People with Autism Spectrum Disorder Could Interact More Easily with a Robot than with a Human: Reasons and Limits
Abstract
:1. Introduction
2. Benefits of Interacting with a Robot for Individuals with ASD
2.1. Fostering Communication and Social Interaction
2.2. Fostering Specific Behaviors
2.2.1. Supporting the Learning of Appropriate Behaviors
Section | Article | Variable | Effect | Effect p-Value | Robot | Sample Size (ASD) | Mean Age (Standard Deviation) | Functioning/Mean IQ (Standard Deviation) | Duration of Robot Intervention (mn) | Country |
---|---|---|---|---|---|---|---|---|---|---|
Appropriate behaviors | Bharatharaj et al. [66] | Touching interaction | NA | NA | KiliRo | 24 | 9.71 (3.24) | NA | 1/day for 7 weeks (60 mn/session) | India |
Costa et al. [27] | Appropriate touch | gentle touch > harsh | KASPAR | 8 | 6–10 y.o. | NA | 7 sessions (NA) | UK | ||
David et al. [30] | Turn-taking skills | robot = human for 3 children | NAO | 5 | 3–5 y.o. | LF-HF | 8–12 sessions (10 mn/session, 1/day) | Romania | ||
Ghiglino et al. [11] | Theory of Mind skills | training with humanoid robot > non-anthropomorphic robot and traditional therapy | ; | iCub, COZMO | 43 | 5.8 (1.14) | 71.48 (16.50) (COZMO); 71.14 (15.49) (iCub) | 2/week for 8 weeks (15 mn/session) | Italy | |
Holeva et al. [67] | Theory of Mind skills (NEPSY II) | robot training = human; pretest < post-test | ; | NAO | 44 | 9.48 (1.95) | IQ > 70 | 2/week for 3 months (NA) | Greece | |
Lakatos et al. [68] | Visual Perspective Taking and Theory of Mind skills (Charlie test) | pretest < post-test | KASPAR | 13 | 8.11 (1.96) | 79.30 (14.33); range: 60–103 | 1 to 10 sessions (15–20 mn/session) | UK | ||
Lee et al. [69] | Proper force of touching | feedback > no feedback | Touch pad | 1 | 22 y.o. | 49 | 1 session (NA) | Japan | ||
Marino et al. [21] | Recognition and understanding of emotions | pretest < post-test (robot training); pretest = post-test (human training) | ; | NAO | 14 | 73.3 months (16.1) (robot group); 82.1 (12.4) (human) | NA | 10 sessions (90 mn/session, 2/week) | Italy | |
So et al. [65] | Recognition and production of intransitive gestures | robot training > no training | NAO | 30 | 5.10 (0.83) (experimental group); 5.8 (0.35) (control) | NA | 4 sessions (30 mn/session, 2/week) | China | ||
So et al. [20] | Recognition and production of emotional gestures | robot training > no training | NAO | 13 | 8.99 (2.14) (experimental group); 9.50 (2.42) (control) | range: 49–67 | 4 sessions (30 mn/session, 2/week) | China | ||
So et al. [70] | Recognition and production of intransitive gestures | robot training = human | NAO | 23 | 9.17 (1.29) (robot group); 8.92 (0.93) (human) | range: 46–74 | 5 sessions (30 mn/session, 2/week) | China | ||
Takata et al. [71] | Understanding of others’ feelings and behaviors | pretest < post-test | Sota, CommU, A-Lab android ST | 14 | 17.57 (3.39) | 89.50 (10.95) | 5 sessions (1 h/session, 1/day) | Japan | ||
Wood et al. [72] | Theory of Mind skills (Charlie test) | pretest < post-test for 7/12 children | KASPAR | 12 | 11–14 y.o. | MA: 6–14 y.o. | 2–10 sessions (NA) | UK | ||
Reducing maladaptive behaviors | Bharatharaj et al. [66] | Stress level | pretest > post-test | KiliRo | 24 | 9.71 (3.24) | NA | 1/day for 7 weeks (60 mn/session) | India | |
Costa et al. [28] | Stereotyped behaviors | robot < human | QTRobot | 15 | 9.73 (3.38) | IQ < 80 (n = 8); 80–120 (n = 6); IQ > 120 (n = 1) | 1 session (1.5–4.3 mn) | Luxembourg | ||
Kumazaki et al. [50] | Stress level | robot < human | ACTROID-F | 29 | 29.1 (2.6) | IQ ≥ 70 | 1 session (25 mn) | Japan | ||
Pop et al. [45] | Stereotyped behaviors | robot < human | PROBO | 11 | 4–7 y.o. | IQ > 70 | 8 sessions (1 mn/session) | Romania | ||
Shamsuddin et al. [32] | Stereotyped behaviors | robot < human | NA | NAO | 1 | 10 y.o. | IQ = 107 | 1 session (15 mn) | Malaysia | |
Shamsuddin et al. [22] | Stereotyped behaviors | robot < human | NA | NAO | 6 | 8.9 (NA) | range: 46–78 | 5 sessions (15 mn/session) | Malaysia | |
Stanton et al. [48] | Stereotyped behaviors | robot < toy | AIBO | 11 | 5–8 y.o. | NA | 1 session (30 mn) | USA |
2.2.2. Reducing Maladaptive Behaviors: Repetitive Behaviors and Anxiety
3. A Preference for Interacting with Robots Rather than Humans in Individuals with ASD?
3.1. Robots Could Be More Attractive than Humans to People with ASD
3.2. Difference in Robot Categorization and Anthropomorphism between Typical Development and ASD
3.2.1. Difference in Robot Categorization between Typical Development and ASD
3.2.2. Difference in Robot Anthropomorphism between Typical Development and ASD
Restricted Interests: Effectance Motivation
Social Isolation: Social Motivation
3.2.3. Improving ToM of Individuals with ASD with a Robot
4. Reasons Provided to Explain the Benefits of Robots
4.1. Social Motivation Theory and Robot as Motivator
4.1.1. Social Motivation Theory
4.1.2. Robot as a Motivator
4.2. Social Cognition Theory and Robot as Simplified and Predictable Social Agent
4.2.1. Social Cognition Theory
4.2.2. Robot as Simplified Social Agent
4.2.3. Robot as a Predictable Agent
4.3. Criticism of These Theories
5. Current Challenges in the Interaction of Autistic Individuals with a Robot
5.1. Preference by Robot Type: From the Uncanny Valley to the Uncanny Cliff
5.1.1. Different Robot Appearances
5.1.2. From the Uncanny Valley to the Uncanny Cliff
5.2. Interindividual Variability
5.3. Methodological Limitations
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ASD | Autism Spectrum Disorder |
HF | High-Functioning Autism |
IQ | Intellectual Quotient |
LF | Low-Functioning Autism |
MA | Mental Age |
NA | Not Available |
TD | Typically Developing |
ToM | Theory of Mind |
RMET | Reading the Mind in the Eyes Test |
y.o. | Years Old |
References
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2013. [Google Scholar] [CrossRef]
- Cho, S.J.; Ahn, D.H. Socially assistive robotics in autism spectrum disorder. Hanyang Med. Rev. 2016, 36, 17–26. [Google Scholar] [CrossRef]
- Baron-Cohen, S. Social and pragmatic deficits in autism: Cognitive or affective? J. Autism Dev. Disord. 1988, 18, 379–402. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.; Trubia, G.; Buono, S.; Di Nuovo, A.; Di Nuovo, S. Brief review of robotics in low-functioning autism therapy. In Proceedings of the Second Symposium on Psychology-Based Technologies, CEUR Workshop Proceedings, Naples, Italy, 28–29 September 2020; Volume 2730. [Google Scholar]
- Syriopoulou-Delli, C.K.; Gkiolnta, E. Review of assistive technology in the training of children with autism spectrum disorders. Int. J. Dev. Disabil. 2022, 68, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Dickerson, P.; Robins, B.; Dautenhahn, K. Where the action is: A conversation analytic perspective on interaction between a humanoid robot, a co-present adult and a child with an ASD. Interact. Stud. 2013, 14, 297–316. [Google Scholar] [CrossRef]
- Rollet, N.; Clavel, C. Talk to You Later: Doing Social Robotics with Conversation Analysis. Towards the Development of an Automatic System for the Prediction of Disengagement. Interact. Stud. 2020, 21, 268–292. [Google Scholar] [CrossRef]
- Sidner, C.; Dzikovska, M. Human-robot interaction: Engagement between humans and robots for hosting activities. In Proceedings of the Fourth IEEE International Conference on Multimodal Interfaces, Pittsburgh, PA, USA, 16 October 2002; pp. 123–128. [Google Scholar] [CrossRef]
- Koegel, L.K. Interventions to facilitate communication in autism. J. Autism Dev. Disord. 2000, 30, 383–391. [Google Scholar] [CrossRef]
- Koegel, R.L.; Vernon, T.W.; Koegel, L.K. Improving social initiations in young children with autism using reinforcers with embedded social interactions. J. Autism Dev. Disord. 2009, 39, 1240–1251. [Google Scholar] [CrossRef]
- Ghiglino, D.; Floris, F.; De Tommaso, D.; Kompatsiari, K.; Chevalier, P.; Priolo, T.; Wykowska, A. Artificial scaffolding: Augmenting social cognition by means of robot technology. Autism Res. 2023, 16, 997–1008. [Google Scholar] [CrossRef]
- Feil-Seifer, D.; Matarić, M.J. Toward socially assistive robotics for augmenting interventions for children with autism spectrum disorders. In Experimental Robotics; Springer Tracts in Advanced Robotics; Khatib, O., Kumar, V., Pappas, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 201–210. [Google Scholar] [CrossRef]
- Huskens, B.; Verschuur, R.; Gillesen, J.; Didden, R.; Barakova, E. Promoting question-asking in school-aged children with autism spectrum disorders: Effectiveness of a robot intervention compared to a human-trainer intervention. Dev. Neurorehabilit. 2013, 16, 345–356. [Google Scholar] [CrossRef]
- Ghiglino, D.; Chevalier, P.; Floris, F.; Priolo, T.; Wykowska, A. Follow the white robot: Efficacy of robot-assistive training for children with autism spectrum disorder. Res. Autism Spectr. Disord. 2021, 86, 101822. [Google Scholar] [CrossRef]
- Šimleša, S.; Stošić, J.; Bilić, I.; Cepanec, M. Imitation, focus of attention and social behaviours of children with autism spectrum disorder in interaction with robots. Interact. Studies. Soc. Behav. Commun. Biol. Artif. Syst. 2022, 23, 1–20. [Google Scholar] [CrossRef]
- Saleh, M.A.; Hanapiah, F.A.; Hashim, H. Robot applications for autism: A comprehensive review. Disabil. Rehabil. Assist. Technol. 2021, 16, 580–602. [Google Scholar] [CrossRef] [PubMed]
- Kouroupa, A.; Laws, K.R.; Irvine, K.; Mengoni, S.E.; Baird, A.; Sharma, S. The use of social robots with children and young people on the autism spectrum: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0269800. [Google Scholar] [CrossRef] [PubMed]
