Postural Control and Muscle Activity during Dual-Task in Young Adults
Abstract
:1. Introduction
2. Methodology
2.1. Participants
2.2. Task Protocol
- (1)
- (2)
- Cognitive–motor dual task (DT): Young adults were instructed to keep the standing position (ST) while simultaneously performing a cognitive task on a smartphone for 60 s (Figure 1).
2.3. Muscle Activity Collection and Analysis
2.4. Center of Pressure Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Center of Pressure Behavior and Muscle Activity Pattern
3.2. Cognitive Task Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Chen, B.; Liu, P.; Xiao, F.; Liu, Z.; Wang, Y. Review of the upright balance assessment based on the force plate. Int. J. Environ. Res. Public Health 2021, 18, 2696. [Google Scholar] [CrossRef]
- Huang, H.-J.; Mercer, V.S. Dual-Task Methodology: Applications in studies of cognitive and motor performance in adults and chldren. Pediatr. Phys. Ther. 2001, 13, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Sun, Y.; Lang, C.; Wen, Y. The Impact of Using Mobile Phones on Gait Characteristics: A Narrative Review. Appl. Sci. 2022, 12, 5783. [Google Scholar] [CrossRef]
- Hill, C.M.; Debusk, H.; Simpson, J.D.; Miller, B.L.; Knight, A.C.; Garner, J.C.; Wade, C.; Chander, H. The Interaction of Cognitive Interference, Standing Surface, and Fatigue on Lower Extremity Muscle Activity. Saf. Health Work. 2019, 10, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Rankin, J.K.; Woollacott, M.H.; Shumway-Cook, A.; Brown, L.A. Cognitive Influence on Postural Stability: A Neuromuscular Analysis in Young and Older Adults. J. Gerontol. Med. Sci. 2000, 55, M112–M119. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, W.; Nakagawa, K.; Kawahara, Y.; Yuge, L. Influence of dual-task performance on muscle and brain activity. Int. J. Rehabil. Res. 2013, 36, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Wuehr, M.; Brandt, T.; Schniepp, R. Distracting attention in phobic postural vertigo normalizes leg muscle activity and balance. Neurology 2017, 88, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Laatar, R.; Kachouri, H.; Borji, R.; Rebai, H.; Sahli, S. The effect of cell phone use on postural balance and mobility in older compared to young adults. Physiol. Behav. 2017, 173, 293–297. [Google Scholar] [CrossRef]
- Nurwulan, N.R.; Jiang, B.C.; Iridiastadi, H. Posture and texting: Effect on balance in young adults. PLoS ONE 2015, 10, e0134230. [Google Scholar] [CrossRef]
- Onofrei, R.R.; Amaricai, E.; Suciu, O.; David, V.L.; Rata, A.L.; Hogea, E. Smartphone use and postural balance in healthy young adults. Int. J. Environ. Res. Public Health 2020, 17, 3307. [Google Scholar] [CrossRef]
- Eitivipart, A.C.; Viriyarojanakul, S.; Redhead, L. Musculoskeletal disorder and pain associated with smartphone use: A systematic review of biomechanical evidence. Hong Kong Physiother. J. 2018, 38, 77–90. [Google Scholar] [CrossRef]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Nasar, J.L.; Troyer, D. Pedestrian injuries due to mobile phone use in public places. Accid. Anal. Prev. 2013, 57, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Sobrinho-Junior, S.A.; de Almeida, A.C.N.; Ceabras, A.A.P.; da Silva Carvalho, C.L.; Lino, T.B.; Christofoletti, G. Risks of Accidents Caused by the Use of Smartphone by Pedestrians Are Task- and Environment-Dependent. Int. J. Environ. Res. Public Health 2022, 19, 10320. [Google Scholar] [CrossRef]
- Deloitte. 2017 Global Mobile Consumer Survey: US Edition; Deloitte: London, UK, 2017. [Google Scholar]
