Chronotype, Time of Day, and Children’s Cognitive Performance in Remote Neuropsychological Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measures
2.2.1. Children’s Chronotype Questionnaire (CCTQ)
2.2.2. Verbal Fluency
2.2.3. Digit Span
2.2.4. Face Recognition Task
2.2.5. Story Memory Task
2.2.6. Rapid Automatized Naming Task and Rapid Alternating Stimulus Task
2.2.7. Language Comprehension Task
2.3. Procedures
2.4. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stowe, T.A.; McClung, C.A. How Does Chronobiology Contribute to the Development of Diseases in Later Life. Clin. Interv. Aging 2023, 18, 655–666. [Google Scholar] [CrossRef]
- Evansová, K.; Červená, K.; Novák, O.; Dudysová, D.; Nekovářová, T.; Fárková, E.; Fajnerová, I. The Effect of Chronotype and Time of Assessment on Cognitive Performance. Biol. Rhythm. Res. 2020, 53, 608–627. [Google Scholar] [CrossRef]
- May, C.P.; Hasher, L.; Healey, K. For Whom (and When) the Time Bell Tolls: Chronotypes and the Synchrony Effect. Perspect. Psychol. Sci. 2023, 18, 1520–1536. [Google Scholar] [CrossRef]
- Mongrain, V.; Lavoie, S.; Selmaoui, B.; Paquet, J.; Dumont, M. Phase Relationships between Sleep-Wake Cycle and Underlying Circadian Rhythms in Morningness-Eveningness. J. Biol. Rhythm. 2004, 19, 248–257. [Google Scholar] [CrossRef]
- Schmidt, C.; Collette, F.; Cajochen, C.; Peigneux, P. A Time to Think: Circadian Rhythms in Human Cognition. Cogn. Neuropsychol. 2007, 24, 755–789. [Google Scholar] [CrossRef]
- Cuesta, M.; Boudreau, P.; Boivin, D.B. Basic Circadian Timing and Sleep-Wake Regulation. In Sleep Disorders Medicine: Basic Science, Technical Considerations and Clinical Aspects; Chokroverty, S., Ed.; Springer: New York, NY, USA, 2017; pp. 79–102. ISBN 978-1-4939-6578-6. [Google Scholar]
- Ceglarek, A.; Hubalewska-Mazgaj, M.; Lewandowska, K.; Sikora-Wachowicz, B.; Marek, T.; Fafrowicz, M. Time-of-Day Effects on Objective and Subjective Short-Term Memory Task Performance. Chronobiol. Int. 2021, 38, 1330–1343. [Google Scholar] [CrossRef]
- Preckel, F.; Lipnevich, A.A.; Schneider, S.; Roberts, R.D. Chronotype, Cognitive Abilities, and Academic Achievement: A Meta-Analytic Investigation. Learn. Individ. Differ. 2011, 21, 483–492. [Google Scholar] [CrossRef]
- Nishida, M.; Ando, H.; Murata, Y.; Shioda, K. Mental Rotation Performance and Circadian Chronotype in University Students: A Preliminary Study. Biol. Rhythm. Res. 2021, 53, 1030–1042. [Google Scholar] [CrossRef]
- Schmidt, C.; Collette, F.; Reichert, C.F.; Maire, M.; Vandewalle, G.; Peigneux, P.; Cajochen, C. Pushing the Limits: Chronotype and Time of Day Modulate Working Memory-Dependent Cerebral Activity. Front. Neurol. 2015, 6, 155391. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Akioma, M.; Yuan, Z. Relationship between Circadian Rhythm and Brain Cognitive Functions. Front. Optoelectron. 2021, 14, 278–287. [Google Scholar] [CrossRef] [PubMed]
- Cruz, H.M.F.; Gomes, A.A.; Martins, A.M.; Leitão, J.A.; Clarisse, R.; Le Floc’h, N.; Da Silva, C.F. Morning-Evening Types İn Kindergarten, Time-of-Day And Performance On Basic Learning Skills. Int. Online J. Educ. Sci. 2016, 8, 30. [Google Scholar] [CrossRef]