- Diehl, J.J.; Schmitt, L.M.; Villano, M.; Crowell, C.R. The clinical use of robots for individuals with autism spectrum disorders: A critical review. Res. Autism Spectr. Disord. 2012, 6, 249–262. [Google Scholar] [CrossRef]
- Scassellati, B.; Boccanfuso, L.; Huang, C.M.; Mademtzi, M.; Qin, M.; Salomons, N.; Ventola, P.; Shic, F. Improving social skills in children with ASD using a long-term, in-home social robot. Sci. Robot. 2018, 3, eaat7544. [Google Scholar] [CrossRef]
- So, W.C.; Wong, M.K.Y.; Lam, C.K.Y.; Lam, W.Y.; Chui, A.T.F.; Lee, T.L.; Ng, H.M.; Chan, C.H.; Fok, D.C.W. Using a social robot to teach gestural recognition and production in children with autism spectrum disorders. Disabil. Rehabil. Assist. Technol. 2018, 13, 527–539. [Google Scholar] [CrossRef]
- Marino, F.; Chilà, P.; Sfrazzetto, S.T.; Carrozza, C.; Crimi, I.; Failla, C.; Busà, M.; Bernava, G.; Tartarisco, G.; Vagni, D.; et al. Outcomes of a robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. J. Autism Dev. Disord. 2020, 50, 1973–1987. [Google Scholar] [CrossRef]
- Shamsuddin, S.; Yussof, H.; Mohamed, S.; Hanapiah, F.A.; Ismail, L.I. Stereotyped behavior of autistic children with lower IQ level in HRI with a humanoid robot. In Proceedings of the 2013 IEEE Workshop on Advanced Robotics and its Social Impacts, Tokyo, Japan, 7–9 November 2013; pp. 175–180. [Google Scholar] [CrossRef]
- Robins, B.; Dautenhahn, K.; Boekhorst, R.T.; Billard, A. Robotic assistants in therapy and education of children with autism: Can a small humanoid robot help encourage social interaction skills? Univers. Access Inf. Soc. 2005, 4, 105–120. [Google Scholar] [CrossRef]
- Barnes, J.A.; Park, C.H.; Howard, A.; Jeon, M. Child-robot interaction in a musical dance game: An exploratory comparison study between typically developing children and children with autism. Int. J. Hum.-Comput. Interact. 2021, 37, 249–266. [Google Scholar] [CrossRef]
- Bekele, E.; Crittendon, J.A.; Swanson, A.; Sarkar, N.; Warren, Z.E. Pilot clinical application of an adaptive robotic system for young children with autism. Autism 2014, 18, 598–608. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Song, W.; Li, X.; Zheng, S.; Zhang, G.; Wu, Y.; He, S.; Zhu, H.; Chen, J. Interaction with social robots: Improving gaze toward face but not necessarily joint attention in children with autism spectrum disorder. Front. Psychol. 2019, 10, 1503. [Google Scholar] [CrossRef] [PubMed]
- Costa, S.; Lehmann, H.; Dautenhahn, K.; Robins, B.; Soares, F. Using a Humanoid Robot to Elicit Body Awareness and Appropriate Physical Interaction in Children with Autism. Int. J. Soc. Robot. 2015, 7, 265–278. [Google Scholar] [CrossRef]
- Costa, A.P.; Charpiot, L.; Lera, F.R.; Ziafati, P.; Nazarikhorram, A.; Van Der Torre, L.; Steffgen, G. More Attention and Less Repetitive and Stereotyped Behaviors using a Robot with Children with Autism. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 534–539. [Google Scholar] [CrossRef]
- Damm, O.; Malchus, K.; Jaecks, P.; Krach, S.; Paulus, F.; Naber, M.; Jansen, A.; Kamp-Becker, I.; Einhaeuser-Treyer, W.; Stenneken, P.; et al. Different gaze behavior in human-robot interaction in Asperger’s syndrome: An eye-tracking study. In Proceedings of the 2013 IEEE RO-MAN, Gyeongju, Republic of Korea, 26–29 August 2013; pp. 368–369. [Google Scholar] [CrossRef]
- David, D.O.; Costescu, C.A.; Matu, S.; Szentagotai, A.; Dobrean, A. Effects of a Robot-Enhanced Intervention for Children with ASD on Teaching Turn-Taking Skills. J. Educ. Comput. Res. 2020, 58, 29–62. [Google Scholar] [CrossRef]
- Duquette, A.; Michaud, F.; Mercier, H. Exploring the use of a mobile robot as an imitation agent with children with low-functioning autism. Auton. Robot. 2008, 24, 147–157. [Google Scholar] [CrossRef]
- Shamsuddin, S.; Yussof, H.; Ismail, L.I.; Mohamed, S.; Hanapiah, F.A.; Zahari, N.I. Initial response in HRI-a case study on evaluation of child with autism spectrum disorders interacting with a humanoid robot Nao. Procedia Eng. 2012, 41, 1448–1455. [Google Scholar] [CrossRef]
- Simut, R.; Vanderfaeillie, J.; Peca, A.; Van de Perre, G.; Vanderborght, B. Children with autism spectrum disorders make a fruit salad with Probo, the social robot: An interaction study. J. Autism Dev. Disord. 2015, 46, 113–126. [Google Scholar] [CrossRef] [PubMed]
- Tapus, A.; Peca, A.; Amir, A.; Pop, C.; Jisa, L.; Pintea, S.; Rusu, A.; David, D. Children with autism social engagement in interaction with Nao, an imitative robot—A series of single case experiments. Interact. Stud. 2012, 13, 315–347. [Google Scholar] [CrossRef]
- Wainer, J.; Dautenhahn, K.; Robins, B.; Amirabdollahian, F. A pilot study with a novel setup for collaborative play of the humanoid robot KASPAR with children with autism. Int. J. Soc. Robot. 2014, 6, 45–65. [Google Scholar] [CrossRef]
- Anzalone, S.; Tilmont, E.; Boucenna, S.; Jean, X.; Jouen, A.L.; Bodeau, N.; Maharatna, K.; Chetouani, M.; Cohen, D. How children with autism spectrum disorder behave and explore the 4-dimensional (spatial 3D + time) environment during a joint attention induction task with a robot. Res. Autism Spectr. Disord. 2014, 8, 814–826. [Google Scholar] [CrossRef]
- Cao, H.L.; Simut, R.E.; Desmet, N.; De Beir, A.; Van De Perre, G.; Vanderborght, B.; Vanderfaeillie, J. Robot-assisted joint attention: A comparative study between children with autism spectrum disorder and typically developing children in interaction with NAO. IEEE Access 2020, 8, 223325–223334. [Google Scholar] [CrossRef]
- Kajopoulos, J.; Wong, A.H.Y.; Yuen, A.W.C.; Dung, T.A.; Kee, T.Y.; Wykowska, A. Robot-assisted training of joint attention skills in children diagnosed with autism. In Social Robotics; Lecture Notes in Computer Science; Tapus, A., André, E., Martin, J.C., Ferland, F., Ammi, M., Eds.; Springer: Cham, Switzerland, 2015; pp. 296–305. [Google Scholar] [CrossRef]
- Kumazaki, H.; Yoshikawa, Y.; Yoshimura, Y.; Ikeda, T.; Hasegawa, C.; Saito, D.N.; Tomiyama, S.; An, K.M.; Shimaya, J.; Ishiguro, H.; et al. The impact of robotic intervention on joint attention in children with autism spectrum disorders. Mol. Autism 2018, 9, 46. [Google Scholar] [CrossRef]
- So, W.C.; Law, W.W.; Cheng, C.H.; Lee, C.; Ng, K.C.; Kwok, F.Y.; Lam, H.W.; Lam, K.Y. Comparing the effectiveness of robot-based to human-based intervention in improving joint attention in autistic children. Front. Psychiatry 2023, 14, 1114907. [Google Scholar] [CrossRef]
- Taheri, A.; Meghdari, A.; Alemi, M.; Pouretemad, H. Human–robot interaction in autism treatment: A case study on three pairs of autistic children as twins, siblings, and classmates. Int. J. Soc. Robot. 2018, 10, 93–113. [Google Scholar] [CrossRef]
- Warren, Z.E.; Zheng, Z.; Swanson, A.R.; Bekele, E.; Zhang, L.; Crittendon, J.A.; Weitlauf, A.F.; Sarkar, N. Can robotic interaction improve joint attention skills? J. Autism Dev. Disord. 2015, 45, 3726–3734. [Google Scholar] [CrossRef]
- Wiese, E.; Müller, H.J.; Wykowska, A. Using a gaze-cueing paradigm to examine social cognitive mechanisms of individuals with autism observing robot and human faces. In Social Robotics; Lecture Notes in Computer Science; Beetz, M., Johnston, B., Williams, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2014; Volume 8755, pp. 370–379. [Google Scholar] [CrossRef]
- Kim, E.; Berkovits, L.; Bernier, E.; Leyzberg, D.; Shic, F.; Paul, R.; Scassellati, B. Social robots as embedded reinforcers of social behavior in children with autism. J. Autism Dev. Disord. 2013, 43, 1038–1049. [Google Scholar] [CrossRef]
- Pop, C.; Pintea, S.; Vanderborght, B.; David, D.O. Enhancing play skills, engagement and social skills in a play task in ASD children by using robot-based interventions. A pilot study. Interact. Studies. Soc. Behav. Commun. Biol. Artif. Syst. 2014, 15, 292–320. [Google Scholar] [CrossRef]
- Pliasa, S.; Fachantidis, N. Can a robot be an efficient mediator in promoting dyadic activities among children with autism spectrum disorders and children of typical development? In Proceedings of the 9th Balkan Conference on Informatics, BCI’19, New York, NY, USA, 26–28 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Rakhymbayeva, N.; Amirova, A.; Sandygulova, A. A long-term engagement with a social robot for autism therapy. Front. Robot. AI 2021, 8, 669972. [Google Scholar] [CrossRef] [PubMed]
- Stanton, C.M.; Kahn, P.H., Jr.; Severson, R.L.; Ruckert, J.H.; Gill, B.T. Robotic animals might aid in the social development of children with autism. In Proceedings of the 3rd International Conference on Human Robot Interaction-HRI ’08, Amsterdam, The Netherlands, 12–15 March 2008; p. 271. [Google Scholar] [CrossRef]
- Farhan, S.A.; Rahman Khan, M.N.; Swaron, M.R.; Saha Shukhon, R.N.; Islam, M.M.; Razzak, M.A. Improvement of verbal and non-verbal communication skills of children with autism spectrum disorder using human robot interaction. In Proceedings of the 2021 IEEE World AI IoT Congress (AIIoT), Seattle, WA, USA, 10–13 May 2021; pp. 0356–0359. [Google Scholar] [CrossRef]
- Kumazaki, H.; Muramatsu, T.; Yoshikawa, Y.; Corbett, B.A.; Matsumoto, Y.; Higashida, H.; Yuhi, T.; Ishiguro, H.; Mimura, M.; Kikuchi, M. Job interview training targeting nonverbal communication using an android robot for individuals with autism spectrum disorder. Autism Int. J. Res. Pract. 2019, 23, 1586–1595. [Google Scholar] [CrossRef]
- Syrdal, D.S.; Dautenhahn, K.; Robins, B.; Karakosta, E.; Jones, N.C. Kaspar in the wild: Experiences from deploying a small humanoid robot in a nursery school for children with autism. Paladyn, J. Behav. Robot. 2020, 11, 301–326. [Google Scholar] [CrossRef]
