Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Method
3.2. Sample
3.3. Method
3.3.1. Variable
3.3.2. Model
4. Result and Discussion
4.1. Distribution of Chinese NEET-Prone Students
4.2. Key Factors in Chinese Students Falling into NEET
4.2.1. Results of the Individual-Level Factors
4.2.2. Results of the Family-Level Factors
4.2.3. Results of the Social-Level Factors
5. Conclusions and Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Social Exclusion Unit. Bridging the Gap: New Opportunities for 16–18 Year Olds Not in Education, Employment or Training; HMSO: London, UK, 1999. [Google Scholar]
- Norasakkunkit, V.; Uchida, Y.; Takemura, K. Evaluating distal and proximal explanations for withdrawal: A rejoinder to Varnum and Kwon’s “the ecology of withdrawal”. Front. Psychol. 2017, 8, 2085. [Google Scholar] [CrossRef]
- Barbosa, L.; Portilho, F.; Wilkinson, J.; Dubeux, V. Trust, Participation and Political Consumerism among Brazilian Youth. J. Clean. Prod. 2014, 63, 93–101. [Google Scholar] [CrossRef]
- Hubatková, B.; Doseděl, T. The Expansion of Higher Education and Post-Materialistic Attitudes to Work in Europe: Evidence from the European Values Study. Czech Sociol. Rev. 2020, 56, 767–790. [Google Scholar] [CrossRef]
- Kyriaki, I.K.; Pantelis, C.K. Post-Materialism and Economic Growth: Cultural Backlash, 1981–2019. J. Comp. Econ. 2021, 49, 901–917. [Google Scholar]
- Wang, T.; Li, S. Relationship between Employment Values and College Students’ Choice Intention of Slow Employment: A Moderated Mediation Model. Front. Psychol. 2022, 13, 940556. [Google Scholar] [CrossRef]
- Rahmani, H.; Groot, W. Risk Factors of Being a Youth Not in Education, Employment or Training (NEET): A Scoping Review. Int. J. Educ. Res. 2023, 120, 102198. [Google Scholar] [CrossRef]
- Liu, I.; Uchida, Y.; Norasakkunkit, V. Socio-Economic Marginalization and Compliance Motivation among Students and Freeters in Japan. Front. Psychol. 2019, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Contini, D.; Filandri, M.; Pacelli, L. Persistency in the NEET State: A Longitudinal Analysis. J. Youth Stud. 2019, 22, 959–980. [Google Scholar] [CrossRef]
- Caroleo, F.E.; Rocca, A.; Mazzocchi, P.; Quintano, C. Being NEET in Europe before and after the Economic Crisis: An Analysis of the Micro and Macro Determinants. Soc. Indic. Res. 2020, 149, 991–1024. [Google Scholar] [CrossRef]
- Youn, M.; Kang, C. The role of the welfare state for NEETs: Exploring the association between public social spending and NEET in European countries. Sage Open 2023, 13, 21582440231193864. [Google Scholar] [CrossRef]
- Pennoni, F.; Bal-Domanska, B. NEETs and Youth Unemployment: A Longitudinal Comparison across European Countries. Soc. Indic. Res. 2022, 162, 739–761. [Google Scholar] [CrossRef]
- Tayfur, S.N.; Prior, S.; Roy, A.S.; Maciver, D.; Forsyth, K.; Fitzpatrick, L.I. Associations between Adolescent Psychosocial Factors and Disengagement from Education and Employment in Young Adulthood among Individuals with Common Mental Health Problems. J. Youth Adolesc. 2022, 51, 1397–1408. [Google Scholar] [CrossRef]