- Cruz, H.; Gomes, A.; Leitao, J.; Couto, D.; Carvalhais, L.; Silva, C. Combined Impact of Diurnal Type and Time of Day on Children’s Results in a Battery of Measurements Probing Reading Abilities: Preliminary Results. In Proceedings of the 17th European Conference in Developmental Psychology, Braga, Portugal, 8–12 September 2016; pp. 9–12. [Google Scholar]
- Rey-Mermet, A.; Rothen, N. The Interplay of Time-of-Day and Chronotype Results in No General and Robust Cognitive Boost. Collabra Psychol. 2023, 9, 88337. [Google Scholar] [CrossRef]
- Fabbri, M.; Mencarelli, C.; Adan, A.; Natale, V. Time-of-Day and Circadian Typology on Memory Retrieval. Biol. Rhythm Res. 2013, 44, 125–142. [Google Scholar] [CrossRef]
- Hasher, L.; Chung, C.; May, C.P.; Foong, N. Age, Time of Testing, and Proactive Interference. Can. J. Exp. Psychol. 2002, 56, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Hornik, J.; Miniero, G. Synchrony Effects on Customers’ Responses and Behaviors. Int. J. Res. Mark. 2009, 26, 34–40. [Google Scholar] [CrossRef]
- Nowack, K.; Van Der Meer, E. The Synchrony Effect Revisited: Chronotype, Time of Day and Cognitive Performance in a Semantic Analogy Task. Chronobiol. Int. 2018, 35, 1647–1662. [Google Scholar] [CrossRef]
- Yang, L.; Hasher, L.; Wilson, D.E. Synchrony Effects in Automatic and Controlled Retrieval. Psychon. Bull. Rev. 2007, 14, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Clarisse, R.; Floc’h, N.L.; Kindelberger, C.; Feunteun, P. Daily Rhythmicity of Attention in Morning- vs. Evening-Type Adolescents at Boarding School Under Different Psychosociological Testing Conditions. Chronobiol. Int. 2010, 27, 826–841. [Google Scholar] [CrossRef]
- May, C.P.; Hasher, L.; Foong, N. Implicit Memory, Age, and Time of Day: Paradoxical Priming Effects. Psychol. Sci. 2005, 16, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, D.; Hahn, C.S.; Hasher, L.; Wiprzycka, U.J.; Zelazo, P.D. Time of Day, Intellectual Performance, and Behavioral Problems in Morning versus Evening Type Adolescents: Is There a Synchrony Effect? Personal. Individ. Differ. 2007, 42, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Iskandar, S.; Murphy, K.; Baird, A.; West, R.; Armilio, M.; Craik, F.; Stuss, D. Interacting Effects of Age and Time of Day on Verbal Fluency Performance and Intraindividual Variability. Aging Neuropsychol. Cogn. 2016, 23, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Puttaert, D.; Adam, S.; Peigneux, P. Subjectively-Defined Optimal/Non-Optimal Time of Day Modulates Controlled but Not Automatic Retrieval Processes in Verbal Memory. J. Sleep Res. 2019, 28, e12798. [Google Scholar] [CrossRef]
- Delpouve, J.; Schmitz, R.; Peigneux, P. Implicit Learning Is Better at Subjectively Defined Non-Optimal Time of Day. Cortex 2014, 58, 18–22. [Google Scholar] [CrossRef]
- Carciofo, R.; Du, F.; Song, N.; Zhang, K. Chronotype and Time-of-Day Correlates of Mind Wandering and Related Phenomena. Biol. Rhythm. Res. 2014, 45, 37–49. [Google Scholar] [CrossRef]