- Conti, D.; Trubia, G.; Buono, S.; Di Nuovo, S.; Di Nuovo, A. An empirical study on integrating a small humanoid robot to support the therapy of children with autism spectrum disorder and intellectual disability. Interact. Stud. 2021, 22, 177–211. [Google Scholar] [CrossRef]
- Pierno, A.C.; Mari, M.; Lusher, D.; Castiello, U. Robotic movement elicits visuomotor priming in children with autism. Neuropsychologia 2008, 46, 448–454. [Google Scholar] [CrossRef]
- Soares, F.O.; Costa, S.C.; Santos, C.P.; Pereira, A.P.S.; Hiolle, A.R.; Silva, V. Socio-emotional development in high functioning children with autism spectrum disorders using a humanoid robot. Interact. Studies. Soc. Behav. Commun. Biol. Artif. Syst. 2019, 20, 205–233. [Google Scholar] [CrossRef]
- Taheri, A.; Meghdari, A.; Mahoor, M.H. A close look at the imitation performance of children with autism and typically developing children using a robotic system. Int. J. Soc. Robot. 2021, 13, 1125–1147. [Google Scholar] [CrossRef]
- Zheng, Z.; Young, E.M.; Swanson, A.R.; Weitlauf, A.S.; Warren, Z.E.; Sarkar, N. Robot-mediated imitation skill training for children with autism. IEEE Trans. Neural Syst. Rehabil. Eng. Publ. IEEE Eng. Med. Biol. Soc. 2016, 24, 682–691. [Google Scholar] [CrossRef]
- Franchini, M.; Glaser, B.; Wood de Wilde, H.; Gentaz, E.; Eliez, S.; Schaer, M. Social orienting and joint attention in preschoolers with autism spectrum disorders. PLoS ONE 2017, 12, e0178859. [Google Scholar] [CrossRef]
- Chita-Tegmark, M. Attention Allocation in ASD: A Review and Meta-analysis of Eye-Tracking Studies. Rev. J. Autism Dev. Disord. 2016, 3, 209–223. [Google Scholar] [CrossRef]
- Jones, W.; Klin, A. Attention to eyes is present but in decline in 2–6 month-olds later diagnosed with autism. Nature 2013, 504, 427–431. [Google Scholar] [CrossRef]
- Schadenberg, B.R.; Reidsma, D.; Heylen, D.K.J.; Evers, V. Differences in spontaneous interactions of autistic children in an interaction with an adult and humanoid robot. Front. Robot. AI 2020, 7, 28. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.J.; Hepburn, S.L.; Stackhouse, T.; Wehner, E. Imitation performance in toddlers with autism and those with other developmental disorders. J. Child Psychol. Psychiatry Allied Discip. 2003, 44, 763–781. [Google Scholar] [CrossRef] [PubMed]
- Tunçgenç, B.; Pacheco, C.; Rochowiak, R.; Nicholas, R.; Rengarajan, S.; Zou, E.; Messenger, B.; Vidal, R.; Mostofsky, S.H. Computerized assessment of motor imitation as a scalable method for distinguishing children with autism. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2021, 6, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Pittet, I.; Kojovic, N.; Franchini, M.; Schaer, M. Trajectories of imitation skills in preschoolers with autism spectrum disorders. J. Neurodev. Disord. 2022, 14, 2. [Google Scholar] [CrossRef]
- Soleiman, P.; Moradi, H.; Mahmoudi, M.; Teymouri, M.; Pouretemad, H.R. Teaching turn-taking skills to children with autism using a Parrot-like robot. arXiv 2021, arXiv:2101.12273. [Google Scholar]
- So, W.C.; Wong, M.K.Y.; Lam, W.Y.; Cheng, C.H.; Yang, J.H.; Huang, Y.; Ng, P.; Wong, W.L.; Ho, C.L.; Yeung, K.L.; et al. Robot-based intervention may reduce delay in the production of intransitive gestures in Chinese-speaking preschoolers with autism spectrum disorder. Mol. Autism 2018, 9, 34. [Google Scholar] [CrossRef]
- Bharatharaj, J.; Huang, L.; Al-Jumaily, A.; Mohan, R.E.; Krägeloh, C. Sociopsychological and physiological effects of a robot-assisted therapy for children with autism. Int. J. Adv. Robot. Syst. 2017, 14, 172988141773689. [Google Scholar] [CrossRef]
- Holeva, V.; Nikopoulou, V.A.; Lytridis, C.; Bazinas, C.; Kechayas, P.; Sidiropoulos, G.; Papadopoulou, M.; Kerasidou, M.D.; Karatsioras, C.; Geronikola, N.; et al. Effectiveness of a robot-assisted psychological intervention for children with autism spectrum disorder. J. Autism Dev. Disord. 2022, 54, 577–593. [Google Scholar] [CrossRef]
- Lakatos, G.; Wood, L.J.; Syrdal, D.S.; Robins, B.; Zaraki, A.; Dautenhahn, K. Robot-mediated intervention can assist children with autism to develop visual perspective taking skills. Paladyn J. Behav. Robot. 2020, 12, 87–101. [Google Scholar] [CrossRef]
- Lee, J.; Takehashi, H.; Nagai, C.; Obinata, G. Design of a therapeutic robot for interacting with autistic children through interpersonal touch. In Proceedings of the 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication, Paris, France, 9–13 September 2012; pp. 712–717. [Google Scholar] [CrossRef]
- So, W.C.; Wong, M.K.Y.; Lam, W.Y.; Cheng, C.H.; Ku, S.Y.; Lam, K.Y.; Huang, Y.; Wong, W.L. Who is a better teacher for children with autism? Comparison of learning outcomes between robot-based and human-based interventions in gestural production and recognition. Res. Dev. Disabil. 2019, 86, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Takata, K.; Yoshikawa, Y.; Muramatsu, T.; Matsumoto, Y.; Ishiguro, H.; Mimura, M.; Kumazaki, H. Social skills training using multiple humanoid robots for individuals with autism spectrum conditions. Front. Psychiatry 2023, 14, 1168837. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.; Robins, B.; Lakatos, G.; Syrdal, D.S.; Zaraki, A.; Dautenhahn, K. Developing a protocol and experimental setup for using a humanoid robot to assist children with autism to develop visual perspective taking skills. Paladyn J. Behav. Robot. 2019, 10, 167–179. [Google Scholar] [CrossRef]
- Mastrogiuseppe, M.; Capirci, O.; Cuva, S.; Venuti, P. Gestural communication in children with autism spectrum disorders during mother–child interaction. Autism 2015, 19, 469–481. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S. Mindblindness: An Essay on Autism and Theory of Mind; The MIT Press: Cambridge, MA, USA, 1995. [Google Scholar] [CrossRef]
- Schneider, D.; Slaughter, V.P.; Bayliss, A.P.; Dux, P.E. A temporally sustained implicit theory of mind deficit in autism spectrum disorders. Cognition 2013, 129, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Leslie, A.M.; Frith, U. Does the autistic child have a “theory of mind”? Cognition 1985, 21, 37–46. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S.; Wheelwright, S.; Hill, J.; Raste, Y.; Plumb, I. The “reading the mind in the eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. J. Child Psychol. Psychiatry Allied Discip. 2001, 42, 241–251. [Google Scholar] [CrossRef]
- Chiu, H.M.; Chen, C.T.; Tsai, C.H.; Li, H.J.; Wu, C.C.; Huang, C.Y.; Chen, K.L. Theory of Mind Predicts Social Interaction in Children with Autism Spectrum Disorder: A Two-Year Follow-Up Study. J. Autism Dev. Disord. 2022, 53, 3659–3669. [Google Scholar] [CrossRef]
- Cascio, C.J.; Moana-Filho, E.J.; Guest, S.; Nebel, M.B.; Weisner, J.; Baranek, G.T.; Essick, G.K. Perceptual and neural response to affective tactile texture stimulation in adults with autism spectrum disorders. Autism Res. Off. J. Int. Soc. Autism Res. 2012, 5, 231–244. [Google Scholar] [CrossRef]
- Rodgers, J.; Glod, M.; Connolly, B.; McConachie, H. The relationship between anxiety and repetitive behaviours in autism spectrum disorder. J. Autism Dev. Disord. 2012, 42, 2404–2409. [Google Scholar] [CrossRef]
- Dufour, M.M. Monitorage des Mesures Physiologiques et des Comportements Répétitifs Associés au Stress Chez les Enfants Ayant un Trouble du Spectre de L’autisme. PhD Thesis, Université de Montréal, Montreal, QC, Canada, 2020. [Google Scholar]
- Kumazaki, H.; Warren, Z.; Swanson, A.; Yoshikawa, Y.; Matsumoto, Y.; Takahashi, H.; Sarkar, N.; Ishiguro, H.; Mimura, M.; Minabe, Y.; et al. Can robotic systems promote self-disclosure in adolescents with autism spectrum disorder? A pilot study. Front. Psychiatry 2018, 9, 36. [Google Scholar] [CrossRef]
- Alabdulkareem, A.; Alhakbani, N.; Al-Nafjan, A. A systematic review of research on robot-assisted therapy for children with autism. Sensors 2022, 22, 944. [Google Scholar] [CrossRef]
- Kumazaki, H.; Muramatsu, T.; Yoshikawa, Y.; Matsumoto, Y.; Miyao, M.; Ishiguro, H.; Mimura, M.; Minabe, Y.; Kikuchi, M. How the realism of robot is needed for individuals with autism spectrum disorders in an interview setting. Front. Psychiatry 2019, 10, 486. [Google Scholar] [CrossRef]
- Kumazaki, H.; Muramatsu, T.; Yoshikawa, Y.; Matsumoto, Y.; Ishiguro, H.; Kikuchi, M.; Sumiyoshi, T.; Mimura, M. Optimal robot for intervention for individuals with autism spectrum disorders. Psychiatry Clin. Neurosci. 2020, 74, 581–586. [Google Scholar] [CrossRef]
- Robins, B.; Dautenhahn, K.; Dubowski, J. Does appearance matter in the interaction of children with autism with a humanoid robot? Interact. Studies. Soc. Behav. Commun. Biol. Artif. Syst. 2006, 7, 479–512. [Google Scholar] [CrossRef]
- Nakano, T.; Tanaka, K.; Endo, Y.; Yamane, Y.; Yamamoto, T.; Nakano, Y.; Ohta, H.; Kato, N.; Kitazawa, S. Atypical gaze patterns in children and adults with autism spectrum disorders dissociated from developmental changes in gaze behaviour. Proc. Biol. Sci. 2010, 277, 2935–2943. [Google Scholar] [CrossRef]
- Yin, R.K. Looking at upside-down faces. J. Exp. Psychol. 1969, 81, 141–145. [Google Scholar] [CrossRef]
- Leder, H.; Bruce, V. When inverted faces are recognized: The role of configural information in face recognition. Q. J. Exp. Psychol. Sect. A 2000, 53, 513–536. [Google Scholar] [CrossRef] [PubMed]
- Vettori, S.; Dzhelyova, M.; Van der Donck, S.; Jacques, C.; Steyaert, J.; Rossion, B.; Boets, B. Reduced neural sensitivity to rapid individual face discrimination in autism spectrum disorder. NeuroImage Clin. 2019, 21, 101613. [Google Scholar] [CrossRef] [PubMed]