- Yang, Y. China’s Youth in NEET (not in Education, Employment, or Training): Evidence from a National Survey. Ann. Am. Acad. Polit. Soc. Sci. 2020, 688, 171–189. [Google Scholar] [CrossRef]
- Mussida, C.; Sciulli, D. Being poor and being NEET in Europe: Are these two sides of the same coin? J. Econ. Inequal. 2023, 21, 463–482. [Google Scholar] [CrossRef] [PubMed]
- Chandler, R.F.; Lozada, A.R.S. Health Status among NEET Adolescents and Young Adults in the United States, 2016-2018. SSM- Popul. Health 2021, 14, 100814. [Google Scholar] [CrossRef]
- Ayala, L.; Cantó, O.; Rodríguez, J.G. Poverty and the Business Cycle: A Regional Panel Data Analysis for Spain using Alternative Measures of Unemployment. J. Econ. Inequal. 2017, 15, 47–73. [Google Scholar] [CrossRef]
- Saunders, P. The Direct and Indirect Effects of Unemployment on Poverty and Inequality. Aust. J. Labour Econ. 2002, 5, 507–530. [Google Scholar]
- Haugland, S.H.; Stea, T.H. Risky Lives? Self-Directed Violence and Violence from Others among Young People Not in Education, Employment, or Training (NEET). Front. Public Health 2022, 10, 904458. [Google Scholar] [CrossRef] [PubMed]
- Iyer, S.; Mustafa, S.; Gariépy, G.; Shah, J.; Joober, R.; Lepage, M.; Malla, A. A NEET Distinction: Youths Not in Employment, Education or Training follow Different Pathways to Illness and Care in Psychosis. Soc. Psychiatry Psychiatr. Epidemiol. 2018, 53, 1401–1411. [Google Scholar] [CrossRef] [PubMed]
- Ralston, K.; Everington, D.; Feng, Z.; Dibben, C. Economic inactivity, Not in Employment, Education or Training (NEET) and Scarring: The Importance of NEET as a Marker of Long-Term Disadvantage. Work Employ. Soc. 2022, 36, 59–79. [Google Scholar] [CrossRef]
- Rodriguez-Modroño, P. Youth Unemployment, NEETs and Structural Inequality in Spain. Int. J. Manpow. 2019, 40, 433–448. [Google Scholar] [CrossRef]
- Papadakis, N.; Amanaki, E.; Drakaki, M.; Saridaki, S. Employment/unemployment, education and poverty in the Greek Youth, within the EU context. Int. J. Educ. Res. 2020, 99, 101503. [Google Scholar] [CrossRef]
- Aina, C.; Brunetti, I.; Mussida, C.; Scicchitano, S. Who Lost the Most? Distributive Effects of COVID-19 Pandemic. GLO Disc. Pap. 2021, 829, 1–12. [Google Scholar]
- Lőrinc, M.; Ryan, L.; D’Angelo, A.; Kaye, N. De-individualising the ‘NEET Problem’: An Ecological Systems Analysis. Eur. Educ. Res. J. 2020, 19, 412–427. [Google Scholar] [CrossRef]
- Lallukka, T.; Kerkelä, M.; Ristikari, T.; Merikukka, M.; Hiilamo, H.; Virtanen, M.; Overland, S.; Gissler, M.; Halonen, J.I. Determinants of Long-Term Unemployment in Early Adulthood: A Finnish Birth Cohort Study. SSM—Popul. Health 2019, 8, 100410. [Google Scholar] [CrossRef] [PubMed]
- Salvà-Mut, F.; Tugores-Ques, M.; Quintana-Murci, E. NEETs in Spain: An Analysis in A Context of Economic Crisis. Int. J. Lifelong Educ. 2018, 37, 168–183. [Google Scholar] [CrossRef]