- Wieth, M.B.; Zacks, R.T. Time of Day Effects on Problem Solving: When the Non-Optimal Is Optimal. Think. Reason. 2011, 17, 387–401. [Google Scholar] [CrossRef]
- Martínez-Pérez, V.; Palmero, L.B.; Campoy, G.; Fuentes, L.J. The Role of Chronotype in the Interaction between the Alerting and the Executive Control Networks. Sci. Rep. 2020, 10, 11901. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Stough, C. The Relationship between Morningness–Eveningness, Time-of-Day, Speed of Information Processing, and Intelligence. Personal. Individ. Differ. 2000, 29, 1179–1190. [Google Scholar] [CrossRef]
- Dickinson, D.L.; McElroy, T. Circadian Effects on Strategic Reasoning. Exp. Econ. 2012, 15, 444–459. [Google Scholar] [CrossRef]
- Yaremenko, S.; Sauerland, M.; Hope, L. Eyewitness Identification Performance Is Not Affected by Time-of-Day Optimality. Sci. Rep. 2021, 11, 3462. [Google Scholar] [CrossRef] [PubMed]
- May, C. Synchrony Effects in Cognition: The Costs and a Benefit. Psychon. Bull. Rev. 1999, 6, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Testu, F. Chronopsychologie et Rythmes Scolaires; FeniXX: Rio De Janeiro, Brazil, 2000; ISBN 978-2-402-01247-8. [Google Scholar]
- Folkard, S.; Monk, T.H. Circadian Rhythms in Human Memory. Br. J. Psychol. 1980, 71, 295–307. [Google Scholar] [CrossRef]
- Folkard, S. Diurnal Variation in Logical Reasoning. Br. J. Psychol. 1975, 66, 1–8. [Google Scholar] [CrossRef]
- Rowe, G.; Hasher, L.; Turcotte, J. Age and Synchrony Effects in Visuospatial Working Memory. Q. J. Exp. Psychol. 2009, 62, 1873–1880. [Google Scholar] [CrossRef] [PubMed]
- Wilks, H.; Aschenbrenner, A.J.; Gordon, B.A.; Balota, D.A.; Fagan, A.M.; Musiek, E.; Balls-Berry, J.; Benzinger, T.L.S.; Cruchaga, C.; Morris, J.C.; et al. Sharper in the Morning: Cognitive Time of Day Effects Revealed with High-Frequency Smartphone Testing. J. Clin. Exp. Neuropsychol. 2021, 43, 825–837. [Google Scholar] [CrossRef] [PubMed]
- Jafar, N.K.A.; Tham, E.K.H.; Eng, D.Z.H.; Rifkin-Graboi, A.; Gooley, J.J.; Goh, D.Y.T.; Teoh, O.-H.; Lee, Y.S.; Shek, L.P.-C.; Yap, F.; et al. Chronotype and Time-of-Day Effects on Spatial Working Memory in Preschool Children. J. Clin. Sleep Med. 2023, 19, 1717–1726. [Google Scholar] [CrossRef] [PubMed]
- Clara, M.I.; Gomes, A.A. An Epidemiological Study of Sleep−wake Timings in School Children from 4 to 11 Years Old: Insights on the Sleep Phase Shift and Implications for the School Starting Times’ Debate. Sleep Med. 2020, 66, 51–60. [Google Scholar] [CrossRef] [PubMed]
- van der Heijden, K.B.; de Sonneville, L.M.J.; Althaus, M. Time-of-Day Effects on Cognition in Preadolescents: A Trails Study. Chronobiol. Int. 2010, 27, 1870–1894. [Google Scholar] [CrossRef] [PubMed]
- Pahan, M.; Singh, M. Effect of Day Time on Cognitive Performances of Preadolescent Athletes Nurtured in a Controlled Environment. Phys. Educ. Theory Methodol. 2022, 22, 268–275. [Google Scholar] [CrossRef]