- Rosset, D.B.; Santos, A.; Da Fonseca, D.; Poinso, F.; O’Connor, K.; Deruelle, C. Do children perceive features of real and cartoon faces in the same way? Evidence from typical development and autism. J. Clin. Exp. Neuropsychol. 2010, 32, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.E.; Strother, L.; Feil-Seifer, D.J.; Hutsler, J.J. Atypical asymmetry for processing human and robot faces in autism revealed by fNIRS. PLoS ONE 2016, 11, e0158804. [Google Scholar] [CrossRef] [PubMed]
- Wiese, E.; Wykowska, A.; Zwickel, J.; Müller, H.J. I see what you mean: How attentional selection is shaped by ascribing intentions to others. PLoS ONE 2012, 7, e45391. [Google Scholar] [CrossRef]
- Annaz, D.; Campbell, R.; Coleman, M.; Milne, E.; Swettenham, J. Young children with autism spectrum disorder do not preferentially attend to biological motion. J. Autism Dev. Disord. 2012, 42, 401–408. [Google Scholar] [CrossRef]
- Chaminade, T.; Rosset, D.; Da Fonseca, D.; Hodgins, J.K.; Deruelle, C. Anthropomorphic bias found in typically developing children is not found in children with autistic spectrum disorder. Autism 2015, 19, 248–251. [Google Scholar] [CrossRef]
- Burnside, K.; Wright, K.; Poulin-Dubois, D. Social motivation and implicit theory of mind in children with autism spectrum disorder. Autism Res. Off. J. Int. Soc. Autism Res. 2017, 10, 1834–1844. [Google Scholar] [CrossRef] [PubMed]
- Valadão, C.T.; Goulart, C.; Rivera, H.; Caldeira, E.; Bastos Filho, T.F.; Frizera-Neto, A.; Carelli, R. Analysis of the use of a robot to improve social skills in children with autism spectrum disorder. Res. Biomed. Eng. 2016, 32, 161–175. [Google Scholar] [CrossRef]
- Kuriki, S.; Tamura, Y.; Igarashi, M.; Kato, N.; Nakano, T. Similar impressions of humanness for human and artificial singing voices in autism spectrum disorders. Cognition 2016, 153, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Giannopulu, I.; Etournaud, A.; Terada, K.; Velonaki, M.; Watanabe, T. Ordered interpersonal synchronisation in ASD children via robots. Sci. Rep. 2020, 10, 17380. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, S.; Slovic, P. (Eds.) The Construction of Preference; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar] [CrossRef]
- Kahn, P.H.; Kanda, T.; Ishiguro, H.; Freier, N.G.; Severson, R.L.; Gill, B.T.; Ruckert, J.H.; Shen, S. “Robovie, you’ll have to go into the closet now”: Children’s social and moral relationships with a humanoid robot. Dev. Psychol. 2012, 48, 303–314. [Google Scholar] [CrossRef] [PubMed]
- Kahn, P.H.; Gary, H.E.; Shen, S. Children’s social relationships with current and near-future robots. Child Dev. Perspect. 2013, 7, 32–37. [Google Scholar] [CrossRef]
- Johnson, J. Children, robotics, and education. Artif. Life Robot. 2003, 7, 16–21. [Google Scholar] [CrossRef]
- Peca, A.; Simut, R.; Pintea, S.; Pop, C.; Vanderborght, B. How do typically developing children and children with autism perceive different social robots? Comput. Hum. Behav. 2014, 41, 268–277. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Tan, Z.; Wang, Y.; Lam, C.M.; Hoi, S.P.; Xiong, Q.; Chen, J.; Yi, L. Theory of robot mind: False belief attribution to social robots in children with and without autism. Front. Psychol. 2019, 10, 1732. [Google Scholar] [CrossRef]
- Dubois-Sage, M.; Jacquet, B.; Jamet, F.; Baratgin, J. We do not anthropomorphize a robot based only on its cover: Context matters too! Appl. Sci. 2023, 13, 8743. [Google Scholar] [CrossRef]
- Matarić, M.J.; Scassellati, B. Socially Assistive Robotics. In Springer Handbook of Robotics; Siciliano, B., Khatib, O., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 1973–1994. [Google Scholar] [CrossRef]
- Short, E.S.; Deng, E.C.; Feil-Seifer, D.; Matarić, M.J. Understanding agency in interactions between children with autism and socially assistive robots. J. Hum.-Robot Interact. 2017, 6, 21–47. [Google Scholar] [CrossRef]
- Alač, M. Social robots: Things or agents? AI Soc 2016, 31, 519–535. [Google Scholar] [CrossRef]
- Rollet, N.; Jain, V.; Licoppe, C.; Devillers, L. Towards Interactional Symbiosis: Epistemic Balance and Co-presence in a Quantified Self Experiment. In Symbiotic Interaction; Gamberini, L., Spagnolli, A., Jacucci, G., Blankertz, B., Freeman, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017; Volume 9961, pp. 143–154, Series Title: Lecture Notes in Computer Science. [Google Scholar] [CrossRef]
- Masson, O.; Baratgin, J.; Jamet, F. NAO robot and the “endowment effect”. In Proceedings of the 2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO), Lyon, France, 1–3 July 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Masson, O.; Baratgin, J.; Jamet, F. NAO robot as experimenter: Social cues emitter and neutralizer to bring new results in experimental psychology. In Proceedings of the 2017 International Conference on Information and Digital Technologies (IDT), Zilina, Slovakia, 5–7 July 2017; pp. 256–264. [Google Scholar] [CrossRef]
- van den Berk-Smeekens, I.; van Dongen-Boomsma, M.; De Korte, M.W.P.; Den Boer, J.C.; Oosterling, I.J.; Peters-Scheffer, N.C.; Buitelaar, J.K.; Barakova, E.I.; Lourens, T.; Staal, W.G.; et al. Adherence and acceptability of a robot-assisted pivotal response treatment protocol for children with autism spectrum disorder. Sci. Rep. 2020, 10, 8110. [Google Scholar] [CrossRef]
- Epley, N.; Waytz, A.; Cacioppo, J.T. On seeing human: A three-factor theory of anthropomorphism. Psychol. Rev. 2007, 114, 864–886. [Google Scholar] [CrossRef]
- Manzi, F.; Massaro, D.; Di Lernia, D.; Maggioni, M.A.; Riva, G.; Marchetti, A. Robots are not all the same: Young adults’ expectations, attitudes, and mental attribution to two humanoid social robots. Cyberpsychol. Behav. Soc. Netw. 2021, 24, 307–314. [Google Scholar] [CrossRef]
- Chernyak, N.; Gary, H.E. Children’s cognitive and behavioral reactions to an autonomous versus controlled social robot dog. Early Educ. Dev. 2016, 27, 1175–1189. [Google Scholar] [CrossRef]
- Martin, D.U.; MacIntyre, M.I.; Perry, C.; Clift, G.; Pedell, S.; Kaufman, J. Young children’s indiscriminate helping behavior toward a humanoid robot. Front. Psychol. 2020, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Martin, D.U.; Perry, C.; MacIntyre, M.I.; Varcoe, L.; Pedell, S.; Kaufman, J. Investigating the nature of children’s altruism using a social humanoid robot. Comput. Hum. Behav. 2020, 104, 106149. [Google Scholar] [CrossRef]
- Cullen, H.; Kanai, R.; Bahrami, B.; Rees, G. Individual differences in anthropomorphic attributions and human brain structure. Soc. Cogn. Affect. Neurosci. 2014, 9, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Atherton, G.; Cross, L. Seeing more than human: Autism and anthropomorphic theory of mind. Front. Psychol. 2018, 9, 528. [Google Scholar] [CrossRef] [PubMed]
- Hortensius, R.; Kent, M.; Darda, K.M.; Jastrzab, L.; Koldewyn, K.; Ramsey, R.; Cross, E.S. Exploring the relationship between anthropomorphism and theory-of-mind in brain and behaviour. Hum. Brain Mapp. 2021, 42, 4224–4241. [Google Scholar] [CrossRef] [PubMed]
- Tahiroglu, D.; Taylor, M. Anthropomorphism, social understanding, and imaginary companions. Br. J. Dev. Psychol. 2019, 37, 284–299. [Google Scholar] [CrossRef] [PubMed]
- Caruana, N.; White, R.C.; Remington, A. Autistic traits and loneliness in autism are associated with increased tendencies to anthropomorphise. Q. J. Exp. Psychol. 2021, 74, 1295–1304. [Google Scholar] [CrossRef] [PubMed]
- Clutterbuck, R.A.; Shah, P.; Leung, H.S.; Callan, M.J.; Gjersoe, N.; Livingston, L.A. Anthropomorphic tendencies in autism: A conceptual replication and extension of White and Remington (2019) and preliminary development of a novel anthropomorphism measure. Autism 2022, 26, 940–950. [Google Scholar] [CrossRef] [PubMed]
- White, R.C.; Remington, A. Object personification in autism: This paper will be very sad if you don’t read it. Autism Int. J. Res. Pract. 2019, 23, 1042–1045. [Google Scholar] [CrossRef] [PubMed]
- Kumazaki, H.; Warren, Z.; Swanson, A.; Yoshikawa, Y.; Matsumoto, Y.; Ishiguro, H.; Sarkar, N.; Minabe, Y.; Kikuchi, M. Impressions of humanness for android robot may represent an endophenotype for autism spectrum disorders. J. Autism Dev. Disord. 2018, 48, 632–634. [Google Scholar] [CrossRef]
- Dubois-Sage, M.; Lembert, Y.; Jamet, F.; Baratgin, J. Dictator game with a robot in children with autism spectrum disorders: Sharing is predicted by positive attributions towards the agent. In Advances in Reasoning, from Human to Artificial Rationalities; Lecture Notes in Computer Sciences (LNCS); Springer: Heidelberg, Germany, 2023. [Google Scholar]
- Zhang, Y.; Song, W.; Tan, Z.; Zhu, H.; Wang, Y.; Lam, C.M.; Weng, Y.; Hoi, S.P.; Lu, H.; Man Chan, B.S.; et al. Could social robots facilitate children with autism spectrum disorders in learning distrust and deception? Comput. Hum. Behav. 2019, 98, 140–149. [Google Scholar] [CrossRef]
- Chaminade, T.; Da Fonseca, D.; Rosset, D.; Cheng, G.; Deruelle, C. Atypical modulation of hypothalamic activity by social context in ASD. Res. Autism Spectr. Disord. 2015, 10, 41–50. [Google Scholar] [CrossRef]
- Uljarević, M.; Alvares, G.A.; Steele, M.; Edwards, J.; Frazier, T.W.; Hardan, A.Y.; Whitehouse, A.J. Toward better characterization of restricted and unusual interests in youth with autism. Autism 2022, 26, 1296–1304. [Google Scholar] [CrossRef]
- Grelotti, D.J.; Klin, A.J.; Gauthier, I.; Skudlarski, P.; Cohen, D.J.; Gore, J.C.; Volkmar, F.R.; Schultz, R.T. fMRI activation of the fusiform gyrus and amygdala to cartoon characters but not to faces in a boy with autism. Neuropsychologia 2005, 43, 373–385. [Google Scholar] [CrossRef]