- Vallejo, C.; Dooly, M. Early School Leavers and Social Disadvantage in Spain: From Books to Bricks and Vice-Versa. Eur. J. Educ. 2013, 48, 391–404. [Google Scholar] [CrossRef]
- Lynn, V.V.; Mark, L.; Rolf, V.D.V. The Low Skills Trap: The Failure of Education and Social Policies in Preventing Low-Literate Young People from Being Long-Term NEET. J. Youth Stud. 2022, 25, 1–35. [Google Scholar]
- Ringbom, I.; Suvisaari, J.; Kääriälä, A.; Sourander, A.; Gissler, M.; Kelleher, I.; Gyllenberg, D. Psychotic Disorders in Adolescence and Later Long-Term Exclusion from Education and Employment. Schizophr. Bull. 2023, 49, 90–98. [Google Scholar] [CrossRef]
- Lin, W.H.; Chiao, C. The Relationship between Adverse Childhood Experience and Heavy Smoking in Emerging Adulthood: The Role of Not in Education, Employment, or Training Status. J. Adolesc. Health 2022, 70, 155–162. [Google Scholar] [CrossRef]
- Berlin, M.; Kril, A.; Lausten, M.; Andersson, G.; Brnnstrm, L. Long-term NEET among young adults with experience of out-of-home care: A comparative study of three Nordic countries. Int. J. Soc. Welf. 2021, 30, 266–279. [Google Scholar] [CrossRef]
- Rodwell, L.; Romaniuk, H.; Nilsen, W.; Carlin, J.; Lee, K.; Patton, G. Adolescent Mental Health and Behavioural Predictors of Being NEET: A Prospective Study of Young Adults Not in Employment, Education, or Training. Psychol. Med. 2018, 48, 861–871. [Google Scholar] [CrossRef]
- Fakih, A.; Haimoun, N.; Kassem, M. Youth Unemployment, Gender and Institutions during Transition: Evidence from the Arab Spring. Soc. Indic. Res. 2020, 150, 311–336. [Google Scholar] [CrossRef]
- Hegelund, E.R.; Flensborg-Madsen, T.; Dammeyer, J.; Mortensen, E.L. Low IQ as A Predictor of Unsuccessful Educational and Occupational Achievement: A Register-Based Study of 1,098,742 Men in Denmark 1968–2016. Intelligence 2018, 71, 46–53. [Google Scholar] [CrossRef]
- Lüküslü, D.; Çelik, K. Gendering the NEET Category: Young NEET Women in Turkey. Turk. Stud. 2022, 23, 200–222. [Google Scholar] [CrossRef]
- Zudina, A. What Makes Youth Become NEET? Evidence from Russia. J. Youth Stud. 2022, 25, 636–649. [Google Scholar] [CrossRef]
- Holte, B.H.; Swart, I.; Hiilamo, H. The NEET Concept in Comparative Youth Research: The Nordic Countries and South Africa. J. Youth Stud. 2019, 22, 256–272. [Google Scholar] [CrossRef]
- To, S.; Victor, C.W.; Daniel, D.L.; Lau, C.D.; Su, X.B. Navigating Risk Discourses: A Narrative Analysis of Parental Experiences in the Career and Life Development of Youth Not in Education, Employment, or Training. Appl. Res. Qual. Life 2021, 16, 2039–2058. [Google Scholar] [CrossRef]
- Li, T.M.; Liu, L.; Wong, P.W. Withdrawal Experience and Possible Way-Outs from Withdrawal Behavior in Young People. Qual. Soc. Work. 2018, 17, 537–555. [Google Scholar] [CrossRef]
Type | Variable | N | Mean | S.D. | Min | Max |
---|---|---|---|---|---|---|
Dependent variable | NEET-prone | 12,616 | 0.219 | 0.414 | 0 | 1 |