- Bernier, A.; Cimon-Paquet, C.; Tétreault, É. Sleep Development in Preschool Predicts Executive Functioning in Early Elementary School. Adv. Child Dev. Behav. 2021, 60, 159–178. [Google Scholar] [CrossRef] [PubMed]
- Ruffini, C.; Tarchi, C.; Morini, M.; Giuliano, G.; Pecini, C. Tele-Assessment of Cognitive Functions in Children: A Systematic Review. Child Neuropsychol. 2022, 28, 709–745. [Google Scholar] [CrossRef]
- Ransom, D.M.; Butt, S.M.; DiVirgilio, E.K.; Cederberg, C.D.; Srnka, K.D.; Hess, C.T.; Sy, M.C.; Katzenstein, J.M. Pediatric Teleneuropsychology: Feasibility and Recommendations. Arch. Clin. Neuropsychol. 2020, 35, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Hewitt, K.C.; Block, C.; Bellone, J.A.; Dawson, E.L.; Garcia, P.; Gerstenecker, A.; Grabyan, J.M.; Howard, C.; Kamath, V.; LeMonda, B.C.; et al. Diverse Experiences and Approaches to Tele Neuropsychology: Commentary and Reflections over the Past Year of COVID-19. Clin. Neuropsychol. 2022, 36, 790–805. [Google Scholar] [CrossRef]
- Harder, L.; Hernandez, A.; Hague, C.; Neumann, J.; McCreary, M.; Cullum, C.M.; Greenberg, B. Home-Based Pediatric Teleneuropsychology: A Validation Study. Arch. Clin. Neuropsychol. 2020, 35, 1266–1275. [Google Scholar] [CrossRef] [PubMed]
- Parikh, M.; Grosch, M.C.; Graham, L.L.; Hynan, L.S.; Weiner, M.; Shore, J.H.; Cullum, C.M. Consumer Acceptability of Brief Videoconference-Based Neuropsychological Assessment in Older Individuals with and without Cognitive Impairment. Clin. Neuropsychol. 2013, 27, 808–817. [Google Scholar] [CrossRef] [PubMed]
- Brearly, T.W.; Shura, R.D.; Martindale, S.L.; Lazowski, R.A.; Luxton, D.D.; Shenal, B.V.; Rowland, J.A. Neuropsychological Test Administration by Videoconference: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2017, 27, 174–186. [Google Scholar] [CrossRef]
- Galusha-Glasscock, J.M.; Horton, D.K.; Weiner, M.F.; Cullum, C.M. Video Teleconference Administration of the Repeatable Battery for the Assessment of Neuropsychological Status. Arch. Clin. Neuropsychol. 2016, 31, 8–11. [Google Scholar] [CrossRef] [PubMed]
- Hodge, M.A.; Sutherland, R.; Jeng, K.; Bale, G.; Batta, P.; Cambridge, A.; Detheridge, J.; Drevensek, S.; Edwards, L.; Everett, M.; et al. Agreement between Telehealth and Face-to-Face Assessment of Intellectual Ability in Children with Specific Learning Disorder. J. Telemed. Telecare 2019, 25, 431–437. [Google Scholar] [CrossRef]
- McDermott, S.M.; Sweeney, K.; Jacobson, L.A.; Lieb, R.W.; Wexler, D.; Pritchard, A.E. Does Assessment Format Matter? A Comparison of In-Person Versus Teletesting Scores for Youth with ADHD. J. Atten. Disord. 2023, 27, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Cullum, C.M.; Hynan, L.S.; Grosch, M.; Parikh, M.; Weiner, M.F. Teleneuropsychology: Evidence for Video Teleconference-Based Neuropsychological Assessment. J. Int. Neuropsychol. Soc. 2014, 20, 1028–1033. [Google Scholar] [CrossRef]
- Chaytor, N.S.; Barbosa-Leiker, C.; Germine, L.T.; Fonseca, L.M.; McPherson, S.M.; Tuttle, K.R. Construct Validity, Ecological Validity and Acceptance of Self-Administered Online Neuropsychological Assessment in Adults. Clin. Neuropsychol. 2021, 35, 148–164. [Google Scholar] [CrossRef] [PubMed]
