The Impact of Long COVID on Language Proficiency Across Different School Levels in Hong Kong
Abstract
:1. Introduction
2. The Present Study and Hypothesis Development
3. Method
3.1. Participants
3.2. Procedures
3.3. Measurements
3.4. Data Analysis
4. Results
4.1. Data Screening
4.2. Effects of Long COVID on Language Proficiency (RQ1)
4.3. Effect of Long COVID by Language (RQ2)
4.4. Effects of Long COVID Status by School Level (RQ3)
5. Discussion
5.1. Substantiated Impact of Long COVID on Speaking and Reading Proficiency
5.2. Reduced Proficiency of Long COVID Group in Both First and Second Languages
5.3. Different Impacts of Long COVID on Language Proficiency Across School Levels
5.4. Limitations and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahrens, K. F., Neumann, R. J., Kollmann, B., Plichta, M. M., Lieb, K., Tüscher, O., & Reif, A. (2021). Differential impact of COVID-related lockdown on mental health in Germany. World Psychiatry, 20(1), 140–141. [Google Scholar] [CrossRef] [PubMed]
- Aiyegbusi, O. L., Hughes, S. E., Turner, G., Rivera, S. C., McMullan, C., Chandan, J. S., Haroon, S., Price, G., Davies, E. H., Nirantharakumar, K., Sapey, E., & Calvert, M. J. (2021). Symptoms, complications and management of long COVID: A review. Journal of the Royal Society of Medicine, 114(9), 428–442. [Google Scholar] [CrossRef] [PubMed]
- Beaud, V., Crottaz-Herbette, S., Dunet, V., Vaucher, J., Bernard-Valnet, R., Pasquier, R. D., Bart, P.-A., & Clarke, S. (2021). Pattern of cognitive deficits in severe COVID-19. Journal of Neurology, Neurosurgery & Psychiatry, 92(5), 567–568. [Google Scholar] [CrossRef]
- Bliddal, S., Banasik, K., Pedersen, O. B., Nissen, J., Cantwell, L., Schwinn, M., Tulstrup, M., Westergaard, D., Ullum, H., Brunak, S., Tommerup, N., Feenstra, B., Geller, F., Ostrowski, S. R., Grønbæk, K., Nielsen, C. H., Nielsen, S. D., & Feldt-Rasmussen, U. (2021). Acute and persistent symptoms in non-hospitalized PCR-confirmed COVID-19 patients. Scientific Reports, 11(1), 13153. [Google Scholar] [CrossRef]
- Bolton, K. (2000). The sociolinguistics of Hong Kong and the space for Hong Kong English. World Englishes, 19(3), 265–285. [Google Scholar] [CrossRef]
- Borch, L., Holm, M., Knudsen, M., Ellermann-Eriksen, S., & Hagstroem, S. (2022). Long COVID symptoms and duration in SARS-CoV-2 positive children—A nationwide cohort study. European Journal of Pediatrics, 181(4), 1597–1607. [Google Scholar] [CrossRef]
- Buonsenso, D., Munblit, D., De Rose, C., Sinatti, D., Ricchiuto, A., Carfi, A., & Valentini, P. (2021). Preliminary evidence on long COVID in children. Acta Paediatrica, 110(7), 2208–2211. [Google Scholar] [CrossRef]
- Buttery, S., Philip, K. E. J., Williams, P., Fallas, A., West, B., Cumella, A., Cheung, C., Walker, S., Quint, J. K., Polkey, M. I., & Hopkinson, N. S. (2021). Patient symptoms and experience following COVID-19: Results from a UK-wide survey. BMJ Open Respiratory Research, 8(1), e001075. [Google Scholar] [CrossRef]
- CDC. (2023, July 20). Post-COVID conditions. Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/covid/long-term-effects/?CDC_AAref_Val=https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html (accessed on 5 July 2023).
- Census and Statistics Department. (2021). 2021 population census. Available online: https://www.censtatd.gov.hk/en/scode600.html (accessed on 5 July 2023).