Independent variable | Ability | 12,616 | 24.950 | 6.007 | 7 | 35 |
Confidence | 12,616 | 2.704 | 0.970 | 1 | 5 | |
Attitude | 12,616 | 4.708 | 1.843 | 1 | 6 | |
Only-child | 12,616 | 0.265 | 0.441 | 0 | 1 | |
Consumption | 12,616 | 2.143 | 1.080 | 1 | 6 | |
Dependence | 12,616 | 0.627 | 0.484 | 0 | 1 | |
Relative-NEET | 12,616 | 0.215 | 0.411 | 0 | 1 | |
Service | 12,616 | 0.935 | 0.246 | 0 | 1 | |
Num-service | 12,616 | 3.049 | 1.911 | 0 | 6 | |
Loan | 12,616 | 0.226 | 0.418 | 0 | 1 | |
Control variable | Gender | 12,616 | 0.395 | 0.489 | 0 | 1 |
Age | 12,616 | 19.720 | 1.534 | 15 | 45 | |
Nationality | 12,616 | 0.181 | 0.385 | 0 | 1 | |
Marriage | 12,616 | 0.007 | 0.083 | 0 | 1 | |
Registration | 12,616 | 0.275 | 0.447 | 0 | 1 | |
Family-income | 12,616 | 2.300 | 1.518 | 1 | 5 |
Type (1) | Samples N (%) (2) | NEET-Prone Students N (%) (3) |
---|---|---|
(1) Gender | ||
Male | 4980 (39.47%) | 1573 (56.91%) |
Female | 7636 (60.53%) | 1191 (43.09%) |
(2) Age | ||
18 and below | 2005 (15.89%) | 415 (15.01%) |
19 | 4221 (33.46%) | 1025 (37.08%) |
20 | 3791 (30.05%) | 875 (31.66%) |
21 | 1564 (12.40%) | 318 (11.51%) |
22 and above | 1035 (8.20%) | 131 (4.74%) |
(3) Nationality | ||
The Han nationality | 10,331 (81.89%) | 2362 (85.46%) |
Others | 2285 (18.11%) | 402 (14.54%) |
(4) Household registration | ||
Rural | 9143 (72.47%) | 2274 (82.27%) |
Urban | 3473 (27.53%) | 490 (17.73%) |
(5) Educational background | ||
Associate degree | 9558 (75.76%) | 2450 (88.64%) |
Bachelor degree | 2793 (22.14%) | 301 (10.89%) |
Master’s degree | 208 (1.65%) | 11 (0.40%) |
Doctor’s degree | 57 (0.45%) | 2 (0.07%) |
(6) Level of school | ||
College or vocational college | 9252 (73.34%) | 2393 (86.58%) |
General undergraduate universities | 497 (3.94%) | 80 (2.89%) |
Double first-class universities | 2867 (22.73%) | 293 (10.60%) |
Personal Ability | Confidence in Job Hunting | Attitude towards NEET | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Ability | −0.050 *** | −0.048 *** | ||||
(0.004) | (0.004) | |||||
Confidence | −0.229 *** | −0.221 *** | ||||
(0.023) | (0.023) | |||||
Attitude | −0.107 *** | −0.101 *** | ||||
(0.011) | (0.011) | |||||
Gender | 0.255 *** | 0.254 *** | 0.168 *** | |||
(0.045) | (0.045) | (0.045) | ||||
Age | −0.090 *** | −0.098 *** | −0.091 *** | |||
(0.017) | (0.017) | (0.017) | ||||
Nationality | −0.392 *** | −0.394 *** | −0.380 *** | |||
(0.062) | (0.062) | (0.062) | ||||
Marriage | −0.509 | −0.475 | −0.664 * | |||
(0.362) | (0.362) | (0.361) | ||||
Registration | −0.645 *** | −0.644 *** | −0.680 *** | |||
(0.057) | (0.057) | (0.056) | ||||
Family-income | −0.077 *** | −0.077 *** | −0.076 *** | |||
(0.016) | (0.016) | (0.016) | ||||
_cons | −0.051 | 1.973 *** | −0.667 *** | 1.533 *** | −0.777 *** | 1.312 *** |
(0.089) | (0.341) | (0.063) | (0.340) | (0.054) | (0.333) | |
N | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6534.94 | −6385.24 | −6581.60 | −6428.30 | −6587.34 | −6434.42 |