- Wadsworth, H.E.; Galusha-Glasscock, J.M.; Womack, K.B.; Quiceno, M.; Weiner, M.F.; Hynan, L.S.; Shore, J.; Cullum, C.M. Remote Neuropsychological Assessment in Rural American Indians with and without Cognitive Impairment. Arch. Clin. Neuropsychol. 2016, 31, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Marra, D.E.; Hamlet, K.M.; Bauer, R.M.; Bowers, D. Validity of Teleneuropsychology for Older Adults in Response to COVID-19: A Systematic and Critical Review. Clin. Neuropsychol. 2020, 34, 1411–1452. [Google Scholar] [CrossRef] [PubMed]
- Farmer, R.L.; McGill, R.J.; Dombrowski, S.C.; McClain, M.B.; Harris, B.; Lockwood, A.B.; Powell, S.L.; Pynn, C.; Smith-Kellen, S.; Loethen, E.; et al. Teleassessment with Children and Adolescents during the Coronavirus (COVID-19) Pandemic and beyond: Practice and Policy Implications. Prof. Psychol. Res. Pract. 2020, 51, 477–487. [Google Scholar] [CrossRef]
- Hewitt, K.C.; Rodgin, S.; Loring, D.W.; Pritchard, A.E.; Jacobson, L.A. Transitioning to Telehealth Neuropsychology Service: Considerations across Adult and Pediatric Care Settings. Clin. Neuropsychol. 2020, 34, 1335–1351. [Google Scholar] [CrossRef] [PubMed]
- Couto, D.; Gomes, A.A.; De Azevedo, M.P.; Clemente, V.; Bos, S.C.; Silva, C. Diurnal Type in Children: Preliminary Results about the European Portuguese Version of the CCTQ. Sleep Med. 2014, 14, e139. [Google Scholar] [CrossRef]
- Werner, H.; LeBourgeois, M.K.; Geiger, A.; Jenni, O.G. Assessment of Chronotype in Four- to Eleven-Year-Old Children: Reliability and Validity of the Children’s ChronoType Questionnaire (CCTQ). Chronobiol. Int. 2009, 26, 992–1014. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.A.; Östberg, O. A Self-Assessment Questionnaire to Determine Morningness-Eveningness in Human Circadian Rhythms. Int. J. Chronobiol. 1976, 4, 97–110. [Google Scholar] [PubMed]
- Bettencourt, C.; Tomé, B.; Pires, L.; Leitão, J.A.; Gomes, A.A. Emotional States in Adolescents: Time of Day X Chronotype Effects While Controlling for Psychopathological Symptoms and Sleep Variables. Biol. Rhythm. Res. 2020, 53, 478–499. [Google Scholar] [CrossRef]
- Almeida, F.; Pires, L.; Bettencourt, C.; Almeida, R.; Ruivo Marques, D.; Leitão, J.; Gomes, A.A. Momentary Emotional States in Primary School Children: Combined Effects of Chronotype X Time-of-Day. Biol. Rhythm. Res. 2022, 54, 52–69. [Google Scholar] [CrossRef]
- Nunnally, J.C. Psychometric Theory; McGraw Hill: New York, NY, USA, 1978. [Google Scholar]
- Riva, D.; Nichelli, F.; Devoti, M. Developmental Aspects of Verbal Fluency and Confrontation Naming in Children. Brain Lang. 2000, 71, 267–284. [Google Scholar] [CrossRef]
- Moura, O.; Simões, M.R.; Pereira, M. Fluência verbal semântica e fonêmica em crianças: Funções cognitivas e análise temporal. Avaliação Psicológica 2013, 12, 167–177. [Google Scholar]