- Turner-Brown, L.M.; Lam, K.S.L.; Holtzclaw, T.N.; Dichter, G.S.; Bodfish, J.W. Phenomenology and measurement of circumscribed interests in autism spectrum disorders. Autism Int. J. Res. Pract. 2011, 15, 437–456. [Google Scholar] [CrossRef] [PubMed]
- Cabibihan, J.J.; Javed, H.; Aldosari, M.; Frazier, T.; Elbashir, H. Sensing technologies for autism spectrum disorder screening and intervention. Sensors 2016, 17, 46. [Google Scholar] [CrossRef] [PubMed]
- Jobe, L.; White, S. Loneliness, social relationships, and a broader autism phenotype in college students. Personal. Individ. Differ. 2007, 42, 1479–1489. [Google Scholar] [CrossRef]
- Ee, D.; Hwang, Y.I.J.; Reppermund, S.; Srasuebkul, P.; Trollor, J.N.; Foley, K.R.; Arnold, S.R. Loneliness in adults on the autism spectrum. Autism Adulthood 2019, 1, 182–193. [Google Scholar] [CrossRef] [PubMed]
- Quadt, L.; Williams, G.; Mulcahy, J.; Larsson, D.; Silva, M.; Arnold, A.; Critchley, H.; Garfinkel, S. “I’m trying to reach out, I’m trying to find my people”: A mixed-methods Investigation of the Link Between Sensory Differences, Loneliness, and Mental Health in Autistic and Nonautistic Adults. Autism Adulthood 2023. advance online publication. [Google Scholar] [CrossRef]
- Bartz, J.A.; Tchalova, K.; Fenerci, C. Reminders of social connection can attenuate anthropomorphism: A replication and extension of Epley, Akalis, Waytz, and Cacioppo (2008). Psychol. Sci. 2016, 27, 1644–1650. [Google Scholar] [CrossRef] [PubMed]
- Wang, W. Smartphones as social actors? Social dispositional factors in assessing anthropomorphism. Comput. Hum. Behav. 2017, 68, 334–344. [Google Scholar] [CrossRef]
- Lee, K.M.; Jung, Y.; Kim, J.; Kim, S.R. Are physically embodied social agents better than disembodied social agents?: The effects of physical embodiment, tactile interaction, and people’s loneliness in human-robot interaction. Int. J. Hum.-Comput. Stud. 2006, 64, 962–973. [Google Scholar] [CrossRef]
- Jung, Y.; Hahn, S. Social robots as companions for lonely hearts: The role of anthropomorphism and robot appearances. arXiv 2023, arXiv:2306.02694. [Google Scholar]
- Brosnan, M.; Johnson, H.; Grawmeyer, B.; Chapman, E.; Benton, L. Emotion recognition in animated compared to human stimuli in adolescents with autism spectrum disorder. J. Autism Dev. Disord. 2015, 45, 1785–1796. [Google Scholar] [CrossRef]
- Cross, L.; Farha, M.; Atherton, G. The Animal in Me: Enhancing Emotion Recognition in Adolescents with Autism Using Animal Filters. J. Autism Dev. Disord. 2019, 49, 4482–4487. [Google Scholar] [CrossRef]
- Atherton, G.; Cross, L. Reading the mind in cartoon eyes: Comparing human versus cartoon emotion recognition in those with high and low levels of autistic traits. Psychol. Rep. 2022, 125, 1380–1396. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S.; Skinner, R.; Martin, J.; Clubley, E. The autism-spectrum quotient (AQ): Evidence from Asperger syndrome/high-functioning autism, males and females, scientists and mathematicians. J. Autism Dev. Disord. 2001, 31, 5–17. [Google Scholar] [CrossRef]
- Atherton, G.; Cross, L. Animal faux pas: Two legs good four legs bad for theory of mind, but not in the broad autism spectrum. J. Genet. Psychol. 2019, 180, 81–95. [Google Scholar] [CrossRef]
- Golan, O.; Ashwin, E.; Granader, Y.; McClintock, S.; Day, K.; Leggett, V.; Baron-Cohen, S. Enhancing emotion recognition in children with autism spectrum conditions: An intervention using animated vehicles with real emotional faces. J. Autism Dev. Disord. 2009, 40, 269–279. [Google Scholar] [CrossRef]
- Gev, T.; Rosenan, R.; Golan, O. Unique effects of the transporters animated series and of parental support on emotion recognition skills of children with ASD: Results of a randomized controlled trial. Autism Res. Off. J. Int. Soc. Autism Res. 2017, 10, 993–1003. [Google Scholar] [CrossRef]
- Itskovich, E.; Zyga, O.; Libove, R.A.; Phillips, J.M.; Garner, J.P.; Parker, K.J. Complex interplay between cognitive ability and social motivation in predicting social skill: A unique role for social motivation in children with autism. Autism Res. 2021, 14, 86–92. [Google Scholar] [CrossRef]
- Neuhaus, E.; Webb, S.J.; Bernier, R.A. Linking social motivation with social skill: The role of emotion dysregulation in autism spectrum disorder. Dev. Psychopathol. 2019, 31, 931–943. [Google Scholar] [CrossRef] [PubMed]
- Neuhaus, E.; Bernier, R.A.; Webb, S.J. Social motivation across multiple measures: Caregiver-report of children with ASD. Autism Res. 2021, 14, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Bottini, S. Social reward processing in individuals with autism spectrum disorder: A systematic review of the social motivation hypothesis. Res. Autism Spectr. Disord. 2018, 45, 9–26. [Google Scholar] [CrossRef]
- Chevallier, C.; Kohls, G.; Troiani, V.; Brodkin, E.S.; Schultz, R.T. The social motivation theory of autism. Trends Cogn. Sci. 2012, 16, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Baron-Cohen, S. Autism: The empathizing-systemizing (E-S) theory. Ann. N. Y. Acad. Sci. 2009, 1156, 68–80. [Google Scholar] [CrossRef]
- Chevallier, C.; Parish-Morris, J.; McVey, A.; Rump, K.M.; Sasson, N.J.; Herrington, J.D.; Schultz, R.T. Measuring social attention and motivation in autism spectrum disorder using eye-tracking: Stimulus type matters: Stimulus matters. Autism Res. 2015, 8, 620–628. [Google Scholar] [CrossRef]
- Gong, X.; Li, X.; Wang, Q.; Hoi, S.P.; Yin, T.; Zhao, L.; Meng, F.; Luo, X.; Liu, J. Comparing visual preferences between autism spectrum disorder (ASD) and normal children to explore the characteristics of visual preference of ASD children by improved visual preference paradigm: A case-control study. Transl. Pediatr. 2021, 10, 2006–2015. [Google Scholar] [CrossRef]
- Demurie, E.; Roeyers, H.; Baeyens, D.; Sonuga-Barke, E. Common alterations in sensitivity to type but not amount of reward in ADHD and autism spectrum disorders. J. Child Psychol. Psychiatry Allied Discip. 2011, 52, 1164–1173. [Google Scholar] [CrossRef]
- Cai, Y. A literature review on studies supported social motivation theory account of ASD. In Proceedings of the 2022 6th International Seminar on Education, Management and Social Sciences (ISEMSS 2022), Chongqing, China, 15–17 July 2022; Ali, G., Birkök, M.C., Khan, I.A., Eds.; Atlantis Press SARL: Paris, France, 2022; Volume 687, pp. 2025–2034. [Google Scholar] [CrossRef]
- Baron-Cohen, S.; Wheelwright, S. The Friendship Questionnaire: An investigation of adults with Asperger syndrome or high-functioning autism, and normal sex differences. J. Autism Dev. Disord. 2003, 33, 509–517. [Google Scholar] [CrossRef]
- Chevallier, C.; Grèzes, J.; Molesworth, C.; Berthoz, S.; Happé, F. Brief report: Selective social anhedonia in high functioning autism. J. Autism Dev. Disord. 2012, 42, 1504–1509. [Google Scholar] [CrossRef]
- Hobson, R.P.; Lee, A. Hello and goodbye: A study of social engagement in autism. J. Autism Dev. Disord. 1998, 28, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Barbaro, J.; Dissanayake, C. A comparative study of the use and understanding of self-presentational display rules in children with high functioning autism and Asperger’s disorder. J. Autism Dev. Disord. 2007, 37, 1235–1246. [Google Scholar] [CrossRef] [PubMed]
- Hudenko, W.J.; Stone, W.; Bachorowski, J.A. Laughter differs in children with autism: An acoustic analysis of laughs produced by children with and without the disorder. J. Autism Dev. Disord. 2009, 39, 1392–1400. [Google Scholar] [CrossRef] [PubMed]
- Su, P.L.; Rogers, S.J.; Estes, A.; Yoder, P. The role of early social motivation in explaining variability in functional language in toddlers with autism spectrum disorder. Autism 2021, 25, 244–257. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.S.; Daniell, C.M.; Makar, C.; Elia, J.; Scassellati, B.; Shic, F. Potential clinical impact of positive affect in robot interactions for autism intervention. In Proceedings of the 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), Xi’an, China, 21–24 September 2015; pp. 8–13. [Google Scholar] [CrossRef]
- Kostrubiec, V.; Kruck, J. Collaborative research project: Developing and testing a robot-assisted intervention for children with autism. Front. Robot. AI 2020, 7, 37. [Google Scholar] [CrossRef]
- Werry, I.; Dautenhahn, K.; Ogden, B.; Harwin, W. Can Social Interaction Skills Be Taught by a Social Agent? The Role of a Robotic Mediator in Autism Therapy. In Cognitive Technology: Instruments of Mind; Lecture Notes in Computer Science; Beynon, M., Nehaniv, C.L., Dautenhahn, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 57–74. [Google Scholar] [CrossRef]
- Pinto-Bernal, M.J.; Sierra M., S.D.; Munera, M.; Casas, D.; Villa-Moreno, A.; Frizera-Neto, A.; Stoelen, M.F.; Belpaeme, T.; Cifuentes, C.A. Do different robot appearances change emotion recognition in children with ASD? Front. Neurorobot. 2023, 17, 1044491. [Google Scholar] [CrossRef]
- Livingston, L.A.; Shah, P.; Happé, F. Compensation in autism is not consistent with social motivation theory. Behav. Brain Sci. 2019, 42, e99. [Google Scholar] [CrossRef]
- Morrison, K.E.; DeBrabander, K.M.; Jones, D.R.; Faso, D.J.; Ackerman, R.A.; Sasson, N.J. Outcomes of real-world social interaction for autistic adults paired with autistic compared to typically developing partners. Autism 2020, 24, 1067–1080. [Google Scholar] [CrossRef] [PubMed]
- Sasson, N.J.; Faso, D.J.; Nugent, J.; Lovell, S.; Kennedy, D.P.; Grossman, R.B. Neurotypical peers are less willing to interact with those with autism based on thin slice judgments. Sci. Rep. 2017, 7, 40700. [Google Scholar] [CrossRef] [PubMed]