- Bruyneel, A.V.; Duclos, N.C. Effects of the use of mobile phone on postural and locomotor tasks: A scoping review. Gait Posture 2020, 82, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Bayot, M.; Dujardin, K.; Tard, C.; Defebvre, L.; Bonnet, C.T.; Allart, E.; Delval, A. The interaction between cognition and motor control: A theoretical framework for dual-task interference effects on posture, gait initiation, gait and turning. Neurophysiol. Clin. 2018, 48, 361–375. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- García-Massó, X.; Pellicer-Chenoll, M.; Gonzalez, L.M.; Toca-Herrera, J.L. The difficulty of the postural control task affects multi-muscle control during quiet standing. Exp. Brain Res. 2016, 234, 1977–1986. [Google Scholar] [CrossRef]
- Lewko, J.P. Assessment of muscle electrical activity in spinal cord injury subjects during quiet standing. Paraplegia 1996, 34, 158–163. [Google Scholar] [CrossRef]
- Tse, Y.Y.F.; Petrofsky, J.; Laymon, M.; Cavalcanti, P.; Daher, N.; Lohman, E.; Rodrigues, S.; Lodha, R.; Potnis, P.A. Postural sway and EMG analysis of hip and ankle muscles during balance tasks. Int. J. Ther. Rehabil. 2013, 20, 280–288. [Google Scholar] [CrossRef]
- Konrad, P. The ABC of EMG: A pratical introduction to kinesiological electromyography. In Boletín de la Asociación Médica de Puerto Rico (Version 1); Noraxon U.S.A., Inc.: Scottsdale, AZ, USA, 2006; Volume 100. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C.; Hägg, G. Seniam: European Recommendations for Surface Electromyography; Roessingh Research and Development: Enschede, The Netherlands, 1999. [Google Scholar]
- Saraiva, M.; Castro, M.A.; Vilas-Boas, J.P. Muscular and Prefrontal Cortex Activity during Dual-Task Performing in Young Adults. Eur. J. Investig. Health Psychol. Educ. 2023, 13, 736–747. [Google Scholar] [CrossRef] [PubMed]
- Pashler, H. Dual-Task Interference in Simple Tasks: Data and Theory. Phychological Bull. 1994, 116, 220–244. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh, A.; Azadian, E.; Majlesi, M.; Jafarnezhadgero, A.A.; Akrami, M. Effects of Task Demands on Postural Control in Children of Different Ages: A Cross-Sectional Study. Appl. Sci. 2022, 12, 113. [Google Scholar] [CrossRef]
- Woollacott, M.; Shumway-Cook, A. Attention and the control of posture and gait: A review of an emerging area of research. Gait Posture 2002, 16, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Gabrieli, J.; Poldrack, R.; Desmond, J. The role of left prefrontal cortex in language and memory. Proc. Natl. Acad. Sci. USA 1998, 95, 906–913. [Google Scholar] [CrossRef] [PubMed]
- Fujita, N.; Kuminuse, S.; Okakada, S. Contribution of the dorsolateral prefrontal cortex activation, ankle muscle activities, and coactivation during dualtasks to postural steadiness: A pilot study. J. Phys. Ther. Sci. 2020, 32, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Leone, C.; Feys, P.; Moumdjian, L.; D’Amico, E.; Zappia, M.; Patti, F. Cognitive-motor dual-task interference: A systematic review of neural correlates. Neurosci. Biobehav. Rev. 2017, 75, 348–360. [Google Scholar] [CrossRef] [PubMed]
- Lenhart, A. Teens, Smartphones & Texting. In Pew Research Center’s Internet & American Life Project; Pew Research Center: Washington, DC, USA, 2012; pp. 1–34. [Google Scholar]
- Bray, S.R.; Graham, J.D.; Martin Ginis, K.A.; Hicks, A.L. Cognitive task performance causes impaired maximum force production in human hand flexor muscles. Biol. Psychol. 2012, 89, 195–200. [Google Scholar] [CrossRef]
- Park, S. Effect of task difficulty on muscle activation patterns during rapid single-joint movements. Percept. Mot. Ski. 2002, 94, 1157–1167. [Google Scholar] [CrossRef]