- Downes, J.J.; Sharp, H.M.; Costall, B.M.; Sagar, H.J.; Howe, J. Alternating Fluency in Parkinson’s Disease: An Evaluation of the Attentional Control Theory of Cognitive Impairment. Brain 1993, 116, 887–902. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. The Wechsler Intelligence Scale for Children—Third Edition (WISC-III); The Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children—Third Edition (WISC-III); Cegoc: Lisbon, Portugal, 2003. [Google Scholar]
- Simões, M.R.; Albuquerque, C.P.; Pinho, M.S.; Vilar, M.; Pereira, M.; Alberto, I.; Seabra, M.J.; Martins, C.; Lopes, A.F.; Lopes, C.; et al. Bateria de Avaliação Neuropsicológica de Coimbra (BANC) [Coimbra Neuropsychological Assessment Battery (BANC)]; CEGOC-TEA: Lisbon, Portugal, 2016. [Google Scholar]
- Kitaigorodsky, M.; Loewenstein, D.; Curiel Cid, R.; Crocco, E.; Gorman, K.; González-Jiménez, C. A Teleneuropsychology Protocol for the Cognitive Assessment of Older Adults During COVID-19. Front. Psychol. 2021, 12, 651136. [Google Scholar] [CrossRef]
- Bilder, R.M.; Postal, K.S.; Barisa, M.; Aase, D.M.; Cullum, C.M.; Gillaspy, S.R.; Harder, L.; Kanter, G.; Lanca, M.; Lechuga, D.M.; et al. Inter Organizational Practice Committee Recommendations/Guidance for Teleneuropsychology in Response to the COVID-19 Pandemic. Arch. Clin. Neuropsychol. 2020, 35, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Parsons, S.; Kruijt, A.-W.; Fox, E. Psychological Science Needs a Standard Practice of Reporting the Reliability of Cognitive-Behavioral Measurements. Adv. Methods Pract. Psychol. Sci. 2019, 2, 378–395. [Google Scholar] [CrossRef]
- Pronk, T.; Molenaar, D.; Wiers, R.W.; Murre, J. Methods to Split Cognitive Task Data for Estimating Split-Half Reliability: A Comprehensive Review and Systematic Assessment. Psychon. Bull. Rev. 2022, 29, 44–54. [Google Scholar] [CrossRef]
- Wiley, J.; Jarosz, A.F. How Working Memory Capacity Affects Problem Solving. In Psychology of Learning and Motivation; Ross, B.H., Ed.; Academic Press: Cambridge, MA, USA, 2012; Volume 56, pp. 185–227. [Google Scholar]
- Wolf, M.; Bowers, P.G. The Double-Deficit Hypothesis for the Developmental Dyslexias. J. Educ. Psychol. 1999, 91, 415–438. [Google Scholar] [CrossRef]
- Logan, J.A.R.; Schatschneider, C.; Wagner, R.K. Rapid Serial Naming and Reading Ability: The Role of Lexical Access. Read. Writ. 2011, 24, 1–25. [Google Scholar] [CrossRef]
- Levelt, W.J.M. Spoken Word Production: A Theory of Lexical Access. Proc. Natl. Acad. Sci. USA 2001, 98, 13464–13471. [Google Scholar] [CrossRef]
- Norton, E.S.; Wolf, M. Rapid Automatized Naming (RAN) and Reading Fluency: Implications for Understanding and Treatment of Reading Disabilities. Annu. Rev. Psychol. 2012, 63, 427–452. [Google Scholar] [CrossRef] [PubMed]
- Areces, D.; García, T.; González-Castro, P.; Alvarez-García, D.; Rodríguez, C. Naming Speed as a Predictive Diagnostic Measure in Reading and Attentional Problems. Child Neuropsychol. 2018, 24, 1115–1128. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.W.; Snowling, M.J.; Moll, K. What Automaticity Deficit? Activation of Lexical Information by Readers with Dyslexia in a Rapid Automatized Naming Stroop-Switch Task. J. Exp. Psychol. Learn. Mem. Cogn. 2016, 42, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Shtyrov, Y.; MacGregor, L.J. Near-Instant Automatic Access to Visually Presented Words in the Human Neocortex: Neuromagnetic Evidence. Sci. Rep. 2016, 6, 26558. [Google Scholar] [CrossRef]