- Boulter, C.; Freeston, M.; South, M.; Rodgers, J. Intolerance of uncertainty as a framework for understanding anxiety in children and adolescents with autism spectrum disorders. J. Autism Dev. Disord. 2014, 44, 1391–1402. [Google Scholar] [CrossRef] [PubMed]
- Kumazaki, H.; Warren, Z.; Muramatsu, T.; Yoshikawa, Y.; Matsumoto, Y.; Miyao, M.; Nakano, M.; Mizushima, S.; Wakita, Y.; Ishiguro, H.; et al. A pilot study for robot appearance preferences among high-functioning individuals with autism spectrum disorder: Implications for therapeutic use. PLoS ONE 2017, 12, e0186581. [Google Scholar] [CrossRef]
- Szymona, B.; Maciejewski, M.; Karpiński, R.; Jonak, K.; Radzikowska-Büchner, E.; Niderla, K.; Prokopiak, A. Robot-assisted autism therapy (RAAT). Criteria and types of experiments using anthropomorphic and zoomorphic robots. Review of the research. Sensors 2021, 21, 3720. [Google Scholar] [CrossRef] [PubMed]
- Cabibihan, J.J.; Javed, H.; Jr, M.; Aljunied, S. Why robots? A Survey on the roles and benefits of social robots in the therapy of children with autism. Int. J. Soc. Robot. 2013, 5, 593–618. [Google Scholar] [CrossRef]
- Sartorato, F.; Przybylowski, L.; Sarko, D.K. Improving therapeutic outcomes in autism spectrum disorders: Enhancing social communication and sensory processing through the use of interactive robots. J. Psychiatr. Res. 2017, 90, 1–11. [Google Scholar] [CrossRef]
- Johnson, C.P.; Myers, S.M.; American Academy of Pediatrics Council on Children with Disabilities. Identification and evaluation of children with autism spectrum disorders. Pediatrics 2007, 120, 1183–1215. [Google Scholar] [CrossRef] [PubMed]
- Anzalone, S.M.; Boucenna, S.; Cohen, D.; Chetouani, M. Autism assessment through a small humanoid robot. In Proceedings of the HRI: A Bridge between Robotics and Neuroscience, Workshop of the 9th ACM/IEEE International Conference Human-Robot Interaction, Bielefeld, Germany, 3–6 March 2014; pp. 1–2. [Google Scholar]
- Scassellati, B.; Admoni, H.; Matarić, M. Robots for use in autism research. Annu. Rev. Biomed. Eng. 2012, 14, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Kumazaki, H.; Muramatsu, T.; Yoshikawa, Y.; Matsumoto, Y.; Takata, K.; Ishiguro, H.; Mimura, M. Android robot promotes disclosure of negative narratives by individuals with autism spectrum disorders. Front. Psychiatry 2022, 13, 899664. [Google Scholar] [CrossRef] [PubMed]
- Schadenberg, B.R.; Reidsma, D.; Evers, V.; Davison, D.P.; Li, J.J.; Heylen, D.K.J.; Neves, C.; Alvito, P.; Shen, J.; Pantić, M.; et al. Predictable robots for autistic children—Variance in robot behaviour, Idiosyncrasies in Autistic Children’s Characteristics, and Child–Robot Engagement. ACM Trans. Comput.-Hum. Interact. 2021, 28, 1–42. [Google Scholar] [CrossRef]
- Schadenberg, B.R. Robots for Autistic Children: Understanding and Facilitating Predictability for Engagement in Learning. PhD Thesis, University of Twente, Human Media Interaction, Enschede, The Netherlands, 2021. [Google Scholar] [CrossRef]
- Richardson, K.; Coeckelbergh, M.; Wakunuma, K.; Billing, E.; Ziemke, T.; Gomez, P.; Vanderborght, B.; Belpaeme, T. Robot enhanced therapy for children with autism (DREAM): A social model of autism. IEEE Technol. Soc. Mag. 2018, 37, 30–39. [Google Scholar] [CrossRef]
- Morrison, K.E.; DeBrabander, K.M.; Jones, D.R.; Ackerman, R.A.; Sasson, N.J. Social Cognition, Social Skill, and Social Motivation Minimally Predict Social Interaction Outcomes for Autistic and Non-Autistic Adults. Front. Psychol. 2020, 11, 591100. [Google Scholar] [CrossRef]
- Jaswal, V.K.; Akhtar, N. Being versus appearing socially uninterested: Challenging assumptions about social motivation in autism. Behav. Brain Sci. 2019, 42, e82. [Google Scholar] [CrossRef]
- Kerr-Gaffney, J.; Jones, E.; Mason, L.; Hayward, H.; Murphy, D.; Loth, E.; Tchanturia, K. Social attention in anorexia nervosa and autism spectrum disorder: Role of social motivation. Autism 2022, 26, 1641–1655. [Google Scholar] [CrossRef]
- Clements, C.C.; Zoltowski, A.R.; Yankowitz, L.D.; Yerys, B.E.; Schultz, R.T.; Herrington, J.D. Evaluation of the Social Motivation Hypothesis of Autism. JAMA Psychiatry 2018, 75, 797–808. [Google Scholar] [CrossRef]
- Gernsbacher, M.A.; Yergeau, M. Empirical failures of the claim that autistic people lack a theory of mind. Arch. Sci. Psychol. 2019, 7, 102–118. [Google Scholar] [CrossRef]
- Ozonoff, S.; Iosif, A.M.; Baguio, F.; Cook, I.C.; Hill, M.M.; Hutman, T.; Rogers, S.J.; Rozga, A.; Sangha, S.; Sigman, M.; et al. A prospective study of the emergence of early behavioral signs of autism. J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 256–266. [Google Scholar]
- Viktorsson, C.; Bölte, S.; Falck-Ytter, T. How 18-month-olds with later autism look at other children interacting: The timing of gaze allocation. J. Autism Dev. Disord. 2023, 1–11. [Google Scholar] [CrossRef]
- Stallworthy, I.C.; Berry, D.; Davis, S.; Wolff, J.J.; Burrows, C.A.; Swanson, M.R.; Grzadzinski, R.L.; Botteron, K.; Dager, S.R.; Estes, A.M.; et al. Quantifying latent social motivation and its associations with joint attention and language in infants at high and low likelihood for autism spectrum disorder. Dev. Sci. 2023, 26, e13336. [Google Scholar] [CrossRef]
- Elsabbagh, M.; Johnson, M.H. Autism and the social brain: The first-year puzzle. Biol. Psychiatry 2016, 80, 94–99. [Google Scholar] [CrossRef]
- Tager-Flusberg, H. The origins of social impairments in autism spectrum disorder: Studies of infants at risk. Neural Netw. 2010, 23, 1072–1076. [Google Scholar] [CrossRef] [PubMed]
- Pieslinger, J.F.; Wiskerke, J.; Igelström, K. Contributions of face processing, social anhedonia and mentalizing to the expression of social autistic-like traits. Front. Behav. Neurosci. 2022, 16, 104697. [Google Scholar] [CrossRef] [PubMed]
- Mundy, P.; Bullen, J. The bidirectional social-cognitive mechanisms of the social-attention symptoms of autism. Front. Psychiatry 2022, 12, 752274. [Google Scholar] [CrossRef]
- O’Connor, R.A.G.; Stockmann, L.; Rieffe, C. Spontaneous helping behavior of autistic and non-autistic (pre-)adolescents: A matter of motivation? Autism Res. 2019, 12, 1796–1804. [Google Scholar] [CrossRef]
- Milton, D.E. On the ontological status of autism: The ‘double empathy problem’. Disabil. Soc. 2012, 27, 883–887. [Google Scholar] [CrossRef]
- Williams, G.L. Theory of autistic mind: A renewed relevance theoretic perspective on so-called autistic pragmatic ‘impairment’. J. Pragmat. 2021, 180, 121–130. [Google Scholar] [CrossRef]
- Pennisi, P.; Tonacci, A.; Tartarisco, G.; Billeci, L.; Ruta, L.; Gangemi, S.; Pioggia, G. Autism and social robotics: A systematic review: Autism and social robotics. Autism Res. 2016, 9, 165–183. [Google Scholar] [CrossRef]
- Rudovic, O.; Lee, J.; Mascarell Maricic, L.; Schuller, B.; Picard, R. Measuring engagement in robot-assisted autism therapy: A cross-cultural study. Front. Robot. AI 2017, 4, 36. [Google Scholar] [CrossRef]
- Desideri, L.; Negrini, M.; Malavasi, M.; Cutrone, M.C.; Hoogerwerf, E.J.; Bonifacci, P. Using a Humanoid Robot as a Complement to Interventions for Children with Autism Spectrum Disorder: A Pilot Study. Adv. Neurodev. Disord. 2018, 2, 273–285. [Google Scholar] [CrossRef]
- Pioggia, G.; Sica, M.; Ferro, M.; Igliozzi, R.; Muratori, F.; Ahluwalia, A.; de rossi, D. Human-robot interaction in autism: FACE, an android-based social therapy. In Proceedings of the RO-MAN 2007—The 16th IEEE International Symposium on Robot and Human Interactive Communication, Jeju Island, Republic of Korea, 26–29 August 2007; pp. 605–612. [Google Scholar] [CrossRef]
- Telisheva, Z.; Amirova, A.; Rakhymbayeva, N.; Zhanatkyzy, A.; Sandygulova, A. The quantitative case-by-case analyses of the socio-emotional outcomes of children with ASD in robot-assisted autism therapy. Multimodal Technol. Interact. 2022, 6, 46. [Google Scholar] [CrossRef]
- Ricks, D.J.; Colton, M.B. Trends and considerations in robot-assisted autism therapy. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 4354–4359. [Google Scholar] [CrossRef]
- Spatola, N.; Belletier, C.; Chausse, P.; Augustinova, M.; Normand, A.; Barra, V.; Ferrand, L.; Huguet, P. Improved cognitive control in presence of anthropomorphized robots. Int. J. Soc. Robot. 2019, 11, 463–476. [Google Scholar] [CrossRef]
- Raptopoulou, A.; Komnidis, A.; Bamidis, P.D.; Astaras, A. Human–robot interaction for social skill development in children with ASD: A literature review. Healthc. Technol. Lett. 2021, 8, 90–96. [Google Scholar] [CrossRef]
- Jastrzab, L.E.; Chaudhury, B.; Ashley, S.A.; Koldewyn, K.; Cross, E.S. Beyond human-likeness: Socialness is more influential when attributing mental states to robots. bioRxiv 2023. [Google Scholar] [CrossRef]
- Lee, J.; Takehashi, H.; Nagai, C.; Obinata, G.; Stefanov, D. Which Robot Features Can Stimulate Better Responses from Children with Autism in Robot-Assisted Therapy? Int. J. Adv. Robot. Syst. 2012, 9, 72. [Google Scholar] [CrossRef]
- van Straten, C.L.; Smeekens, I.; Barakova, E.; Glennon, J.; Buitelaar, J.; Chen, A. Effects of robots’ intonation and bodily appearance on robot-mediated communicative treatment outcomes for children with autism spectrum disorder. Pers. Ubiquitous Comput. 2018, 22, 379–390. [Google Scholar] [CrossRef]
- Mori, M. The uncanny valley. Energy 1970, 7, 33–35. [Google Scholar]
- MacDorman, K.F.; Ishiguro, H. The uncanny advantage of using androids in cognitive and social science research. Interact. Stud. Soc. Behav. Commun. Biol. Artif. Syst. 2006, 7, 297–337. [Google Scholar] [CrossRef]