LR chi2 | 195.85 | 495.24 | 102.53 | 409.12 | 91.05 | 396.89 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pearson chi2 | 130.48 | 3045.30 | 77.76 | 1374.33 | 25.01 | 1381.07 |
Prob > chi2 | 0.000 | 0.295 | 0.000 | 0.001 | 0.000 | 0.011 |
Pseudo R2 | 0.015 | 0.037 | 0.008 | 0.031 | 0.007 | 0.030 |
Only Child? | Consumption Level | Economic Dependence on Family Members | Any NEET Relatives ? | |||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Only-child | −0.326 *** | −0.135 ** | ||||||
(0.051) | (0.056) | |||||||
Consumption | −0.159 *** | −0.076 *** | ||||||
(0.022) | (0.023) | |||||||
Dependence | 0.349 *** | 0.347 *** | ||||||
(0.007) | (0.007) | |||||||
Relative-NEET | −0.261 *** | −0.234 *** | ||||||
(0.055) | (0.056) | |||||||
Gender | 0.223 *** | 0.204 *** | 0.046 *** | 0.211 *** | ||||
(0.044) | (0.044) | (0.007) | (0.044) | |||||
Age | −0.091 *** | −0.091 *** | −0.002 | −0.090 *** | ||||
(0.017) | (0.017) | (0.002) | (0.017) | |||||
Nationality | −0.385 *** | −0.348 *** | −0.069 *** | −0.371 *** | ||||
(0.062) | (0.062) | (0.009) | (0.062) | |||||
Marriage | −0.544 | −0.540 | 0.044 | −0.532 | ||||
(0.360) | (0.359) | (0.041) | (0.360) | |||||
Registration | −0.633 *** | −0.686 *** | −0.082 *** | −0.670 *** | ||||
(0.059) | (0.058) | (0.008) | (0.056) | |||||
Family-income | −0.082 *** | −0.015 *** | −0.085 *** | |||||
(0.016) | (0.002) | (0.016) | ||||||
_cons | −1.190 *** | 0.861 *** | −0.938 *** | 0.808 ** | 0.000 | 0.088 * | −1.218 *** | 0.881 *** |
(0.025) | (0.330) | (0.049) | (0.330) | (0.006) | (0.045) | (0.024) | (0.330) | |
N | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6600.21 | −6447.13 | −6569.20 | −6423.67 | −6612.60 | −6448.62 | ||
LR chi2 | 65.29 | 371.46 | 127.32 | 418.39 | 40.52 | 368.48 | ||
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
Pearson chi2 | 0.00 | 671.32 | 23.83 | 1638.49 | 0.00 | 736.95 | ||
Prob > chi2 | 0.000 | 0.030 | 0.000 | 0.130 | 0.000 | 0.100 | ||
Pseudo R2 | 0.003 | 0.024 | 0.004 | 0.023 | 0.002 | 0.025 | ||
Adj R2 | 0.167 | 0.185 |
Do Schools Provide Employment Services? | Number of Employment Services Provided by Schools | Any Loans from Society? | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Service | −0.647 *** | −0.591 *** | ||||
(0.077) | (0.079) | |||||
Num-service | −0.130 *** | −0.117 *** | ||||
(0.012) | (0.012) | |||||
Loan | −0.340 *** | −0.397 *** | ||||
(0.055) | (0.057) | |||||
Gender | 0.196 *** | 0.198 *** | 0.216 *** | |||
(0.044) | (0.044) | (0.044) | ||||
Age | −0.093 *** | −0.095 *** | −0.086 *** | |||
(0.017) | (0.017) | (0.017) | ||||
Nationality | −0.369 *** | −0.381 *** | −0.279 *** | |||
(0.062) | (0.062) | (0.063) | ||||
Marriage | −0.587 | −0.604 * | −0.478 | |||
(0.360) | (0.361) | (0.360) | ||||
Registration | −0.670 *** | −0.651 *** | −0.707 *** | |||
(0.056) | (0.056) | (0.056) | ||||
Family-income | −0.079 *** | −0.072 *** | −0.096 *** | |||
(0.016) | (0.016) | (0.016) | ||||
_cons | −0.673 *** | 1.423 *** | −0.893 *** | 1.239 *** | −1.200 *** | 0.850 ** |
