Impacts of User Personality Traits on Their Contributions in Idea Implementation: A Moderated Mediation Model
Abstract
:1. Introduction
2. Theoretical Foundation and Research Hypotheses
2.1. User Contributions in Idea Implementation within the Open Innovation Community
2.2. Personality Trait Theory
2.3. User Engagement
2.4. Impact of User Personality Traits on Innovation Contribution
2.5. The Mediating Role of User Engagement
2.6. The Moderating Effect of Community Incentives
3. Research Methodology
3.1. Sample Selection and Data Source
3.2. Variable Measurement
3.2.1. Personality Trait
- Text cleaning. Firstly, we perform text cleaning on the user’s original text content, removing numerical numbers, repeated but meaningless keywords, etc.
- Text segmentation. The “Jieba” tool, a robust Chinese word segmentation tool, is employed to segment user-posted information into individual words, convert it into pure phrase text, and calculate the overall word frequency [71]. The length of the segmented phrase is recorded as n.
- Phrase matching. If the word segmentation result is retrieved and makes a hit in the LIWC dictionary, the corresponding label will be directly assigned to the phrase; otherwise, semantic similarity will be considered for classification. We considered using the open-source pre-training word vector model “w2v. baidu_encyclopedia. target. word. dim300” provided by Baidu Paddle NLP to calculate the word vectors of all words under various feature word tags. And based on the above pre-training word vector model, the word vector of the phrase that does not make a hit in the LIWC dictionary retrieval is obtained. And then, the cosine similarity between the spatial position of these feature words and some existing feature tags is calculated, and the feature classification tag with the highest cosine similarity is chosen as the final feature classification tag.
- Count word frequency. Based on the result of phrase matching, LIWC is used to count the word frequency of each type of feature word proposed by users.
- Score calculation. According to the assignment result of the tag of characteristic words and the mapping relationship between the LIWC characteristic words in the table and the five personality characteristics, the user’s score in each type of personality trait dimension is calculated and recorded as Pi (i = {O, C, E, A, N}). The overall formula is i = {O, C, E, A, N}, j ∈ {1,77}. Among them, Kij is the correlation coefficient between the j-type characteristic words and the i-type personality, and Fj is the word frequency of the j-type characteristic words.
3.2.2. User Contributions in Idea Implementation
3.2.3. User Engagement
3.2.4. Community Incentives
3.2.5. Control Variable
3.3. Data Analysis
Descriptive Statistics, Correlation Analysis, and Collinearity Analysis
4. Data Analysis and Results
4.1. Impact of Personality Traits on User Contributions in Idea Implementation
4.2. Mediation of User Engagement
4.3. Moderator of Community Incentives
4.4. The Moderated Mediation Effect
5. Discussion
5.1. Theoretical Contribution
5.2. Practical Enlightenment
5.3. Limitations and Future Direction
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Füller, J.; Hutter, K.; Faullant, R. Why co-creation experience matters? Creative experience and its impact on the quantity and quality of creative contributions. R&D Manag. 2011, 41, 259–273. [Google Scholar] [CrossRef]
