www.who.int/publications/i/item/9789240051157 (accessed on 16 April 2023).
- Cunningham, J.; Hunter, M.; Budgeon, C.; Murray, K.; Knuiman, M.; Hui, J.; Hillman, D.; Singh, B.; James, A. The prevalence and comorbidities of obstructive sleep apnea in middle-aged men and women: The Busselton Healthy Ageing Study. J. Clin. Sleep Med. 2021, 17, 2029–2039. [Google Scholar] [CrossRef]
- Lee, Y.J. Updates of diagnosis and treatment of sleep-related breathing disorders-focusing on obstructive sleep apnea. J. Korean Neuropsychiatr. Assoc. 2020, 59, 20–24. [Google Scholar] [CrossRef]
- Garbarino, S.; Bardwell, W.A.; Guglielmi, O.; Chiorri, C.; Bonanni, E.; Magnavita, N. Association of anxiety and depression in obstructive sleep apnea patients: A systematic review and meta-analysis. Behav. Sleep Med. 2020, 18, 35–57. [Google Scholar] [CrossRef]
- Yeghiazarians, Y.; Jneid, H.; Tietjens, J.R.; Redline, S.; Brown, D.L.; El-Sherif, N.; Mehra, R.; Bozkurt, B.; Ndumele, C.E.; Somers, V.K. Obstructive sleep apnea and cardiovascular disease: A scientific statement from the American Heart Association. Circulation 2021, 144, e56–e67. [Google Scholar] [CrossRef] [PubMed]
- Geovanini, G.R.; Wang, R.; Weng, J.; Jenny, N.S.; Shea, S.; Allison, M.; Libby, P.; Redline, S. Association between obstructive sleep apnea and cardiovascular risk factors: Variation by age, sex, and race. The multi-ethnic study of atherosclerosis. Ann. Am. Thorac. Soc. 2018, 15, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Mjelle, K.E.S.; Lehmann, S.; Saxvig, I.W.; Gulati, S.; Bjorvatn, B. Association of excessive sleepiness, pathological fatigue, depression, and anxiety with different severity levels of obstructive sleep apnea. Front. Psychol. 2022, 13, 839408. [Google Scholar] [CrossRef] [PubMed]
- Giampá, S.Q.C.; Lorenzi-Filho, G.; Drager, L.F. Obstructive sleep apnea and metabolic syndrome. Obesity 2023, 31, 900–911. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Verze, P.; Bjerklund Johansen, T.E. The quality of life definition: Where are we going? Uro 2021, 1, 14–22. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Organization quality of life assessment (WHOQOL): Position paper from the World Health Organization. Soc. Sci. Med. 1995, 41, 1403–1409. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S. Comparison of health-related quality of life influencing factors between metabolic syndrome and osteoporotic metabolic syndrome in Korean elderly people. J. Converg. Inf. Technol. 2021, 11, 54–67. (In Korean) [Google Scholar] [CrossRef]
- Saboya, P.P.; Bodanese, L.C.; Zimmermann, P.R.; Gustavo, A.D.S.; Assumpção, C.M.; Londero, F. Metabolic syndrome and quality of life: A systematic review. Rev. Lat.-Am. Enferm. 2016, 24, e2848. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.K.; Seong, M.G.; Kim, Y.R. Effects of obstructive sleep apnea risk factors on mental health (PHQ-9) and quality of life (EQ-5D) in middle-aged Koreans: Using data from the national health and nutrition examination survey 2020. Korean Soc. Oral Health Sci. 2022, 10, 112–120. [Google Scholar] [CrossRef]
- Lee, W.; Lee, S.A.; Ryu, H.U.; Chung, Y.S.; Kim, W.S. Quality of life in patients with obstructive sleep apnea: Relationship with daytime sleepiness, sleep quality, depression, and apnea severity. Chron. Respir. Dis. 2016, 13, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Ock, M.; Jo, M.W.; Gong, Y.H.; Lee, H.J.; Lee, J.; Sim, C.S. Estimating the severity distribution of disease in South Korea using EQ-5D-3L: A cross-sectional study. BMC Public Health 2016, 16, 234. [Google Scholar] [CrossRef]
- Korea Disease Control and Prevention Agency. The Eighth Korea National Health and Nutrition Examination Survey (KNHANES VIII-2). Available online: https://knhanes.kdca.go.kr/knhanes/sub03/sub03_02_05.do (accessed on 23 February 2022).