- Borella, E.; Ludwig, C.; Dirk, J.; de Ribaupierre, A. The Influence of Time of Testing on Interference, Working Memory, Processing Speed, and Vocabulary: Age Differences in Adulthood. Exp. Aging Res. 2010, 37, 76–107. [Google Scholar] [CrossRef] [PubMed]
- May, C.P.; Hasher, L. Synchrony Effects in Inhibitory Control over Thought and Action. J. Exp. Psychol. Hum. Percept. Perform. 1998, 24, 363–379. [Google Scholar] [CrossRef] [PubMed]
- Zelazo, P.D.; Carlson, S.M. The Neurodevelopment of Executive Function Skills: Implications for Academic Achievement Gaps. Psychol. Neurosci. 2020, 13, 273–298. [Google Scholar] [CrossRef]
- Fiske, A.; Holmboe, K. Neural Substrates of Early Executive Function Development. Dev. Rev. 2019, 52, 42–62. [Google Scholar] [CrossRef]
- Díaz Morales, J.F.; Escribano, C.; Puig-Navarro, Y.; Jankowski, K.S. Factors Underpinning the Shift to Eveningness during Early Adolescence: Pubertal Development and Family Conflicts. J. Youth Adolesc. 2023, 52, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Carskadon, M.A.; Dement, W.C. Normal Human Sleep: An Overview. In Principles and Practice of Sleep Medicine; Kryger, M.H., Roth, T., Dement, W.C., Eds.; Elsevier Saunders: St. Louis, MO, USA, 2011; pp. 16–26. [Google Scholar]
- Randler, C.; Faßl, C.; Kalb, N. From Lark to Owl: Developmental Changes in Morningness-Eveningness from New-Borns to Early Adulthood. Sci. Rep. 2017, 7, 45874. [Google Scholar] [CrossRef] [PubMed]
- Portaluppi, F.; Smolensky, M.H.; Touitou, Y. Ethics and Methods for Biological Rhythm Research on Animals and Human Beings. Chronobiol. Int. 2010, 27, 1911–1929. [Google Scholar] [CrossRef]
Variable | M-Types (n = 37) M (SD) | E-Types (n = 39) M (SD) | Total (n = 76) M (SD) | Significance p |
---|---|---|---|---|
Age (years) | 7.97 (0.50) | 8.13 (0.52) | 8.05 (0.51) | n.s. |
ME scale | 25.18 (0.34) | 39.54 (0.51) | - | p < 0.001 |
Sleep period—school days (hours) | 9.69(0.57) | 9.32(0.65) | 9.50(0.64) | p = 0.013 |
Semantic Verbal Fluency (total) | 31.24 (9.56) | 31.67 (9.68) | 31.46 (9.56) | n.s. |
Phonemic Verbal Fluency (total) | 12.68 (5.01) | 10.69 (3.88) | 11.66 (4.55) | n.s. |
Free-Word Fluency (total) | 28.51 (8.43) | 28.28 (10.91) | 28.39 (9.72) | n.s. |
Alternating Verbal Fluency (total) | 20.00 (4.85) | 20.36 (4.39) | 20.18 (4.59) | n.s. |
Alternating Verbal Fluency (successful switches) | 23.97 (5.59) | 23.00 (5.44) | 23.47 (5.50) | n.s. |
Digit Span Forward (total) | 7.27 (1.73) | 7.41 (1.68) | 7.34 (1.69) | n.s. |
Digit Span Backward (total) | 4.42 (1.45) | 5.23 (1.74) | 4.79 (1.66) | p = 0.017 |
Face Recognition—Immediate Recall (total) | 12.32 (2.47) | 12.05 (2.42) | 12.18 (2.43) | n.s. |
Face Recognition—Delayed Recall (total) | 12.65 (2.95) | 12.28 (2.69) | 12.46 (2.80) | n.s. |
Story Memory—Immediate Recall (total) | 38.46 (14.00) | 40.31 (10.51) | 39.41 (12.29) | n.s. |