- Mori, M.; MacDorman, K.F.; Kageki, N. The ucanny valley [From the field]. IEEE Robot. Autom. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
- Kim, B.; Bruce, M.; Brown, L.; de Visser, E.; Phillips, E. A comprehensive approach to validating the uncanny valley using the anthropomorphic roBOT (ABOT) database. In Proceedings of the 2020 Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 24 April 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Mara, M.; Appel, M.; Gnambs, T. Human-like robots and the uncanny valley: A meta-analysis of user responses based on the godspeed scales. Z. Psychol. 2022, 230, 33–46. [Google Scholar] [CrossRef]
- Fong, T.; Nourbakhsh, I.; Dautenhahn, K. A survey of socially interactive robots. Robot. Auton. Syst. 2003, 42, 143–166. [Google Scholar] [CrossRef]
- Laakasuo, M.; Palomäki, J.; Köbis, N. Moral uncanny valley: A robot’s appearance moderates how its decisions are judged. Int. J. Soc. Robot. 2021, 13, 1679–1688. [Google Scholar] [CrossRef]
- Ueyama, Y. A Bayesian model of the uncanny valley effect for explaining the effects of therapeutic robots in autism spectrum disorder. PLoS ONE 2015, 10, e0138642. [Google Scholar] [CrossRef] [PubMed]
- Bird, G.; Leighton, J.; Press, C.; Heyes, C. Intact automatic imitation of human and robot actions in autism spectrum disorders. Proc. R. Soc. B Biol. Sci. 2007, 274, 3027–3031. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Wang, X.; Wang, Q.; Fang, J.; Wu, Y.; Yi, L.; Wei, K. The uncanny valley effect in typically developing children and its absence in children with autism spectrum disorders. PLoS ONE 2018, 13, e0206343. [Google Scholar] [CrossRef]
- Pioggia, G.; Igliozzi, R.; Ferro, M.; Ahluwalia, A.; Muratori, F.; de rossi, D. An android for enhancing social skills and emotion recognition in people with autism. Neural Syst. Rehabil. Eng. IEEE Trans. 2006, 13, 507–515. [Google Scholar] [CrossRef]
- Lewkowicz, D.J.; Ghazanfar, A.A. The development of the uncanny valley in infants. Dev. Psychobiol. 2012, 54, 124–132. [Google Scholar] [CrossRef]
- Gastgeb, H.Z.; Rump, K.M.; Best, C.A.; Minshew, N.J.; Strauss, M.S. Prototype formation in autism: Can individuals with autism abstract facial prototypes? Autism Res. 2009, 2, 279–284. [Google Scholar] [CrossRef]
- Gastgeb, H.Z.; Wilkinson, D.A.; Minshew, N.J.; Strauss, M.S. Can individuals with autism abstract prototypes of natural faces? J. Autism Dev. Disord. 2011, 41, 1609–1618. [Google Scholar] [CrossRef]
- Wolf, J.M.; Tanaka, J.W.; Klaiman, C.; Cockburn, J.; Herlihy, L.; Brown, C.; South, M.; McPartland, J.; Kaiser, M.D.; Phillips, R.; et al. Specific impairment of face-processing abilities in children with autism spectrum disorder using the let’s face it! skills battery. Autism Res. Off. J. Int. Soc. Autism Res. 2008, 1, 329–340. [Google Scholar] [CrossRef]
- Wykowska, A.; Kajopoulos, J.; Ramírez-Amaro, K.; Cheng, G. Autistic traits and sensitivity to human-like features of robot behavior. Interact. Stud. 2015, 16, 219–248. [Google Scholar] [CrossRef]
- Grzadzinski, R.; Huerta, M.; Lord, C. DSM-5 and autism spectrum disorders (ASDs): An opportunity for identifying ASD subtypes. Mol. Autism 2013, 4, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Hu, X.; Guo, K.; Yang, P.; Situ, M.; Huang, Y. Increased left inferior temporal gyrus was found in both low function autism and high function autism. Front. Psychiatry 2018, 9, 542. [Google Scholar] [CrossRef]
- Zhanatkyzy, A.; Telisheva, Z.; Amirova, A.; Rakhymbayeva, N.; Sandygulova, A. Multi-purposeful activities for robot-assisted autism therapy: What works best for children’s social outcomes? In Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction, HRI ’23, Stockholm, Sweden, 13–16 March 2023; pp. 34–43. [Google Scholar] [CrossRef]
- Conti, D.; Trubia, G.; Buono, S.; Di Nuovo, S.; Di Nuovo, A. Evaluation of a robot-assisted therapy for children with autism and intellectual disability. In Towards Autonomous Robotic Systems; Lecture Notes in Computer Science; Giuliani, M., Assaf, T., Giannaccini, M.E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; Volume 10965, pp. 405–415. [Google Scholar] [CrossRef]
- Fodstad, J.C.; Elias, R.; Sarawgi, S. Intellectual disability in autism spectrum disorder. In The Oxford Handbook of Autism and Co-Occurring Psychiatric Conditions; White, S.W., Maddox, B.B., Mazefsky, C.A., Eds.; Oxford University Press: Oxford, UK, 2020; pp. 177–197. [Google Scholar] [CrossRef]
- Chevalier, P.; Martin, J.C.; Isableu, B.; Bazile, C.; Iacob, D.O.; Tapus, A. Joint Attention using Human-Robot Interaction: Impact of sensory preferences of children with autism. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 849–854. [Google Scholar] [CrossRef]
- Chevalier, P.; Raiola, G.; Martin, J.C.; Isableu, B.; Bazile, C.; Tapus, A. Do Sensory Preferences of Children with Autism Impact an lmitation Task with a Robot? In Proceedings of the 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Vienna, Austria, 6–9 March 2017; pp. 177–186. [Google Scholar]
- Kumazaki, H.; Muramatsu, T.; Yoshikawa, Y.; Matsumoto, Y.; Kuwata, M.; Takata, K.; Ishiguro, H.; Mimura, M. Differences in the optimal motion of android robots for the ease of communications among individuals with autism spectrum disorders. Front. Psychiatry 2022, 13, 883371. [Google Scholar] [CrossRef]
- Simmons, R.; Knight, H. Keep on dancing: Effects of expressive motion mimicry. In Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Lisbon, Portugal, 28 August–1 September 2017; pp. 720–727. [Google Scholar] [CrossRef]
- Leite, I.; Lehman, J. The Robot Who Knew Too Much: Toward Understanding the Privacy/Personalization Trade-Off in Child-Robot Conversation. In Proceedings of the 15th International Conference on Interaction Design and Children, IDC ’16, New York, NY, USA, 21–24 June 2016; pp. 379–387. [Google Scholar] [CrossRef]
- Del Bianco, T.; Mason, L.; Lai, M.C.; Loth, E.; Tillmann, J.; Charman, T.; Hayward, H.; Gleissl, T.; Buitelaar, J.K.; Murphy, D.G.M.; et al. Unique dynamic profiles of social attention in autistic females. J. Child Psychol. Psychiatry Allied Discip. 2022, 63, 1602–1614. [Google Scholar] [CrossRef] [PubMed]
- Wood-Downie, H.; Wong, B.; Kovshoff, H.; Cortese, S.; Hadwin, J.A. Research review: A systematic review and meta-analysis of sex/gender differences in social interaction and communication in autistic and nonautistic children and adolescents. J. Child Psychol. Psychiatry Allied Discip. 2021, 62, 922–936. [Google Scholar] [CrossRef]
- Mattern, H.; Cola, M.; Tena, K.G.; Knox, A.; Russell, A.; Pelella, M.R.; Hauptmann, A.; Covello, M.; Parish-Morris, J.; McCleery, J.P. Sex differences in social and emotional insight in youth with and without autism. Mol. Autism 2023, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Sedgewick, F.; Hill, V.; Yates, R.; Pickering, L.; Pellicano, E. Gender differences in the social motivation and friendship experiences of autistic and non-autistic adolescents. J. Autism Dev. Disord. 2016, 46, 1297–1306. [Google Scholar] [CrossRef]
- Putnam, C.; Hanschke, C.; Todd, J.; Gemmell, J.; Kollia, M. Interactive technologies designed for children with autism: Reports of use and desires from parents, teachers, and therapists. ACM Trans. Access. Comput. 2019, 12, 1–37. [Google Scholar] [CrossRef]
- Clabaugh, C.; Mahajan, K.; Jain, S.; Pakkar, R.; Becerra, D.; Shi, Z.; Deng, E.; Lee, R.; Ragusa, G.; Matarić, M. Long-Term Personalization of an In-Home Socially Assistive Robot for Children with Autism Spectrum Disorders. Front. Robot. AI 2019, 6, 110. [Google Scholar] [CrossRef] [PubMed]
- Huijnen, C.A.G.J.; Lexis, M.A.S.; Jansens, R.; de Witte, L.P. How to implement robots in interventions for children with autism? A co-creation study involving people with autism, parents and professionals. J. Autism Dev. Disord. 2017, 47, 3079–3096. [Google Scholar] [CrossRef] [PubMed]
- Begum, M.; Serna, R.; Yanco, H. Are robots ready to deliver autism interventions? A comprehensive review. Int. J. Soc. Robot. 2016, 8, 157–181. [Google Scholar] [CrossRef]
- Papakostas, G.A.; Sidiropoulos, G.K.; Papadopoulou, C.I.; Vrochidou, E.; Kaburlasos, V.G.; Papadopoulou, M.T.; Holeva, V.; Nikopoulou, V.A.; Dalivigkas, N. Social robots in special education: A systematic review. Electronics 2021, 10, 1398. [Google Scholar] [CrossRef]
- de Jong, C.; Peter, J.; Kühne, R.; Barco, A. Children’s acceptance of social robots: A narrative review of the research 2000–2017. Interact. Studies. Soc. Behav. Commun. Biol. Artif. Syst. 2019, 20, 393–425. [Google Scholar] [CrossRef]
- Ismail, L.I.; Verhoeven, T.; Dambre, J.; Wyffels, F. Leveraging robotics research for children with autism: A review. Int. J. Soc. Robot. 2019, 11, 389–410. [Google Scholar] [CrossRef]
- van Otterdijk, M.T.H.; de Korte, M.W.P.; van den Berk-Smeekens, I.; Hendrix, J.; van Dongen-Boomsma, M.; den Boer, J.C.; Buitelaar, J.K.; Lourens, T.; Glennon, J.C.; Staal, W.G.; et al. The effects of long-term child–robot interaction on the attention and the engagement of children with autism. Robotics 2020, 9, 79. [Google Scholar] [CrossRef]
- Masson, O.; Baratgin, J.; Jamet, F.; Ruggieri, F.; Filatova, D. Use a robot to serve experimental psychology: Some examples of methods with children and adults. In Proceedings of the International Conference on Information and Digital Technologies (IDT-2016), Rzeszow, Poland, 5–7 July 2016; pp. 190–197. [Google Scholar] [CrossRef]
- Masson, O.; Baratgin, J.; Jamet, F. NAO Robot, Transmitter of Social Cues: What Impacts? The Example with “Endowment effect”. In Proceedings of the Advances in Artificial Intelligence: From Theory to Practice: 30th International Conference on Industrial Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2017, Arras, France, 27–30 June 2017; pp. 559–568. [Google Scholar] [CrossRef]