- Chall, J. S. (1983). Literacy: Trends and explanations. Educational Researcher, 12(9), 3–8. [Google Scholar] [CrossRef]
- Chan, D., Yang, S., Hamamura, T., Sultan, S., Xing, S., Chatzisarantis, N., & Hagger, M. (2015). In-lecture learning motivation predicts students’ motivation, intention, and behaviour for after-lecture learning: Examining the trans-contextual model across universities from UK, China, and Pakistan. Motivation and Emotion, 39, 908–925. [Google Scholar] [CrossRef]
- Charney, S. A., Camarata, S. M., & Chern, A. (2021). Potential impact of the COVID-19 pandemic on communication and language skills in children. Otolaryngology–Head and Neck Surgery, 165(1), 1–2. [Google Scholar] [CrossRef]
- Chen, C., Haupert, S. R., Zimmermann, L., Shi, X., Fritsche, L. G., & Mukherjee, B. (2022). Global prevalence of post-coronavirus disease 2019 (COVID-19) condition or long COVID: A meta-analysis and systematic review. The Journal of Infectious Diseases, 226(9), 1593–1607. [Google Scholar] [CrossRef]
- Crivelli, L., Palmer, K., Calandri, I., Guekht, A., Beghi, E., Carroll, W., Frontera, J., García-Azorín, D., Westenberg, E., Winkler, A. S., Mangialasche, F., Allegri, R. F., & Kivipelto, M. (2022). Changes in cognitive functioning after COVID-19: A systematic review and meta-analysis. Alzheimer’s & Dementia, 18(5), 1047–1066. [Google Scholar] [CrossRef]
- Crook, H., Raza, S., Nowell, J., Young, M., & Edison, P. (2021). Long covid—Mechanisms, risk factors, and management. BMJ, 374, n1648. [Google Scholar] [CrossRef] [PubMed]
- Cummings, L. (Ed.). (2022). COVID-19 and speech-language pathology. Routledge. [Google Scholar] [CrossRef]
- Cummings, L. (2023). Long COVID: The impact on language and cognition. Language and Health, 1, 2–9. [Google Scholar] [CrossRef]
- Cummings, L. (2024). Cognitive-linguistic difficulties in adults with long COVID: A follow-up study. Language and Health, 2(1), 1–21. [Google Scholar] [CrossRef]
- Deoni, S. C., Beauchemin, J., Volpe, A., D’Sa, V., & the RESONANCE Consortium. (2021). The COVID-19 pandemic and early child cognitive development: A comparison of development in children born during the pandemic and historical references [Preprint]. Pediatrics. [Google Scholar] [CrossRef]
- Elbro, C., Dalby, M., & Maarbjerg, S. (2011). Language-learning impairments: A 30-year follow-up of language-impaired children with and without psychiatric, neurological and cognitive difficulties. International Journal of Language & Communication Disorders, 46(4), 437–448. [Google Scholar] [CrossRef]
- Fainardi, V., Meoli, A., Chiopris, G., Motta, M., Skenderaj, K., Grandinetti, R., Bergomi, A., Antodaro, F., Zona, S., & Esposito, S. (2022). Long COVID in children and adolescents. Life, 12(2), 2. [Google Scholar] [CrossRef]
- Ganesan, B., Al-Jumaily, A., Fong, K. N. K., Prasad, P., Meena, S. K., & Tong, R. K.-Y. (2021). Impact of coronavirus disease 2019 (COVID-19) outbreak quarantine, isolation, and lockdown policies on mental health and suicide. Frontiers in Psychiatry, 12, 565190. [Google Scholar] [CrossRef]
- Gross, R. S., Thaweethai, T., Kleinman, L. C., Snowden, J. N., Rosenzweig, E. B., Milner, J. D., Tantisira, K. G., Rhee, K. E., Jernigan, T. L., Kinser, P. A., Salisbury, A. L., Warburton, D., Mohandas, S., Wood, J. C., Newburger, J. W., Truong, D. T., Flaherman, V. J., Metz, T. D., Karlson, E. W., … RECOVER-Pediatrics Group Authors. (2024). Characterizing long COVID in children and adolescents. JAMA, 332(14), 1174–1188. [Google Scholar] [CrossRef] [PubMed]