- Babor, T.F.; Higgins-Biddle, J.C.; Saunders, J.B.; Monteiro, M.G. The Alcohol Use Disorders Identification Test; World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Han, C.; Jo, S.A.; Kwak, J.H.; Pae, C.U.; Steffens, D.; Jo, I. Validation of the patient health questionnaire-9 Korean version in the elderly population: The Ansan Geriatric study. Compr. Psychiatry 2008, 49, 218–223. [Google Scholar] [CrossRef]
- Manea, L.; Gilbody, S.; McMillan, D. A diagnostic meta-analysis of the patient health Questionnaire-9 (PHQ-9) algorithm scoring method as a screen for depression. Gen. Hosp. Psychiatry 2015, 37, 67–75. [Google Scholar] [CrossRef]
- Limon, V.M.; Lee, M.; Gonzalez, B.; Choh, A.C.; Czerwinski, S.A. The impact of metabolic syndrome on mental health-related quality of life and depressive symptoms. Qual. Life Res. 2020, 29, 2063–2072. [Google Scholar] [CrossRef]
- Scott, A.J.; Webb, T.L.; Martyn-St James, M.; Rowse, G.; Weich, S. Improving sleep quality leads to better mental health: A meta-analysis of randomized controlled trials. Sleep Med. Rev. 2021, 60, 101556. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Lin, X.; Jiang, D.; Tian, H.; Xu, Y.; Wang, L.; Zhuo, C. Depression and cardiovascular disease: Shared molecular mechanisms and clinical implications. Psychiatry Res. 2020, 285, 112802. [Google Scholar] [CrossRef] [PubMed]
- Barberio, B.; Zamani, M.; Black, C.J.; Savarino, E.V.; Ford, A.C. Prevalence of symptoms of anxiety and depression in patients with inflammatory bowel disease: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 359–370. [Google Scholar] [CrossRef] [PubMed]
- Zurita-Cruz, J.N.; Manuel-Apolinar, L.; Arellano-Flores, M.L.; Gutierrez-Gonzalez, A.; Najera-Ahumada, A.G.; Cisneros-Gonzalez, N. Health and quality of life outcomes impairment of quality of life in type 2 diabetes mellitus: A cross-sectional study. Health Qual Life Outcomes 2018, 16, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Thomson, K.; Hillier-Brown, F.; Todd, A.; McNamara, C.; Huijts, T.; Bambra, C. The effects of public health policies on health inequalities in high-income countries: An umbrella review. BMC Public Health 2018, 18, 869. [Google Scholar] [CrossRef]
- Sosso, F.A.E.; Matos, E.; Papadopoulos, D. Social disparities in sleep health of African populations: A systematic review and meta-analysis of observational studies. Sleep Health 2023, 9, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Anderson, E.; Durstine, J.L. Physical activity, exercise, and chronic diseases: A brief review. Sports Med. Health Sci. 2019, 1, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Myers, J.; Kokkinos, P.; Nyelin, E. Physical activity, cardiorespiratory fitness, and the metabolic syndrome. Nutrients 2019, 11, 1652. [Google Scholar] [CrossRef]