- Masson, O.; Ruggieri, F. Robotique éducative pour la découverte, la réflexion et le raisonnement. Enfance 2019, 3, 333–344. [Google Scholar] [CrossRef]
- Jamet, F.; Masson, O.; Jacquet, B.; Stilgenbauer, J.L.; Baratgin, J. Learning by teaching with humanoid robot: A new powerful experimental tool to improve children’s learning ability. J. Robot. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Baratgin, J.; Dubois-Sage, M.; Jacquet, B.; Stilgenbauer, J.L.; Jamet, F. Pragmatics in the False-Belief Task: Let the Robot Ask the Question! Front. Psychol. 2020, 11, 593807. [Google Scholar] [CrossRef] [PubMed]
- Baratgin, J.; Jacquet, B.; Dubois-Sage, M.; Jamet, F. ”Mentor-Child and Naive-Pupil-Robot” paradigm to study children’s cognitive and social development. In Proceedings of the Workshop: Interdisciplinary Research Methods for Child-Robot Relationship Formation, HRI-2021, Boulder, CO, USA, 8–11 March 2021. [Google Scholar]
- Baratgin, J.; Jamet, F. Le paradigme de “l’enfant mentor d’un robot ignorant et naïf” comme révélateur de compétences cognitives et sociales précoces chez le jeune enfant. In Proceedings of the WACAI 2021, Saint Pierre d’Oléron, France, 13–15 October 2021. [Google Scholar]
- Dubois-Sage, M.; Jacquet, B.; Jamet, F.; Baratgin, J. The mentor-child paradigm for individuals with autism spectrum disorders. In Proceedings of the CONCATENATE Social Robots Personalisation - International Conference on Human Robot Interaction (HRI) 2023. Association for Computing Machinery. arXiv 2023. [Google Scholar] [CrossRef]
Section | Article | Variable | Effect | Effect p-Value | Robot | Sample Size (ASD) | Mean Age (Standard Deviation) | Functioning/Mean IQ (Standard Deviation) | Duration of Robot Intervention (mn) | Country |
---|---|---|---|---|---|---|---|---|---|---|
Eye contact | Barnes et al. [24] | Eye gaze | robot > human | NA | NAO | 3 | 8.33 (4.04) | NA | 1 session (NA) | USA |
Bekele et al. [25] | Eye gaze | robot > human | NAO | 6 | 2.78–4.9 y.o. | NA | 1 session (30–50 mn) | USA | ||
Cao et al. [26] | Eye gaze | robot > human | NAO | 15 | 4.96 (1.10) | NA | 1 session (NA) | China | ||
Costa et al. [27] | Eye contact | robot > human | KASPAR | 8 | 6–10 y.o. | NA | 7 sessions (NA) | UK | ||
Costa et al. [28] | Eye gaze | robot > human | QTRobot | 15 | 9.73 (3.38) | IQ < 80 (n = 8); 80–120 (n = 6); IQ > 120 (n = 1) | 1 session (1.5–4.3 mn) | Luxembourg | ||
Damm et al. [29] | Eye gaze | robot > human | FLOBI | 9 | 21 (NA) | 112.5 (range: 94–133) | NA | Germany | ||
David et al. [30] | Eye contact | robot > human for 2/5 children | NAO | 5 | 3–5 y.o. | LF-HF | 8–12 sessions (10 mn/session, 1/day) | Romania | ||
Duquette et al. [31] | Eye contact | robot > human | TITO | 4 | 5.1 (NA) | LF | 3/week for 7 weeks (NA) | Canada | ||
Scassellati et al. [19] | Eye contact with other people | pretest < post-test | ; | JIBO | 12 | 9.02 (1.41) | IQ ≥ 70 | 23 sessions (30 mn/session, 1/day) | USA | |
Shamsuddin et al. [32] | Eye contact | robot > human | NA | NAO | 1 | 10 y.o. | 107 | 1 session (15 mn/session) | Malaysia | |
Simlesa et al. [15] | Eye contact | robot > human | NAO | 12 | 5.2 (0.63) | MA: 2–3 y.o. | 1 session (NA) | Croatia | ||
Simut et al. [33] | Eye contact | robot > human | PROBO | 30 | 6.67 (0.92) | 91.23 (range: 70–119) | 1 session (15 mn/session) | Belgium | ||
Tapus et al. [34] | Eye gaze | robot > human | NAO | 4 | 4.2 (1.67) | NA | 7–13 sessions (8 mn/session, 2/day) | Romania | ||
Wainer et al. [35] | Eye contact | robot > human | KASPAR | 6 | 6–8 y.o. | NA | 2 sessions (15 mn/session) | UK | ||
Joint attention | Anzalone et al. [36] | Joint attention | robot < human | NAO | 16 | 9.25 (1.87) | 73 (14) | 1 session (NA) | France | |
Cao et al. [26] | Joint attention | robot = human | NAO | 15 | 4.96 (1.10) | NA | 1 session (NA) | China | ||
Cao et al. [37] | Joint attention | robot < human | NAO | 27 | 46.37 months (4.36) | MA: 42 months max | 2 session (NA) | The Netherlands | ||
Ghiglino et al. [14] | Joint attention | robot = human | Cozmo | 24 | 5.79 (1.02) | 58.08 (19.39) | 5 weeks (10 mn/session) | Italy | ||
Kajopoulos et al. [38] | Joint attention | pretest < post-test | CuDDler | 7 | 4–5 y.o. | NA | 6 sessions over 3 weeks (20 mn/session) | Singapore | ||
Kumazaki et al. [39] | Joint attention | time +; robot > human | CommU | 28 | 70.56 months (6.09) (robot group); 69.00 (4.39) (control) | NA | 1 session (15 mn) | Japan | ||
So et al. [40] | Joint attention | pretest < post-test (robot) | HUMANE | 38 | 7.51 (0.87) (robot group); 7.91 (0.89) (human group) | LF | 6 sessions (30 mn/session) | China | ||
Taheri et al. [41] | Joint attention | time + | NAO/ALICE-R50 | 6 | 6–15 y.o. | LF-HF | 12 sessions over 3 months (30 mn/session) | Iran | ||
Warren et al. [42] | Joint attention | time + | NAO | 6 | 3.46 (0.73) | NA | 4 sessions over 2 weeks (NA) | USA | ||
Wiese et al. [43] | Gaze cueing effect | robot > human | EDDIE | 18 | 19.67 (1.5) | NA | 1 session (15 mn) | Germany | ||
Interaction | Ghiglino et al. [14] | Social interaction initiation | robot > human | Cozmo | 24 | 5.79 (1.02) | 58.08 (19.39) | 5 weeks (10 mn/session) | Italy | |
Kim et al. [44] | Social behaviors towards peer | robot > human | PLEO | 24 | 4–12 y.o. | NA | NA | USA | ||
Pop et al. [45] | Collaborative game | robot > human | PROBO | 11 | 4–7 y.o. | IQ >70 | 8 sessions (1 mn/session) | Romania | ||
Pliasa et al. [46] | Social interaction initiation | robot > human | DAISY | 6 | 6–9 y.o. | NA | 2 sessions (20 mn/session) | Bulgaria | ||
Rakhymbayeva et al. [47] | Engagement time | tendency time 2 > time 1; familiar > unfamiliar activities | ; | NAO | 7 | 6.1 (2.7) | LF | 7–10 sessions (15 mn/session) | Khazakstan | |
Stanton et al. [48] | Social interaction initiation | robot > human | AIBO | 11 | 5–8 y.o. | NA | 1 session (30 mn) | USA | ||
Wainer et al. [35] | Cooperation in game | robot > human | KASPAR | 6 | 6–8 y.o. | NA | 2 sessions (15 mn/session) | UK | ||
Touch | Costa et al. [27] | Spontaneous touch | robot > human | NA | KASPAR | 8 | 6–10 y.o. | NA | 7 sessions (NA) | UK |
Simlesa et al. [15] | Touch | robot > human | NAO | 12 | 5.2 (0.63) | MA: 2–3 y.o. | 1 session (NA) | Croatia | ||
Communication | Farhan et al. [49] | Verbal and non-verbal communication | time 4 > time 1 | NA | NAO | 4 | 5, 12, 13, 24 y.o. | range: 41–47 | 4 sessions (NA) | Bangladesh |
Huskens et al. [13] | Self initiated questions | pretest < post-test; robot = human | ; | NAO | 6 | 3-14 y.o. | IQ >80 | 4 sessions (10 mn/session) | Netherlands | |
Kim et al. [44] | Speech | robot > human | PLEO | 24 | 4–12 y.o. | NA | NA | USA | ||
Kumazaki et al. [50] | Posture, gaze, facial expressions | robot > human | ACTROID-F | 29 | 29.1 (2.6) | IQ ≥ 70 | 1 session (25 mn) | Japan | ||
Simlesa et al. [15] | Vocalization | robot < human | NAO | 12 | 5.2 (0.63) | MA: 2–3 y.o. | 1 session (NA) | Croatia | ||
Stanton et al. [48] | Speech | robot > human | AIBO | 11 | 5–8 y.o. | NA | 1 session (30 mn) | USA | ||
Syrdal et al. [51] | Communication | number of interactions + | KASPAR | 19 | 2–6 y.o. | NA | NA | UK | ||
Taheri et al. [41] | Verbal communication | time + | NAO/ALICE-R50 | 6 | 6–15 y.o. | LF-HF | 12 sessions over 3 months (30 mn/session) | Iran | ||
Imitation | Conti et al. [52] | Imitation | time + | NA | NAO | 6 | 5 and 10 y.o. | LF | 15 sessions (6–8 mn/session) | Italy |
Costa et al. [28] | Imitation | robot = human | QTRobot | 15 | 9.73 (3.38) | IQ < 80 (n = 8); 80–120 (n = 6); IQ > 120 (n = 1) | 1 session (1.5–4.3 mn) | Luxembourg | ||
Duquette et al. [31] | Imitation of facial expressions; of words and gestures | robot > human; robot < human | NA | TITO | 4 | 5.1 (NA) | LF | 3/week for 7 weeks (NA) | Canada | |
Pierno et al. [53] | Imitation velocity | robot > human | ROBOTIC ARM | 12 | 11.1 (NA) | HF | 1 session (NA) | Italy | ||
Simlesa et al. [15] | Imitation | robot = human | NAO | 12 | 5.2 (0.63) | MA: 2–3 y.o. | 1 session (NA) | Croatia | ||
Soares et al. [54] | Imitation of emotions | robot > human; post-test > pretest (robot), post-test = pretest (human) | ; ; | Zeno | 45 | 6.8 (1.5) (robot group); 7.5 (1.4) (human group); 7.8 (1.2) (control) | HF | 2/week for 3 weeks (5–15 mn/session) | Portugal | |
Taheri et al. [55] | Imitation | robot < human | NAO | 20 | 4.95 (2.01) | NA | 1 session (NA) | Iran | ||
Zheng et al. [56] | Imitation quality | robot > human | NAO | 6 | 3.83 (0.54) | NA | 2 sessions (NA) | USA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubois-Sage, M.; Jacquet, B.; Jamet, F.; Baratgin, J. People with Autism Spectrum Disorder Could Interact More Easily with a Robot than with a Human: Reasons and Limits. Behav. Sci. 2024, 14, 131. https://doi.org/10.3390/bs14020131
Dubois-Sage M, Jacquet B, Jamet F, Baratgin J. People with Autism Spectrum Disorder Could Interact More Easily with a Robot than with a Human: Reasons and Limits. Behavioral Sciences. 2024; 14(2):131. https://doi.org/10.3390/bs14020131
Chicago/Turabian StyleDubois-Sage, Marion, Baptiste Jacquet, Frank Jamet, and Jean Baratgin. 2024. "People with Autism Spectrum Disorder Could Interact More Easily with a Robot than with a Human: Reasons and Limits" Behavioral Sciences 14, no. 2: 131. https://doi.org/10.3390/bs14020131
APA StyleDubois-Sage, M., Jacquet, B., Jamet, F., & Baratgin, J. (2024). People with Autism Spectrum Disorder Could Interact More Easily with a Robot than with a Human: Reasons and Limits. Behavioral Sciences, 14(2), 131. https://doi.org/10.3390/bs14020131