- Plummer, P.; Eskes, G. Measuring treatment effects on dual-task performance: A framework for research and clinical practice. Front. Hum. Neurosci. 2015, 9, 225. [Google Scholar] [CrossRef] [PubMed]
- Plummer, P.; Eskes, G.; Wallace, S.; Giuffrida, C.; Fraas, M.; Campbell, G.; Clifton, K.; Skidmore, E.R. Cognitive-motor interference during functional mobility after stroke: State of the science and implications for future research. Arch. Phys. Med. Rehabil. 2013, 94, 2565–2574. [Google Scholar] [CrossRef]
- Ghai, S.; Ghai, I.; Effenberg, A.O. Effects of dual tasks and dual-task training on postural stability: A systematic review and meta-analysis. Clin. Interv. Aging 2017, 12, 557–577. [Google Scholar] [CrossRef]
- Bustillo-Casero, P.; Cebrian-Bou, S.; Cruz-Montecinos, C.; Pardo, A.; García-Massó, X. Effects of A Dual-Task Intervention in Postural Control and Cognitive Performance in Adolescents. J. Mot. Behav. 2020, 52, 187–195. [Google Scholar] [CrossRef]
- Bürki, C.N.; Bridenbaugh, S.A.; Reinhardt, J.; Stippich, C.; Kressig, R.W.; Blatow, M. Imaging gait analysis: An fMRI dual task study. Brain Behav. 2017, 7, e00724. [Google Scholar] [CrossRef]
- Little, C.E.; Woollacott, M. EEG measures reveal dual-task interference in postural performance in young adults. Exp. Brain Res. 2015, 233, 27–37. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Thiers, A.; Hamacher, D.; Schega, L. Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks. Neurophotonics 2017, 4, 041403. [Google Scholar] [CrossRef]
Variables | Sample n = 36 |
---|---|
Age (years) | 23.08 ± 3.92 |
Height (m) | 1.71 ± 0.10 |
Body mass (kg) | 73.99 ± 15.97 |
Body mass index (kg/m2) | 25.15 ± 4.37 |
Muscle Activity (sEMG)—% MVC | ||||
---|---|---|---|---|
Single Task | Dual Task | p-Value 1 | ||
Tibialis Anterior | Left | 11.30 (9.61–16.08) | 5.49 (2.60–11.18) | 0.001 * |
Right | 13.60 (10.00–16.60) | 1.30 (0.89–2.00) | <0.001 * | |
Gastrocnemius Medialis | Left | 15.00 (12.63–22.88) | 10.18 (5.88–14.60) | 0.001 * |
Right | 14.60 (11.80–19.85) | 3.16 (2.21–5.41) | <0.001 * | |
Gastrocnemius Lateralis | Left | 7.41 (4.96–10.88) | 7.25 (4.18–16.43) | 0.437 |
Right | 6.50 (5.10–10.60) | 2.65 (1.91–3.92) | <0.001 * | |
Rectus Femoris | Left | 3.81 (2.26–5.90) | 5.63 (3.56–16.85) | 0.008 * |
Right | 3.84 (2.17–5.58) | 2.59 (1.49–3.23) | <0.001 * | |
Biceps Femoris | Left | 4.12 (2.97–7.16) | 6.13 (3.83–12.65) | 0.157 |
Right | 4.24 (2.63–7.24) | 2.18 (1.16–3.83) | <0.001 * | |
Gluteus Maximus | Left | 6.04 (4.27–9.34) | 13.05 (7.50–23.53) | <0.001 * |
Right | 5.97 (4.15–8.28) | 4.32 (3.20–6.79) | <0.001 * | |
Lumbar Erector Spinae | Left | 5.57 (4.23–7.38) | 9.70 (4.64–14.88) | <0.001 * |
Right | 5.86 (3.96–9.80) | 4.94 (2.71–8.44) | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saraiva, M.; Vilas-Boas, J.P.; Castro, M.A. Postural Control and Muscle Activity during Dual-Task in Young Adults. Behav. Sci. 2024, 14, 403. https://doi.org/10.3390/bs14050403
Saraiva M, Vilas-Boas JP, Castro MA. Postural Control and Muscle Activity during Dual-Task in Young Adults. Behavioral Sciences. 2024; 14(5):403. https://doi.org/10.3390/bs14050403
Chicago/Turabian StyleSaraiva, Marina, João Paulo Vilas-Boas, and Maria António Castro. 2024. "Postural Control and Muscle Activity during Dual-Task in Young Adults" Behavioral Sciences 14, no. 5: 403. https://doi.org/10.3390/bs14050403
APA StyleSaraiva, M., Vilas-Boas, J. P., & Castro, M. A. (2024). Postural Control and Muscle Activity during Dual-Task in Young Adults. Behavioral Sciences, 14(5), 403. https://doi.org/10.3390/bs14050403