- Dong, J.Q.; Netten, J. Information technology and external search in the open innovation age: New findings from Germany. Technol. Forecast. Soc. Chang. 2017, 120, 223–231. [Google Scholar] [CrossRef]
- Mahr, D.; Lievens, A. Virtual lead user communities: Drivers of knowledge creation for innovation. Res. Policy 2012, 41, 167–177. [Google Scholar] [CrossRef]
- Fiedler, M.; Sarstedt, M. Influence of community design on user behaviors in online communities. J. Bus. Res. 2014, 67, 2258–2268. [Google Scholar] [CrossRef]
- Bradonjic, P.; Franke, N.; Lüthje, C. Decision-makers’ underestimation of user innovation. Res. Policy 2019, 48, 1354–1361. [Google Scholar] [CrossRef]
- Wang, N.; Tiberius, V.; Chen, X.; Brem, A.; Yu, F. Idea selection and adoption by users—A process model in an online innovation community. Technol. Anal. Strat. Manag. 2021, 33, 1036–1051. [Google Scholar] [CrossRef]
- Liu, Q.; Du, Q.; Hong, Y.; Fan, W.; Wu, S. User idea implementation in open innovation communities: Evidence from a new product development crowdsourcing community. Inf. Syst. J. 2020, 30, 899–927. [Google Scholar] [CrossRef]
- Yang, M.; Han, C. Stimulating innovation: Managing peer interaction for idea generation on digital innovation platforms. J. Bus. Res. 2021, 125, 456–465. [Google Scholar] [CrossRef]
- Hoornaert, S.; Ballings, M.; Malthouse, E.C.; Van den Poel, D. Identifying New Product Ideas: Waiting for the Wisdom of the Crowd or Screening Ideas in Real Time. J. Prod. Innov. Manag. 2017, 34, 580–597. [Google Scholar] [CrossRef]
- Li, M.; Kankanhalli, A.; Kim, S.H. Which ideas are more likely to be implemented in online user innovation communities? An empirical analysis. Decis. Support Syst. 2016, 84, 28–40. [Google Scholar] [CrossRef]
- Dong, L.; Huang, L.; Hou, J.; Liu, Y. Continuous content contribution in virtual community: The role of status-standing on motivational mechanisms. Decis. Support Syst. 2020, 132, 113283. [Google Scholar] [CrossRef]
- Feng, W.; Tu, R.; Hsieh, P. Can gamification increases consumers’ engagement in fitness apps? The moderating role of commensurability of the game elements. J. Retail. Consum. Serv. 2020, 57, 102229. [Google Scholar] [CrossRef]
- Costa, P.T.; McCrae, R.R. Normal personality assessment in clinical practice: The NEO Personality Inventory. Psychol. Assess. 1992, 4, 5–13. [Google Scholar] [CrossRef]
- Olmedilla, M.; Send, H.; Toral, S. Identification of the unique attributes and topics within Smart Things Open Innovation Communities. Technol. Forecast. Soc. Chang. 2019, 146, 133–147. [Google Scholar] [CrossRef]
- Dahlander, L.; Frederiksen, L. The Core and Cosmopolitans: A Relational View of Innovation in User Communities. Organ. Sci. 2012, 23, 988–1007. [Google Scholar] [CrossRef]
- Roberts, B.W.; Yoon, H.J. Personality Psychology. Annu. Rev. Psychol. 2022, 73, 489–516. [Google Scholar] [CrossRef]
- Jung, Y.; Takeuchi, N. Relationships among leader–member exchange, person–organization fit and work attitudes in Japanese and Korean organizations: Testing a cross-cultural moderating effect. Int. J. Hum. Resour. Manag. 2014, 25, 23–46. [Google Scholar] [CrossRef]
- Roberts, B.W.; Lejuez, C.; Krueger, R.F.; Richards, J.M.; Hill, P.L. What is conscientiousness and how can it be assessed? Dev. Psychol. 2014, 50, 1315–1330. [Google Scholar] [CrossRef]
