The Impact of Task Context on Pleasantness and Softness Estimations: A Study Based on Three Touch Strategies
Abstract
:1. Introduction
2. Experiment 1: Softness and Pleasantness Estimation Under Three Different Touch Strategies
2.1. Materials and Methods
2.1.1. Participants
2.1.2. Stimuli and Touch Strategies
2.1.3. Experiment 1 Design
2.1.4. Experiment 1 Procedure
2.2. Results and Discussion
2.2.1. The Impact of Compliance and Touch Strategy
- Pleasantness:
- Softness:
2.2.2. Variances of Magnitude Estimates
3. Experiment 2: Softness and Pleasantness Discrimination Experiment
3.1. Materials and Methods
3.1.1. Participants and Stimuli
3.1.2. Design and Procedure
3.2. Results and Discussion
- Pleasantness
- Softness
4. Discussion
4.1. The Impact of a Contextual Task on the Estimation of Pleasantness and Softness
4.2. The Impact of Touch Strategies in the Two Experiments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexander, L., Wood, C. M., & Roberts, A. C. (2023). The ventromedial prefrontal cortex and emotion regulation: Lost in translation? The Journal of Physiology, 601(1), 37–50. [Google Scholar] [CrossRef]
- Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59(4), 390–412. [Google Scholar] [CrossRef]
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1–48. [Google Scholar] [CrossRef]
- Bergmann Tiest, W. M., & Kappers, A. (2009). Cues for haptic perception of compliance. IEEE Transactions on Haptics, 2(4), 189–199. [Google Scholar] [CrossRef]
- Cavdan, M., Doerschner, K., & Drewing, K. (2021). Task and material properties interactively affect softness explorations along different dimensions. IEEE Transactions on Haptics, 14(3), 603–614. [Google Scholar] [CrossRef]
- Di Luca, M., & Ernst, M. O. (2014). Computational aspects of softness perception. In Multisensory softness: Perceived compliance from multiple sources of information (pp. 85–106). Springer. [Google Scholar]
- Drewing, K. (2014). Exploratory movement strategies in softness perception. In Multisensory softness: Perceived compliance from multiple sources of information (pp. 109–125). Springer. [Google Scholar]
- Drewing, K., Weyel, C., Celebi, H., & Kaya, D. (2018). Systematic relations between affective and sensory material dimensions in touch. IEEE Transactions on Haptics, 11(4), 611–622. [Google Scholar] [CrossRef] [PubMed]
- Dövencioğlu, N. D., & Drewing, K. (2018, August 26–30). Aspects of material softness in active touch. 41st European Conference on Visual Perception (p. 144), Trieste, Italy. [Google Scholar]
- Ellingsen, D.-M., Leknes, S., Løseth, G., Wessberg, J., & Olausson, H. (2016). The neurobiology shaping affective touch: Expectation, motivation, and meaning in the multisensory context. Frontiers in Psychology, 6, 1986. [Google Scholar] [CrossRef]
- Etzi, R., Zampini, M., Juravle, G., & Gallace, A. (2018). Emotional visual stimuli affect the evaluation of tactile stimuli presented on the arms but not the related electrodermal responses. Experimental Brain Research, 236(12), 3391–3403. [Google Scholar]
- Friedman, R. M., Hester, K. D., Green, B. G., & LaMotte, R. H. (2008). Magnitude estimation of softness. Experimental Brain Research, 191, 133–142. [Google Scholar] [CrossRef]