Story Memory—Delayed Recall (total) | 36.81 (13.86) | 38.56 (11.37) | 37.71 (12.59) | n.s. |
Story Memory—Recognition (total) | 25.35 (3.51) | 26.18 (3.14) | 25.78 (3.33) | n.s. |
Story Memory—Retention (percentage) | 95.35 (10.93) | 95.18 (13.59) | 95.26 (12.28) | n.s. |
Rapid Automatized Naming Task—Time (seconds) | 30.84 (10.16) | 29.92 (4.91) | 30.37 (7.87) | n.s. |
Rapid Alternating Stimuli Task—Time (seconds) | 117.84 (40.60) | 128.33 (49.18) | 123.22 (45.22) | n.s. |
Language Comprehension (total) | 18.03 (4.86) | 18.26 (4.21) | 18.14 (4.51) | n.s. |
Variable | Morning (n = 39) M (SD) | Afternoon (n = 37) M (SD) | Significance p |
---|---|---|---|
Semantic Verbal Fluency (total) | 31.64 (10.23) | 31.27 (8.94) | n.s. |
Phonemic Verbal Fluency (total) | 12.05 (4.92) | 11.24 (4.15) | n.s. |
Free-Word Fluency (total) | 27.64 (7.79) | 29.19 (11.47) | n.s. |
Alternating Verbal Fluency (total) | 21.44 (4.85) | 18.86 (3.95) | p = 0.015 |
Alternating Verbal Fluency (successful switches) | 25.23 (5.39) | 21.62 (5.04) | p = 0.004 |
Digit Span Forward (total) | 7.03 (1.58) | 7.68 (1.77) | n.s. |
Digit Span Backward (total) | 5.03 (1.76) | 4.54 (1.54) | n.s. |
Face Recognition—Immediate Recall (total) | 12.38 (2.31) | 11.97 (2.57) | n.s. |
Face Recognition—Delayed Recall (total) | 12.92 (2.70) | 11.97 (2.86) | n.s. |
Story Memory—Immediate Recall (total) | 40.21 (13.25) | 38.57 (11.18) | n.s. |
Story Memory—Delayed Recall (total) | 38.10 (13.22) | 37.30 (12.06) | n.s. |
Story Memory—Recognition (total) | 25.41 (3.62) | 26.16 (2.99) | n.s. |
Story Memory– Retention (percentage) | 94.44 (12.47) | 96.13 (12.19) | n.s. |
Rapid Automatized Naming Task—Time (seconds) | 30.44 (9.04) | 30.30 (6.55) | n.s. |
Rapid Alternating Stimulus Task—Time (seconds) | 117.90 (39.60) | 128.84 (50.41) | n.s. |
Language Comprehension (total) | 18.31 (4.73) | 17.97 (4.32) | n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bettencourt, C.; Pires, L.; Almeida, F.; Vilar, M.; Cruz, H.; Leitão, J.; Allen Gomes, A. Chronotype, Time of Day, and Children’s Cognitive Performance in Remote Neuropsychological Assessment. Behav. Sci. 2024, 14, 310. https://doi.org/10.3390/bs14040310
Bettencourt C, Pires L, Almeida F, Vilar M, Cruz H, Leitão J, Allen Gomes A. Chronotype, Time of Day, and Children’s Cognitive Performance in Remote Neuropsychological Assessment. Behavioral Sciences. 2024; 14(4):310. https://doi.org/10.3390/bs14040310
Chicago/Turabian StyleBettencourt, Catarina, Luís Pires, Filipa Almeida, Manuela Vilar, Hugo Cruz, José Leitão, and Ana Allen Gomes. 2024. "Chronotype, Time of Day, and Children’s Cognitive Performance in Remote Neuropsychological Assessment" Behavioral Sciences 14, no. 4: 310. https://doi.org/10.3390/bs14040310
APA StyleBettencourt, C., Pires, L., Almeida, F., Vilar, M., Cruz, H., Leitão, J., & Allen Gomes, A. (2024). Chronotype, Time of Day, and Children’s Cognitive Performance in Remote Neuropsychological Assessment. Behavioral Sciences, 14(4), 310. https://doi.org/10.3390/bs14040310