- Bleidorn, W.; Hopwood, C.J.; Lucas, R.E. Life Events and Personality Trait Change. J. Pers. 2018, 86, 83–96. [Google Scholar] [CrossRef]
- Roberts, B.W.; Kuncel, N.R.; Shiner, R.; Caspi, A.; Goldberg, L.R. The Power of Personality: The Comparative Validity of Personality Traits, Socioeconomic Status, and Cognitive Ability for Predicting Important Life Outcomes. Perspect. Psychol. Sci. 2007, 2, 313–345. [Google Scholar] [CrossRef]
- Shi, X.; Evans, R.; Pan, W.; Shan, W. Understanding the effects of personality traits on solver engagement in crowdsourcing communities: A moderated mediation investigation. Inf. Technol. People 2021, 35, 750–780. [Google Scholar] [CrossRef]
- Kim, H. Investigating the Mediating Role of Social Networking Service Usage on the Big Five Personality Traits and on the Job Satisfaction of Korean Workers. J. Organ. End User Comput. 2019, 31, 110–123. [Google Scholar] [CrossRef]
- Van Doorn, J.; Lemon, K.N.; Mittal, V.; Nass, S.; Pick, D.; Pirner, P.; Verhoef, P.C. Customer Engagement Behavior: Theoretical Foundations and Research Directions. J. Serv. Res. 2010, 13, 253–266. [Google Scholar] [CrossRef]
- Sowmya, G.; Chakraborty, D.; Polisetty, A.; Khorana, S.; Buhalis, D. Use of metaverse in socializing: Application of the big five personality traits framework. Psychol. Mark. 2023, 40, 2132–2150. [Google Scholar] [CrossRef]
- Fast, L.A.; Funder, D.C. Personality as manifest in word use: Correlations with self-report, acquaintance report, and behavior. J. Pers. Soc. Psychol. 2008, 94, 334–346. [Google Scholar] [CrossRef] [PubMed]
- Mavis, G.; Toroslu, I.H.; Karagoz, P. Personality Analysis Using Classification on Turkish Tweets. Int. J. Cogn. Informatics Nat. Intell. 2021, 15, 1–18. [Google Scholar] [CrossRef]
- Von Hippel, E. Democratizing Innovation: The evolving phenomenon of user innovation. J. Betriebswirtschaft 2005, 55, 63–78. [Google Scholar] [CrossRef]
- Lüthje, C. Characteristics of innovating users in a consumer goods field: An empirical study of sport-related product consumers. Technovation 2004, 24, 683–695. [Google Scholar] [CrossRef]
- Atuahene-Gima, K.; Slater, S.F.; Olson, E.M. The Contingent Value of Responsive and Proactive Market Orientations for New Product Program Performance*. J. Prod. Innov. Manag. 2005, 22, 464–482. [Google Scholar] [CrossRef]
- Ogink, T.; Dong, J.Q. Stimulating innovation by user feedback on social media: The case of an online user innovation community. Technol. Forecast. Soc. Chang. 2019, 144, 295–302. [Google Scholar] [CrossRef]
- Paulini, M.; Maher, M.L.; Murty, P. Motivating participation in online innovation communities. Int. J. Web Based Communities 2014, 10, 94. [Google Scholar] [CrossRef]
- Pirkkalainen, H.; Pawlowski, J.M.; Bick, M.; Tannhäuser, A.-C. Engaging in knowledge exchange: The instrumental psychological ownership in open innovation communities. Int. J. Inf. Manag. 2018, 38, 277–287. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Y.; Ma, S.; Lu, J. Does human capital matter for energy consumption in China? Evidence from 30 Chinese provinces. Environ. Sci. Pollut. Res. 2023, 30, 93030–93043. [Google Scholar] [CrossRef]
- Jeppesen, L.B.; Frederiksen, L. Why Do Users Contribute to Firm-Hosted User Communities? The Case of Computer-Controlled Music Instruments. Organ. Sci. 2006, 17, 45–63. [Google Scholar] [CrossRef]