- Gallace, A., & Spence, C. (2010). The science of interpersonal touch: An overview. Neuroscience & Biobehavioral Reviews, 34(2), 246–259. [Google Scholar]
- Gothard, K. M., & Fuglevand, A. J. (2022). The role of the amygdala in processing social and affective touch. Current Opinion in Behavioral Sciences, 43, 46–53. [Google Scholar] [CrossRef]
- Guest, S., Dessirier, J. M., Mehrabyan, A., McGlone, F., Essick, G., Gescheider, G., Fontana, A., Xiong, R., Ackerley, R., & Blot, K. (2011). The development and validation of sensory and emotional scales of touch perception. Attention, Perception, & Psychophysics, 73, 531–550. [Google Scholar]
- Hertenstein, M. J., Holmes, R., McCullough, M., & Keltner, D. (2009). The communication of emotion via touch. Emotion, 9(4), 566. [Google Scholar] [CrossRef]
- Jakesch, M., & Carbon, C.-C. (2012). The mere exposure effect in the domain of haptics. PLoS ONE, 7(2), e31215. [Google Scholar] [CrossRef] [PubMed]
- Kaim, L., & Drewing, K. (2011). Exploratory strategies in haptic softness discrimination are tuned to achieve high levels of task performance. IEEE Transactions on Haptics, 4(4), 242–252. [Google Scholar] [CrossRef]
- Kirsch, A. (2018). The gender composition of corporate boards: A review and research agenda. The Leadership Quarterly, 29(2), 346–364. [Google Scholar] [CrossRef]
- Kitada, R., Doizaki, R., Kwon, J., Tanigawa, T., Nakagawa, E., Kochiyama, T., Kajimoto, H., Sakamoto, M., & Sadato, N. (2019). Brain networks underlying tactile softness perception: A functional magnetic resonance imaging study. NeuroImage, 197, 156–166. [Google Scholar] [CrossRef]
- Kitada, R., Ng, M., Tan, Z. Y., Lee, X. E., & Kochiyama, T. (2021). Physical correlates of human-like softness elicit high tactile pleasantness. Scientific Reports, 11(1), 16510. [Google Scholar] [CrossRef]
- Kitada, R., Sadato, N., & Lederman, S. J. (2012). Tactile perception of nonpainful unpleasantness in relation to perceived roughness: Effects of inter-element spacing and speed of relative motion of rigid 2-D raised-dot patterns at two body loci. Perception, 41(2), 204–220. [Google Scholar] [CrossRef]
- Kumle, L., Võ, M. L.-H., & Draschkow, D. (2021). Estimating power in (generalized) linear mixed models: An open introduction and tutorial in R. Behavior Research Methods, 53(6), 2528–2543. [Google Scholar] [CrossRef] [PubMed]
- LaMotte, R. H. (2000). Softness discrimination with a tool. Journal of Neurophysiology, 83(4), 1777–1786. [Google Scholar] [CrossRef]
- Lederman, S. J., & Klatzky, R. L. (1987). Hand movements: A window into haptic object recognition. Cognitive Psychology, 19(3), 342–368. [Google Scholar] [CrossRef] [PubMed]
- Li, B., Hauser, S. C., & Gerling, G. J. (2023). Faster indentation influences skin deformation to reduce tactile discriminability of compliant objects. IEEE Transactions on Haptics, 16(2), 215–227. [Google Scholar] [CrossRef] [PubMed]
- Löken, L. S., Evert, M., & Wessberg, J. (2011). Pleasantness of touch in human glabrous and hairy skin: Order effects on affective ratings. Brain Research, 1417, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Löken, L. S., Wessberg, J., McGlone, F., & Olausson, H. (2009). Coding of pleasant touch by unmyelinated afferents in humans. Nature Neuroscience, 12(5), 547–548. [Google Scholar] [CrossRef]