(0.074) | (0.339) | (0.039) | (0.335) | (0.024) | (0.330) | |
N | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6600.21 | −6447.13 | −6569.20 | −6423.67 | −6612.60 | −6448.61 |
LR chi2 | 65.29 | 371.46 | 127.32 | 418.39 | 40.52 | 368.48 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Pearson chi2 | 0.00 | 671.32 | 23.83 | 1638.49 | 0.00 | 736.95 |
Prob > chi2 | 0.000 | 0.030 | 0.000 | 0.130 | 0.000 | 0.100 |
Pseudo R2 | 0.005 | 0.028 | 0.010 | 0.032 | 0.003 | 0.028 |
Individual-Level Factors | Family-Level Factors | Social-Level Factors | All Factors | |
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Ability | −0.040 *** | −0.040 *** | ||
(0.004) | (0.004) | |||
Confidence | −0.158 *** | −0.159 *** | ||
(0.024) | (0.024) | |||
Attitude | −0.090 *** | −0.078 *** | ||
(0.011) | (0.012) | |||
Only-child | −0.133 ** | −0.136 ** | ||
(0.056) | (0.057) | |||
Consumption | −0.068 *** | −0.057 ** | ||
(0.023) | (0.024) | |||
Relative-NEET | −0.225 *** | −0.199 *** | ||
(0.056) | (0.057) | |||
Service | −0.302 *** | −0.207 ** | ||
(0.089) | (0.091) | |||
Num-service | −0.100 *** | −0.089 *** | ||
(0.013) | (0.013) | |||
Loan | −0.417 *** | −0.458 *** | ||
(0.057) | (0.058) | |||
Gender | 0.237 *** | 0.212 *** | 0.196 *** | 0.232 *** |
(0.045) | (0.044) | (0.045) | (0.046) | |
Age | −0.095 *** | −0.088 *** | −0.090 *** | −0.089 *** |
(0.017) | (0.017) | (0.017) | (0.017) | |
Nationality | −0.413 *** | −0.365 *** | −0.285 *** | −0.313 *** |
(0.063) | (0.062) | (0.063) | (0.064) | |
Marriage | −0.570 | −0.509 | −0.522 | −0.461 |
(0.368) | (0.359) | (0.361) | (0.367) | |
Registration | −0.631 *** | −0.641 *** | −0.681 *** | −0.597 *** |
(0.057) | (0.060) | (0.057) | (0.061) | |
Family-income | −0.066 *** | −0.083 *** | ||
(0.016) | (0.016) | |||
_cons | 2.675 *** | 0.818 ** | 1.464 *** | 3.081 *** |
(0.350) | (0.330) | (0.341) | (0.360) | |
N | 12,616 | 12,616 | 12,616 | 12,616 |
Log likelihood | −6333.36 | −6471.80 | −6391.03 | −6261.01 |
LR chi2 | 598.99 | 322.12 | 483.67 | 743.69 |
Prob > chi2 | 0.000 | 0.000 | 0.000 | 0.000 |
Pearson chi2 | 7951.05 | 1151.71 | 2189.01 | 11,715.70 |
Prob > chi2 | 0.8212 | 0.041 | 0.654 | 0.630 |
Pseudo R2 | 0.045 | 0.024 | 0.036 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Li, Y.; Yu, A.; Zhang, W. Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China. Behav. Sci. 2024, 14, 98. https://doi.org/10.3390/bs14020098
Zhao L, Li Y, Yu A, Zhang W. Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China. Behavioral Sciences. 2024; 14(2):98. https://doi.org/10.3390/bs14020098
Chicago/Turabian StyleZhao, Lu, Yang Li, Ao Yu, and Weike Zhang. 2024. "Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China" Behavioral Sciences 14, no. 2: 98. https://doi.org/10.3390/bs14020098
APA StyleZhao, L., Li, Y., Yu, A., & Zhang, W. (2024). Behavioral Characteristics of China’s NEET-Prone University Students and Graduates: A Survey from Southwest China. Behavioral Sciences, 14(2), 98. https://doi.org/10.3390/bs14020098