- Schemmann, B.; Herrmann, A.M.; Chappin, M.M.; Heimeriks, G.J. Crowdsourcing ideas: Involving ordinary users in the ideation phase of new product development. Res. Policy 2016, 45, 1145–1154. [Google Scholar] [CrossRef]
- Ma, J.; Lu, Y.; Gupta, S. User innovation evaluation: Empirical evidence from an online game community. Decis. Support Syst. 2019, 117, 113–123. [Google Scholar] [CrossRef]
- Liang, Y.; Ow, T.T.; Wang, X. How do group performances affect users’ contributions in online communities? A cross-level moderation model. J. Organ. Comput. Electron. Commer. 2020, 30, 129–149. [Google Scholar] [CrossRef]
- Meng, Q.; Hang, Y.; Chen, X. Network Position and Crowdsourcing Innovation Contribution Behavior: The Moderating Role of Knowledge Absorption Capacity. Complexity 2021, 2021, 9969509. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Q.; Qi, C.; Liang, X. The effects of online reviews on the popularity of user-generated design ideas within the Lego community. Eur. J. Mark. 2022, 56, 2622–2648. [Google Scholar] [CrossRef]
- Li, L.; Du, Y.; Ma, S.; Ma, X.; Zheng, Y.; Han, X. Environmental disaster and public rescue: A social media perspective. Environ. Impact Assess. Rev. 2023, 100, 107093. [Google Scholar] [CrossRef]
- Hartmann, M.R.; Hartman, R.K. Hiding practices in employee-user innovation. Res. Policy 2023, 4, 1–12. [Google Scholar] [CrossRef]
- Mulhuijzen, M.; de Jong, J.P.J. Diffusion to peers in firm-hosted user innovation communities: Contributions by profes-sional versus amateur users. Res. Policy 2024, 1, 1–13. [Google Scholar] [CrossRef]
- Liu, Y.; Li, X.; Ma, S.; Li, M. A chain mediation model of entrepreneurial teachers’ experience and teaching competency—Evidence from China. Int. J. Manag. Educ. 2024, 22, 100946. [Google Scholar] [CrossRef]
- Zhao, H.; Seibert, S.E. The Big Five personality dimensions and entrepreneurial status: A meta-analytical review. J. Appl. Psychol. 2006, 91, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Barrick, M.R. Yes, Personality Matters: Moving on to More Important Matters. Hum. Perform. 2005, 18, 359–372. [Google Scholar] [CrossRef]
- Le, H.; Oh, I.-S.; Robbins, S.B.; Ilies, R.; Holland, E.; Westrick, P. Too much of a good thing: Curvilinear relationships between personality traits and job performance. J. Appl. Psychol. 2011, 96, 113–133. [Google Scholar] [CrossRef]
- Teodorescu, A.; Furnham, A.; MacRae, I. Trait correlates of success at work. Int. J. Sel. Assess. 2017, 25, 36–42. [Google Scholar] [CrossRef]
- Khedhaouria, A.; Cucchi, A. Technostress creators, personality traits, and job burnout: A fuzzy-set configurational analysis. J. Bus. Res. 2019, 101, 349–361. [Google Scholar] [CrossRef]
- Matzler, K.; Renzl, B.; Müller, J.; Herting, S.; Mooradian, T.A. Personality traits and knowledge sharing. J. Econ. Psychol. 2008, 29, 301–313. [Google Scholar] [CrossRef]
- Bonfanti, R.C.; Tommasi, F.; Ceschi, A.; Sartori, R.; Ruggieri, S. The Antecedents of the Technology Acceptance Model in Microentrepreneurs’ Intention to Use Social Networking Sites. Eur. J. Investig. Heal. Psychol. Educ. 2023, 13, 1306–1317. [Google Scholar] [CrossRef]
- González-Padilla, P.; Navalpotro, F.D.; Saura, J.R. Managing entrepreneurs’ behavior personalities in digital environments: A review. Int. Entrep. Manag. J. 2023, 20, 89–113. [Google Scholar] [CrossRef]