- Hall, K.A.; Singh, M.; Mukherjee, S.; Palmer, L.J. Physical activity is associated with reduced prevalence of self-reported obstructive sleep apnea in a large, general population cohort study. J. Clin. Sleep Med. 2020, 16, 1179–1187. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, Y.; Zhao, Y.; Ren, H. Effects of exercise on patients with obstructive sleep apnea: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2022, 19, 10845. [Google Scholar] [CrossRef] [PubMed]
- Marquez, D.X.; Aguiñaga, S.; Vásquez, P.M.; Conroy, D.E.; Erickson, K.I.; Hillman, C.; Stillman, C.M.; Ballard, R.M.; Sheppard, B.B.; Petruzzello, S.J.; et al. A systematic review of physical activity and quality of life and well-being. Transl. Behav. Med. 2020, 10, 1098–1109. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Boros, S. The effect of physical activity on sleep quality: A systematic review. Eur J Physiother. 2021, 23, 11–18. [Google Scholar] [CrossRef]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Williams, S.L.; Fenning, A.S.; Vandelanotte, C. Depres sion, anxiety and stress during COVID-19: Associations with changes in physical activity, sleep, tobacco and alcohol use in Australian adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef]
(i) S (snoring) | Do you snore loudly (louder than talking or loud enough to be heard through closed doors)? |
(ii) T (tired) | Do you often feel tired, fatigued, or sleepy during daytime? |
(iii) O (observed) | Has anyone observed you stop breathing during sleep? |
(iv) P (pressure) | Diastolic blood pressure of 90 mmHg or higher, systolic blood pressure of 140 mmHg, or taking antihypertensive medication. |
(v) B (body mass index) | a BMI of more than 35 kg/m2 |
(vi) A (age) | Aged older than 50 years? |
(vii) N (neck circumference) | 40 cm or larger |
(viii) G (gender) | Male |
MetS: Yes (n = 1589) | ||||
---|---|---|---|---|
Independent Variables | Low Risk Group (n = 748) | High Risk Group (n = 841) | F | p |
M (SE) | M (SE) | |||
EQ5D | 0.966 (0.001) | 0.941 (0.004) | 56.322 | <0.001 |
Variables | Categories | Low-Risk Group (n = 748) | High-Risk Group (n = 841) | χ2 (p) | ||||
---|---|---|---|---|---|---|---|---|
n * (%) † | M (SE) | F (p) | n * (%) † | M (SE) | F (p) | |||
Gender | Male | 173 (31.3) | 0.972 (0.007) | 20.171 (<0.001) | 606 (78.0) | 0.961 (0.004) | 49.213 (<0.001) | 252.629 (<0.001) |
Female | 575 (68.7) | 0.934 (0.005) | 235 (22.0) | 0.877 (0.011) | ||||
Age | 40–49 | 148 (28.3) | 0.979 (0.005) | 23.056 (<0.001) | 101 (17.2) | 0.973 (0.006) | 21.366 (<0.001) | 22.833 (<0.001) |
50–59 | 131 (20.3) | 0.967 (0.005) | 253 (38.5) | 0.967 (0.005) | ||||
60–69 | 205 (22.8) | 0.946 (0.009) | 258 (26.1) | 0.922 (0.009) | ||||
≥70 | 264 (28.6) | 0.883 (0.011) | 229 (18.2) | 0.879 (0.012) | ||||
Education | <Middle school | 309 (40.0) | 0.903 (0.008) | 71.460 (<0.001) | 319 (32.7) | 0.900 (0.009) | 38.136 (<0.001) | 7.213 (0.008) |
≥Middle school | 318 (60.0) | 0.975 (0.004) | 467 (67.3) | 0.961 (0.004) | ||||
Living alone | Yes | 160 (33.3) | 0.916 (0.013) | 0.732 (0.394) | 132 (29.0) | 0.891 (0.015) | 4.266 (0.041) | 1.060 (0.305) |