- Gutzeit, J., Weiß, M., Nürnberger, C., Lemhöfer, C., Appel, K. S., Pracht, E., Reese, J.-P., Lehmann, C., Polidori, M. C., Hein, G., & Deckert, J. (2024). Definitions and symptoms of the post-COVID syndrome: An updated systematic umbrella review. European Archives of Psychiatry and Clinical Neuroscience, 275, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Hadad, R., Khoury, J., Stanger, C., Fisher, T., Schneer, S., Ben-Hayun, R., Possin, K., Valcour, V., Aharon-Peretz, J., & Adir, Y. (2022). Cognitive dysfunction following COVID-19 infection. Journal of NeuroVirology, 28(3), 430–437. [Google Scholar] [CrossRef]
- Hampshire, A., Trender, W., Chamberlain, S. R., Jolly, A. E., Grant, J. E., Patrick, F., Mazibuko, N., Williams, S. C., Barnby, J. M., Hellyer, P., & Mehta, M. A. (2021). Cognitive deficits in people who have recovered from COVID-19. eClinicalMedicine, 39, 101044. [Google Scholar] [CrossRef]
- Hopp, H., & Thoma, D. (2020). Foreign language development during temporary school closures in the 2020 COVID-19 pandemic. Frontiers in Education, 5, 601017. [Google Scholar]
- Huang, P., Zhou, F., Guo, Y., Yuan, S., Lin, S., Lu, J., Tu, S., Lu, M., Shen, S., Guedeney, A., Xia, H., & Qiu, X. (2021). Association between the COVID-19 pandemic and infant neurodevelopment: A comparison before and during COVID-19. Frontiers in Pediatrics, 9, 662165. [Google Scholar] [CrossRef]
- Johnson, M. H. (2001). Functional brain development in humans. Nature Reviews Neuroscience, 2(7), 475–483. [Google Scholar] [CrossRef]
- Kaushanskaya, M., Blumenfeld, H. K., & Marian, V. (2020). The Language Experience and Proficiency Questionnaire (LEAP-Q): Ten years later. Bilingualism: Language and Cognition, 23(5), 945–950. [Google Scholar] [CrossRef]
- Kuhfeld, M., Soland, J., Tarasawa, B., Johnson, A., Ruzek, E., & Liu, J. (2020). Projecting the potential impact of COVID-19 school closures on academic achievement. Educational Researcher, 49(8), 549–565. [Google Scholar] [CrossRef]
- Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831–843. [Google Scholar] [CrossRef]
- Loades, M. E., Chatburn, E., Higson-Sweeney, N., Reynolds, S., Shafran, R., Brigden, A., Linney, C., McManus, M. N., Borwick, C., & Crawley, E. (2020). Rapid systematic review: The impact of social isolation and loneliness on the mental health of children and adolescents in the context of COVID-19. Journal of the American Academy of Child & Adolescent Psychiatry, 59(11), 1218–1239.e3. [Google Scholar] [CrossRef]
- Ludvigsson, J. F. (2021). Case report and systematic review suggest that children may experience similar long-term effects to adults after clinical COVID-19. Acta Paediatrica, 110(3), 914–921. [Google Scholar] [CrossRef] [PubMed]
- Macbeth, A., Atagi, N., Montag, J. L., Bruni, M. R., & Chiarello, C. (2022). Assessing language background and experiences among heritage bilinguals. Frontiers in Psychology, 13, 993669. [Google Scholar] [CrossRef]
- Maxwell, S. E., Delaney, H. D., & Kelley, K. (2017). Designing experiments and analyzing data: A model comparison perspective (3rd ed.). Routledge. [Google Scholar] [CrossRef]
- Moon, I.-J., Jo, M., Kim, G.-Y., Kim, N., Cho, Y.-S., Hong, S.-H., & Seol, H.-Y. (2022). How does a face mask impact speech perception? Healthcare, 10(9), 9. [Google Scholar] [CrossRef]
- Najamuddin, N., Sahrip, S., Siahaan, K. W. A., Yunita, W., & Ananda, R. (2022). The impact of the dissemination of the COVID-19 epidemic on social development in early children. International Journal of Elementary Education, 6(2), 2. [Google Scholar] [CrossRef]
- Negrini, F., Ferrario, I., Mazziotti, D., Berchicci, M., Bonazzi, M., de Sire, A., Negrini, S., & Zapparoli, L. (2021). Neuropsychological features of severe hospitalized coronavirus disease 2019 patients at clinical stability and clues for postacute rehabilitation. Archives of Physical Medicine and Rehabilitation, 102(1), 155–158. [Google Scholar] [CrossRef]