- Birch, K.; Cochrane, D.; Ward, C. Data as asset? The measurement, governance, and valuation of digital personal data by Big Tech. Big Data Soc. 2021, 8, 1–15. [Google Scholar] [CrossRef]
- France, C.; Merrilees, B.; Miller, D. An integrated model of customer-brand engagement: Drivers and consequences. J. Brand Manag. 2016, 23, 119–136. [Google Scholar] [CrossRef]
- Brodie, R.J.; Hollebeek, L.D.; Jurić, B.; Ilić, A. Customer Engagement: Conceptual Domain, Fundamental Propositions, and Implications for Research. J. Serv. Res. 2011, 14, 252–271. [Google Scholar] [CrossRef]
- Bowden, J.L.-H. The Process of Customer Engagement: A Conceptual Framework. J. Mark. Theory Pract. 2009, 17, 63–74. [Google Scholar] [CrossRef]
- Shahbaznezhad, H.; Dolan, R.; Rashidirad, M. The Role of Social Media Content Format and Platform in Users’ Engagement Behavior. J. Interact. Mark. 2020, 53, 47–65. [Google Scholar] [CrossRef]
- Barrick, M.R.; Mount, M.K.; Judge, T.A. Personality and Performance at the Beginning of the New Millennium: What Do We Know and Where Do We Go Next? Int. J. Sel. Assess. 2001, 9, 9–30. [Google Scholar] [CrossRef]
- Judge, T.A.; Zapata, C.P. The Person–Situation Debate Revisited: Effect of Situation Strength and Trait Activation on the Validity of the Big Five Personality Traits in Predicting Job Performance. Acad. Manag. J. 2015, 58, 1149–1179. [Google Scholar] [CrossRef]
- Ross, C.; Orr, E.S.; Sisic, M.; Arseneault, J.M.; Simmering, M.G.; Orr, R.R. Personality and motivations associated with Facebook use. Comput. Hum. Behav. 2009, 25, 578–586. [Google Scholar] [CrossRef]
- McElroy, J.C.; Hendrickson, A.; Townsend, A.M.; DeMarie, S.M. Dispositional Factors in Internet Use: Personality versus Cognitive Style. MIS Q. 2007, 31, 809. [Google Scholar] [CrossRef]
- Stock, R.M.; von Hippel, E.; Gillert, N.L. Impacts of personality traits on consumer innovation success. Res. Policy 2016, 45, 757–769. [Google Scholar] [CrossRef]
- Wang, J.-L.; Jackson, L.A.; Zhang, D.-J.; Su, Z.-Q. The relationships among the Big Five Personality factors, self-esteem, narcissism, and sensation-seeking to Chinese University students’ uses of social networking sites (SNSs). Comput. Hum. Behav. 2012, 28, 2313–2319. [Google Scholar] [CrossRef]
- Moore, K.; McElroy, J.C. The influence of personality on Facebook usage, wall postings, and regret. Comput. Hum. Behav. 2012, 28, 267–274. [Google Scholar] [CrossRef]
- Ashton, M.C.; Lee, K.; Paunonen, S.V. What is the central feature of extraversion? Social attention versus reward sensitivity. J. Pers. Soc. Psychol. 2002, 83, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Hollebeek, L.D.; Srivastava, R.K.; Chen, T. Correction to: S-D logic–informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM. J. Acad. Mark. Sci. 2019, 47, 186. [Google Scholar] [CrossRef]
- Tett, R.P.; Toich, M.J.; Ozkum, S.B. Trait Activation Theory: A Review of the Literature and Applications to Five Lines of Personality Dynamics Research. Annu. Rev. Organ. Psychol. Organ. Behav. 2021, 8, 199–233. [Google Scholar] [CrossRef]
- Li, L.; Ma, S.; Zheng, Y.; Ma, X.; Duan, K. Do regional integration policies matter? Evidence from a quasi-natural experiment on heterogeneous green innovation. Energy Econ. 2022, 116, 106426. [Google Scholar] [CrossRef]
- Busalim, A.H.; Ghabban, F.; Hussin, A.R.C. Customer engagement behaviour on social commerce platforms: An empirical study. Technol. Soc. 2020, 64, 101437. [Google Scholar] [CrossRef]