No | 273 (66.7) | 0.929 (0.008) | 337 (71.0) | 0.924 (0.008) | ||||
Occupation | Yes | 333 (57.6) | 0.966 (0.005) | 23.620 (<0.001) | 457 (65.0) | 0.964 (0.004) | 42.790 (<0.001) | 6.970 (0.009) |
No | 294 (42.4) | 0.919 (0.008) | 329 (35.0) | 0.898 (0.009) | ||||
Household | Low | 218 (33.7) | 0.888 (0.011) | 15.803 (<0.001) | 201 (26.6) | 0.866 (0.014) | 18.405 (<0.001) | 2.706 (0.070) |
income | Middle | 189 (33.5) | 0.955 (0.007) | 213 (34.8) | 0.944 (0.007) | |||
High | 156 (32.8) | 0.960 (0.007) | 217 (38.6) | 0.959 (0.006) |
Variables | Categories | Low Risk Group (n = 748) | High-Risk Group (n = 841) | χ2 (p) | ||||
---|---|---|---|---|---|---|---|---|
n * (%) † | M (SE) | F (p) | n * (%) † | M (SE) | F (p) | |||
Perceived stress | A little | 576 (79.9) | 0.950 (0.005) | 3.105 (0.080) | 615 (72.1) | 0.948 (0.005) | 6.64 (0.011) | 8.559 (0.004) |
Much more | 161 (20.1) | 0.931 (0.009) | 218 (27.9) | 0.923 (0.009) | ||||
Perceived health status | Bad | 137 (18.8) | 0.800 (0.011) | 32.279 (<0.001) | 236 (28.8) | 0.888 (0.009) | 32.542 (<0.001) | 7.914 (<0.001) |
Moderate | 340 (43.7) | 0.954 (0.005) | 401 (56.3) | 0.954 (0.005) | ||||
Good | 158 (26.9) | 0.976 (0.005) | 155 (20.6) | 0.982 (0.005) | ||||
BMI | Normal | 304 (40.9) | 0.943 (0.007) | 1.348 (0.248) | 232 (26.3) | 0.939 (0.009) | 0.353 (0.553) | 28.170 (<0.001) |
Obesity | 426 (59.1) | 0.954 (0.005) | 593 (73.7) | 0.944 (0.005) | ||||
Physical activity | Yes | 298 (47.6) | 0.950 (0.006) | 0.448 (0.504) | 332 (41.4) | 0.955 (0.005) | 9.072 (0.003) | 3.379 (0.068) |
No | 331 (52.4) | 0.943 (0.006) | 455 (58.6) | 0.931 (0.006) | ||||
Smoking | Current | 80 (13.9) | 0.968 (0.008) | 6.941 (0.001) | 189 (26.9) | 0.957 (0.008) | 9.753 (<0.001) | 55.156 (<0.001) |
Past | 114 (18.9) | 0.964 (0.007) | 320 (38.1) | 0.954 (0.005) | ||||
Never | 544 (67.2) | 0.936 (0.005) | 325 (35.0) | 0.916 (0.008) | ||||
Sleep duration | <7 | 337 (45.3) | 0.944 (0.005) | 0.596 (0.442) | 403 (46.3) | 0.938 (0.006) | 0.460 (0.499) | 0.105 (0.747) |
≥7 | 410 (54.7) | 0.950 (0.006) | 436 (53.7) | 0.944 (0.006) | ||||
ADIT | Low risk | 316 (74.0) | 0.952 (0.005) | 5.600 (0.019) | 340 (54.0) | 0.942 (0.006) | 7.441 (0.007) | 29.439 (<0.001) |
High risk | 83 (26.0) | 0.972 (0.007) | 241 (46.0) | 0.964 (0.006) | ||||
Depression | <10 | 604 (98.3) | 0.951 (0.004) | 18.717 (<0.001) | 730 (94.5) | 0.950 (0.004) | 35.842 (<0.001) | 18.119 (<0.001) |
≥10 | 17 (1.7) | 0.742 (0.048) | 52 (5.5) | 0.775 (0.029) | ||||
Hypertension | No | 410 (70.4) | 0.932 (0.006) | 5.314 (0.023) | 144 (29.6) | 0.958 (0.005) | 12.729 (<0.001) | 170.411 (<0.001) |
Yes | 338 (28.5) | 0.955 (0.005) | 697 (71.5) | 0.929 (0.006) | ||||
CVA | No | 729 (98.1) | 0.948 (0.004) | 5.042 (0.026) | 812 (97.2) | 0.944 (0.004) | 9.066 (0.003) | 1.326 (0.251) |
Yes | 19 (1.9) | 0.862 (0.038) | 29 (2.8) | 0.837 (0.035) | ||||