- McGlone, F., Wessberg, J., & Olausson, H. (2014). Discriminative and affective touch: Sensing and feeling. Neuron, 82(4), 737–755. [Google Scholar] [CrossRef]
- Metzger, A., & Drewing, K. (2015, June 22–26). Haptically perceived softness of deformable stimuli can be manipulated by applying external forces during the exploration. 2015 IEEE World Haptics Conference (WHC) (pp. 75–81), Evanston, IL, USA. [Google Scholar]
- Motzkin, J. C., Philippi, C. L., Wolf, R. C., Baskaya, M. K., & Koenigs, M. (2015). Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biological Psychiatry, 77(3), 276–284. [Google Scholar] [CrossRef] [PubMed]
- Mullen, B., Champagne, T., Krishnamurty, S., Dickson, D., & Gao, R. X. (2008). Exploring the safety and therapeutic effects of deep pressure stimulation using a weighted blanket. Occupational Therapy in Mental Health, 24(1), 65–89. [Google Scholar] [CrossRef]
- Pasqualotto, A., Ng, M., Tan, Z. Y., & Kitada, R. (2020). Tactile perception of pleasantness in relation to perceived softness. Scientific Reports, 10(1), 11189. [Google Scholar] [CrossRef]
- Ravaja, N., Harjunen, V., Ahmed, I., Jacucci, G., & Spapé, M. M. (2017). Feeling touched: Emotional modulation of somatosensory potentials to interpersonal touch. Scientific Reports, 7(1), 40504. [Google Scholar] [CrossRef] [PubMed]
- Rolls, E. T. (2003). Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cerebral Cortex, 13(3), 308–317. [Google Scholar] [CrossRef]
- Russell, J. A., & Mehrabian, A. (1978). Approach-avoidance and affiliation as functions of the emotion-eliciting quality of an environment. Environment and Behavior, 10(3), 355–387. [Google Scholar] [CrossRef]
- Schirmer, A., Cham, C., Zhao, Z., Lai, O., Lo, C., & Croy, I. (2022). Understanding sex differences in affective touch: Sensory pleasantness, social comfort, and precursive experiences. Physiology & Behavior, 250, 113797. [Google Scholar] [CrossRef]
- Scilingo, E. P., Bianchi, M., Grioli, G., & Bicchi, A. (2010). Rendering softness: Integration of kinesthetic and cutaneous information in a haptic device. IEEE Transactions on Haptics, 3(2), 109–118. [Google Scholar] [CrossRef]
- Shuman, M., & Kanwisher, N. (2004). Numerical magnitude in the human parietal lobe. Neuron, 44(3), 557–569. [Google Scholar] [CrossRef] [PubMed]
- Smith, C. A., & Ellsworth, P. C. (1985). Patterns of cognitive appraisal in emotion. Journal of Personality and Social Psychology, 48(4), 813. [Google Scholar] [CrossRef]
- Srinivasan, M. A., & LaMotte, R. H. (1995). Tactual discrimination of softness. Journal of Neurophysiology, 73(1), 88–101. [Google Scholar] [CrossRef] [PubMed]
- Xu, C., He, H., Hauser, S. C., & Gerling, G. J. (2019). Tactile exploration strategies with natural compliant objects elicit virtual stiffness cues. IEEE Transactions on Haptics, 13(1), 4–10. [Google Scholar] [CrossRef] [PubMed]
Shape | |
---|---|
Rectangular | 0.059, 0.071, 0.091, 0.125, 0.167, 0.2, 0.25, 0.33, 0.5, 1.0, 2.0 |
Ellipsoidal | 0.059, 0.071, 0.091, 0.125, 0.167, 0.2, 0.25, 0.33, 0.5, 1.0, 2.0 |
Model Formula: | log10 (Estimated Pleasantness)~Compliance × Touch Strategy + (1 + Compliance|Participant) | |||||
---|---|---|---|---|---|---|
Compliance | Touch Strategy | |||||
) | Grasp–Pinch | Grasp–Press | Pinch–Press | |||