- Pennebaker, J.W.; Mehl, M.R.; Niederhoffer, K.G. Psychological Aspects of Natural Language Use: Our Words, Our Selves. Annu. Rev. Psychol. 2003, 54, 547–577. [Google Scholar] [CrossRef]
- Schwartz, H.A.; Eichstaedt, J.C.; Kern, M.L.; Dziurzynski, L.; Ramones, S.M.; Agrawal, M.; Shah, A.; Kosinski, M.; Stillwell, D.; Seligman, M.E.P.; et al. Personality, Gender, and Age in the Language of Social Media: The Open-Vocabulary Approach. PLoS ONE 2013, 8, e73791. [Google Scholar] [CrossRef]
- Wang, E.; Chen, Y.; Li, Y. Research on a Hotel Collaborative Filtering Recommendation Algorithm Based on the Probabilistic Language Term Set. Mathematics 2023, 11, 4106. [Google Scholar] [CrossRef]
- Chen, G.; Yang, S.; Tang, S. Sense of virtual community and knowledge contribution in a P3 virtual community. Internet Res. 2013, 23, 4–26. [Google Scholar] [CrossRef]
- Ng, T.W.H.; Eby, L.T.; Sorensen, K.L.; Feldman, D.C. Predictors of Objective and Subjective Career Success: A Meta-Analysis. Pers. Psychol. 2005, 58, 367–408. [Google Scholar] [CrossRef]
- Islam, J.U.; Rahman, Z.; Hollebeek, L.D. Personality factors as predictors of online consumer engagement: An empirical investigation. Mark. Intell. Plan. 2017, 35, 510–528. [Google Scholar] [CrossRef]
- Gvili, Y.; Kol, O.; Levy, S. The value(s) of information on social network sites: The role of user personality traits. Eur. Rev. Appl. Psychol. 2019, 70, 100511. [Google Scholar] [CrossRef]
- Amichai-Hamburger, Y.; Ben-Artzi, E. Loneliness and Internet use. Comput. Hum. Behav. 2003, 19, 71–80. [Google Scholar] [CrossRef]
- Ryan, T.; Xenos, S. Who uses Facebook? An investigation into the relationship between the Big Five, shyness, narcissism, loneliness, and Facebook usage. Comput. Hum. Behav. 2011, 27, 1658–1664. [Google Scholar] [CrossRef]
- Correa, T.; Hinsley, A.W.; de Zúñiga, H.G. Who interacts on the Web? The intersection of users’ personality and social media use. Comput. Hum. Behav. 2010, 26, 247–253. [Google Scholar] [CrossRef]
- Bleidorn, W.; Hopwood, C.J. Using Machine Learning to Advance Personality Assessment and Theory. Pers. Soc. Psychol. Rev. 2018, 23, 190–203. [Google Scholar] [CrossRef] [PubMed]
Characteristic Word Category | Example | Number of Words |
---|---|---|
Pronoun | I, them, myself | 104 |
Negative word | No | 111 |
Positive emotion words | Joy, love, merit | 730 |
Anxious words | Anxiety, fear | 169 |
Angry words | Anger, revenge, hate | 358 |
…… | …… | …… |
Leisure words | Travel, vacation, hobbies | 462 |
LIWC Category | E | A | C | N | O |
---|---|---|---|---|---|
Pronoun | 0 | 0 | −0.03 *** | 0.04 *** | 0.07 *** |
Negative word | −0.06 *** | −0.05 *** | −0.03 *** | 0.07 *** | 0.02 *** |
Positive words | 0.13 *** | 0.13 *** | 0.1 *** | −0.08 *** | −0.07 *** |
Anxious words | −0.04 *** | −0.02 *** | −0.12 *** | 0.06 *** | 0.07 *** |
Angry words | −0.05 *** | −0.19 *** | −0.12 *** | 0.11 *** | 0.02 *** |
…… | …… | …… | …… | …… | …… |
Leisure words | 0.06 *** | 0.04 *** | 0.03 *** | −0.07 *** | 0 |
Variable | Mean | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | VIF |
---|---|---|---|---|---|---|---|---|---|---|
Contribution | 6.213 | 7.027 | 1 | 1.152 | ||||||
Engagement | 39.905 | 38.287 | 0.309 *** | 1 | 1.234 | |||||
C | 2.650 | 0.948 | 0.074 *** | 0.071 *** | 1 | 2.922 | ||||