MI or AP | No | 722 (97.0) | 0.948 (0.004) | 3.583 (0.060) | 785 (94.8) | 0.942 (0.005) | 2.356 (0.127) | 3.394 (0.067) |
Yes | 26 (3.0) | 0.894 (0.029) | 56 (5.2) | 0.921 (0.013) | ||||
DM | No | 564 (77.3) | 0.955 (0.004) | 11.393 (0.001) | 606 (74.1) | 0.951 (0.005) | 16.104 (<0.001) | 1.553 (0.215) |
Yes | 184 (22.7) | 0.911 (0.012) | 235 (25.9) | 0.912 (0.009) |
Variables | Categories | Low-Risk Group (n = 748) | High-Risk Group (n = 841) | ||||
---|---|---|---|---|---|---|---|
B | t | p | B | T | p | ||
Gender | Male | 0.025 | 1.962 | 0.057 | 0.024 | 0.806 | 0.422 |
Female (ref.) | |||||||
Age | 40–49 | 0.034 | 1.646 | 0.103 | 0.050 | 1.378 | 0.172 |
50–59 | 0.035 | 1.768 | 0.080 | 0.025 | 1.252 | 0.214 | |
60–69 | 0.049 | 2.755 | 0.007 | −0.022 | −0.856 | 0.394 | |
70 (ref) | |||||||
Education | <Middle school | −0.029 | −2.565 | 0.012 | −0.018 | −0.974 | 0.332 |
≥Middle school (ref.) | |||||||
Living alone | Yes | −0.028 | −1.657 | 0.101 | |||
No | |||||||
Occupation | Yes | 0.017 | 1.199 | 0.233 | 0.013 | 0.661 | 0.510 |
No(ref) | |||||||
Household | Low | −0.017 | −1.021 | 0.310 | −0.011 | −0.539 | 0.591 |
income | Middle | −0.002 | −0.137 | 0.891 | 0.010 | 0.586 | 0.559 |
High (ref.) | |||||||
AUDIT | Low risk | 0.022 | 1.572 | 0.119 | −0.024 | −1.326 | 0.188 |
High risk (ref.) | |||||||
Smoking | Current | 0.011 | 0.816 | 0.417 | −0.036 | −1.479 | 0.143 |
Past | 0.006 | 0.455 | 0.650 | −0.022 | −0.832 | 0.408 | |
Never (ref.) | |||||||
Physical activity | Yes | 0.050 | 2.878 | 0.005 | |||
No | |||||||
Perceived stress | A little | −0.005 | −0.277 | 0.783 | |||
Much more (ref.) | |||||||
Perceived health status | Bad | −0.063 | −3.387 | −0.056 | −1.978 | 0.051 | |
Moderate | −0.029 | −2.429 | 0.007 | 0.272 | 0.786 | ||
Good (ref.) | |||||||
Depression | <10 | 0.135 | 2.165 | 0.033 | 0.151 | 4.470 | <0.001 |
≥10 (ref.) | |||||||
Hypertension | No | 0.001 | 0.045 | 0.964 | 0.004 | 0.291 | 0.771 |
Yes (ref.) | |||||||
CVA | No | 0.038 | 0.814 | 0.418 | 0.075 | 1.687 | 0.095 |
Yes (ref.) | |||||||
DM | No | 0.019 | 0.985 | 0.327 | −0.022 | −0.936 | 0.352 |
Yes (ref.) | |||||||
R2 = 0.300, F = 4.846, p < 0.001 | R2 = 0.338, F = 9.347, p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T. Quality of Life in Metabolic Syndrome Patients Based on the Risk of Obstructive Sleep Apnea. Behav. Sci. 2024, 14, 127. https://doi.org/10.3390/bs14020127
Kim T. Quality of Life in Metabolic Syndrome Patients Based on the Risk of Obstructive Sleep Apnea. Behavioral Sciences. 2024; 14(2):127. https://doi.org/10.3390/bs14020127
Chicago/Turabian StyleKim, Taehui. 2024. "Quality of Life in Metabolic Syndrome Patients Based on the Risk of Obstructive Sleep Apnea" Behavioral Sciences 14, no. 2: 127. https://doi.org/10.3390/bs14020127
APA StyleKim, T. (2024). Quality of Life in Metabolic Syndrome Patients Based on the Risk of Obstructive Sleep Apnea. Behavioral Sciences, 14(2), 127. https://doi.org/10.3390/bs14020127