Estimate (SE) | p | Estimate (SE) | p | Estimate (SE) | p | |
0.059 | −0.07 (0.027) | 1.0 | 0.05 (0.027) | 1.0 | 0.12 (0.027) | * |
0.071 | −0.06 (0.025) | 1.0 | 0.05 (0.025) | 1.0 | 0.11 (0.025) | ** |
0.091 | −0.05 (0.022) | 1.0 | 0.05 (0.022) | 1.0 | 0.10 (0.022) | ** |
0.125 | −0.04 (0.019) | 1.0 | 0.05 (0.019) | 1.0 | 0.09 (0.019) | ** |
0.167 | −0.03 (0.017) | 1.0 | 0.05 (0.017) | 1.0 | 0.08 (0.017) | ** |
0.200 | −0.02 (0.017) | 1.0 | 0.05 (0.017) | 1.0 | 0.07 (0.017) | * |
0.250 | −0.02 (0.016) | 1.0 | 0.05 (0.016) | 1.0 | 0.06 (0.016) | 0.07 |
0.333 | −0.01 (0.017) | 1.0 | 0.05 (0.017) | 1.0 | 0.05 (0.017) | 1.0 |
0.500 | 0.001 (0.020) | 1.0 | 0.05 (0.020) | 1.0 | 0.04 (0.020) | 1.0 |
1.000 | 0.03 (0.028) | 1.0 | 0.05 (0.028) | 1.0 | 0.01 (0.028) | 1.0 |
2.000 | 0.06 (0.037) | 1.0 | 0.04 (0.037) | 1.0 | −0.01 (0.037) | 1.0 |
Model Formula: | log10 (Estimated Pleasantness)~Compliance × Touch Strategy + (1 + Touch strategy|Participant) | |||||
---|---|---|---|---|---|---|
Compliance | Touch Strategy | |||||
) | Grasp–Pinch | Grasp–Press | Pinch–Press | |||
Estimate (SE) | p | Estimate (SE) | p | Estimate (SE) | p | |
0.059 | −0.03 (0.049) | 1.0 | 0.18 (0.052) | 0.70 | 0.21 (0.037) | *** |
0.071 | −0.03 (0.047) | 1.0 | 0.17 (0.050) | 0.99 | 0.20 (0.034) | *** |
0.091 | −0.02 (0.045) | 1.0 | 0.16 (0.048) | 1.0 | 0.18 (0.031) | *** |
0.125 | −0.02 (0.042) | 1.0 | 0.14 (0.045) | 1.0 | 0.16 (0.027) | ** |
0.167 | −0.02 (0.041) | 1.0 | 0.12 (0.044) | 1.0 | 0.14 (0.025) | * |
0.200 | −0.02 (0.041) | 1.0 | 0.11 (0.044) | 1.0 | 0.13 (0.024) | * |
0.250 | −0.01 (0.040) | 1.0 | 0.10 (0.044) | 1.0 | 0.11 (0.024) | 0.15 |
0.333 | −0.01 (0.041) | 1.0 | 0.08 (0.044) | 1.0 | 0.09 (0.025) | 0.75 |
0.500 | −0.005 (0.04) | 1.0 | 0.06 (0.046) | 1.0 | 0.06 (0.028) | 1.0 |
1.000 | 0.003 (0.050) | 1.0 | 0.02 (0.053) | 1.0 | 0.02 (0.038) | 1.0 |
2.000 | 0.01 (0.059) | 1.0 | −0.02 (0.062) | 1.0 | −0.03 (0.050) | 1.0 |
Standard (cm2/N) | Comparison (cm2/N) |
---|---|
0.125 | 0.059, 0.071, 0.091, 0.167, 0.2, 0.25, 0.33, 0.5, 1.0, 2.0 |
0.167 | 0.059, 0.071, 0.091, 0.125, 0.2, 0.25, 0.33, 0.5, 1.0, 2.0 |
0.2 | 0.059, 0.071, 0.091, 0.125, 0.167, 0.25, 0.33, 0.5, 1.0, 2.0 |
0.25 | 0.059, 0.071, 0.091, 0.125, 0.167, 0.2, 0.33, 0.5, 1.0, 2.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, B.; Yu, Y.; Ejima, Y.; Wu, J.; Yang, J. The Impact of Task Context on Pleasantness and Softness Estimations: A Study Based on Three Touch Strategies. Behav. Sci. 2025, 15, 63. https://doi.org/10.3390/bs15010063
Gao B, Yu Y, Ejima Y, Wu J, Yang J. The Impact of Task Context on Pleasantness and Softness Estimations: A Study Based on Three Touch Strategies. Behavioral Sciences. 2025; 15(1):63. https://doi.org/10.3390/bs15010063
Chicago/Turabian StyleGao, Binyue, Yinghua Yu, Yoshimichi Ejima, Jinglong Wu, and Jiajia Yang. 2025. "The Impact of Task Context on Pleasantness and Softness Estimations: A Study Based on Three Touch Strategies" Behavioral Sciences 15, no. 1: 63. https://doi.org/10.3390/bs15010063
APA StyleGao, B., Yu, Y., Ejima, Y., Wu, J., & Yang, J. (2025). The Impact of Task Context on Pleasantness and Softness Estimations: A Study Based on Three Touch Strategies. Behavioral Sciences, 15(1), 63. https://doi.org/10.3390/bs15010063