O | 3.311 | 0.708 | −0.022 *** | −0.019 *** | −0.652 *** | 1 | 2.268 | |||
N | 1.210 | 0.661 | −0.057 ** | −0.083 *** | −0.805 ** | −0.739 *** | 1 | 3.707 | ||
incentives | 21.135 | 13.635 | 0.251 *** | 0.358 *** | 0.137 *** | −0.080 *** | −0.146 *** | 1 | 1.573 | |
tenure | 28.365 | 25.464 | 0.054 *** | 0.246 *** | 0.075 *** | 0.008 | −0.060 *** | 0.052 *** | 1 | 1.415 |
M1 | M2 | M3 | M4 | M5 | M6 | |
---|---|---|---|---|---|---|
Conscientiousness | 0.123 *** | 0.176 *** | 0.084 *** | 1.233 *** | ||
Openness | 0.101 *** | 3.564 *** | 0.026 ** | 0.188 *** | ||
Neuroticism | −0.052 *** | -6.585 *** | 0.033 ** | −2.859 *** | ||
User engagement | 0.018 *** | |||||
C* incentives | 1.666 *** | |||||
O* incentives | −0.412 *** | |||||
N* incentives | −3.424 *** | |||||
Community incentives | 0.843 *** | 0.880 *** | 0.783 *** | |||
Community tenure | 0.002 *** | 0.359 *** | −0.002 *** | 0.126 *** | 0.123 *** | 0.136 *** |
Constant term | 1.162 *** | 25.432 *** | 0.694 *** | 15.012 *** | 17.160 *** | 22.441 *** |
R2 | 0.003 | 0.672 | 0.060 | 0.134 | 0.133 | 0.141 |
Conscientiousness | Openness | Neuroticism | |||||||
---|---|---|---|---|---|---|---|---|---|
β | SE | t | β | SE | t | β | SE | t | |
Personality | −0.1492 | 0.307 | −4.866 *** | 1.090 | 0.408 | 2.669 ** | 5.173 | 0.429 | 12.066 |
incentives | 0.501 | 0.042 | 11.842 *** | 1.021 | 0.060 | 17.115 ** | 1.243 | 0.023 | 53.540 *** |
Per *incentives | 0.129 | 0.014 | 9.397 *** | −0.043 | 0.018 | −2.319 * | −0.380 | 0.019 | −20.144 *** |
Com tenure | 0.126 | 0.007 | 16.853 *** | 0.123 | 0.008 | 16.343 *** | 0.136 | 0.007 | 18.253 *** |
Constant term | 22.234 | 0.880 | 25.261 *** | 14.175 | 1.374 | 10.318 *** | 12.720 | 0.588 | 21.638 *** |
R2 | 0.135 | 0.133 | 0.141 |
Effect | SE | LLCI | ULCI | ||
---|---|---|---|---|---|
Conscientiousness | Low level | −0.030 | 0.018 | −0.069 | 0.002 |
Average value | 0.071 | 0.013 | 0.043 | 0.092 | |
High level | 0.171 | 0.035 | 0.104 | 0.243 | |
Moderated Mediation index | 0.007 | 0.002 | 0.004 | 0.011 | |
Openness | Low level | 0.044 | 0.028 | −0.018 | 0.086 |
Average value | 0.011 | 0.019 | −0.024 | 0.047 | |
High level | −0.023 | 0.060 | −0.115 | 0.094 | |
Moderated Mediation index | −0.002 | 0.003 | −0.008 | 0.004 | |
Neuroticism | Low level | 0.133 | 0.044 | 0.046 | 0.201 |
Average value | −0.164 | 0.026 | −0.205 | −0.105 | |
High level | −0.461 | 0.085 | −0.582 | −0.263 | |
Moderated Mediation index | −0.022 | 0.005 | −0.028 | −0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mi, X.; Zhang, H.; Qu, F. Impacts of User Personality Traits on Their Contributions in Idea Implementation: A Moderated Mediation Model. Behav. Sci. 2024, 14, 210. https://doi.org/10.3390/bs14030210
Mi X, Zhang H, Qu F. Impacts of User Personality Traits on Their Contributions in Idea Implementation: A Moderated Mediation Model. Behavioral Sciences. 2024; 14(3):210. https://doi.org/10.3390/bs14030210
Chicago/Turabian StyleMi, Xuejiao, Huiying Zhang, and Fei Qu. 2024. "Impacts of User Personality Traits on Their Contributions in Idea Implementation: A Moderated Mediation Model" Behavioral Sciences 14, no. 3: 210. https://doi.org/10.3390/bs14030210
APA StyleMi, X., Zhang, H., & Qu, F. (2024). Impacts of User Personality Traits on Their Contributions in Idea Implementation: A Moderated Mediation Model. Behavioral Sciences, 14(3), 210. https://doi.org/10.3390/bs14030210