- Olson, D. R., & Torrance, N. (2009). The Cambridge handbook of literacy. Cambridge University Press. [Google Scholar]
- Perlis, R. H., Santillana, M., Ognyanova, K., Safarpour, A., Lunz Trujillo, K., Simonson, M. D., Green, J., Quintana, A., Druckman, J., Baum, M. A., & Lazer, D. (2022). Prevalence and correlates of long COVID symptoms among us adults. JAMA Network Open, 5(10), e2238804. [Google Scholar] [CrossRef]
- Raveendran, A. V., Jayadevan, R., & Sashidharan, S. (2021). Long COVID: An overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15(3), 869–875. [Google Scholar] [CrossRef]
- Rehfeld, D. M., & Padgett, R. N. (2019). Test review: Comprehensive assessment of spoken language–second edition. Journal of Psychoeducational Assessment, 37(4), 524–529. [Google Scholar] [CrossRef]
- Roberts, J., Price, J., Barnes, E., Nelson, L., Burchinal, M., Hennon, E. A., Moskowitz, L., Edwards, A., Malkin, C., Anderson, K., Misenheimer, J., & Hooper, S. R. (2007). Receptive vocabulary, expressive vocabulary, and speech production of boys with fragile X syndrome in comparison to boys with down syndrome. American Journal on Mental Retardation, 112(3), 177–193. [Google Scholar] [CrossRef]
- Scheffe, H. (1953). A method for judging all contrasts in the analysis of variance. Biometrika, 40(1–2), 87–110. [Google Scholar] [CrossRef]
- So, H.-K., Chua, G. T., Yip, K.-M., Tung, K. T. S., Wong, R. S., Louie, L. H. T., Tso, W. W. Y., Wong, I. C. K., Yam, J. C., Kwan, M. Y. W., Lau, K.-K., Kong, J. K. W., Wong, W. H. S., & Ip, P. (2022). Impact of COVID-19 pandemic on school-aged children’s physical activity, screen time, and sleep in Hong Kong: A cross-sectional repeated measures study. International Journal of Environmental Research and Public Health, 19(17), 17. [Google Scholar] [CrossRef] [PubMed]
- Stavridou, A., Stergiopoulou, A., Panagouli, E., Mesiris, G., Thirios, A., Mougiakos, T., Troupis, T., Psaltopoulou, T., Tsolia, M., Sergentanis, T. N., & Tsitsika, A. (2020). Psychosocial consequences of COVID-19 in children, adolescents and young adults: A systematic review. Psychiatry and Clinical Neurosciences, 74(11), 615–616. [Google Scholar] [CrossRef] [PubMed]
- Tan, C. Y., Pan, Q., Zhang, Y., Lan, M., & Law, N. (2022). Parental home monitoring and support and students’ online learning and socioemotional well-being during COVID-19 school suspension in Hong Kong. Frontiers in Psychology, 13, 916338. [Google Scholar] [CrossRef]
- Tleyjeh, I. M., Kashour, T., Riaz, M., Amer, S. A., AlSwaidan, N., Almutairi, L., Halwani, R., & Assiri, A. (2022). Persistent COVID-19 symptoms at least one month after diagnosis: A national survey. Journal of Infection and Public Health, 15(5), 578–585. [Google Scholar] [CrossRef]
- Venkataramani, V., & Winkler, F. (2022). Cognitive Deficits in Long Covid-19. New England Journal of Medicine, 387(19), 1813–1815. [Google Scholar] [CrossRef]
- Whitaker, M., Elliott, J., Chadeau-Hyam, M., Riley, S., Darzi, A., Cooke, G., Ward, H., & Elliott, P. (2022). Persistent COVID-19 symptoms in a community study of 606,434 people in England. Nature Communications, 13(1), 1957. [Google Scholar] [CrossRef]
Sample Characteristics | |||
---|---|---|---|
Total Sample | N = 1244, Mage = 8.75 ± 4.27; Boys, 53.5% | ||
COVID-19 Symptoms | Long COVID group N = 353, 28.4% Mage = 9.21 ± 4.42 | COVID group N = 480, 38.6% Mage = 8.61 ± 4.16 | No-COVID group N = 411, 33.0% Mage = 8.51 ± 4.21 |
School Levels | Kindergarten N = 408, 32.8% Mage = 4.42 ± 1.26 | Primary school N = 547, 44.0% Mage = 9.69 ± 1.96 | Secondary school N = 289, 23.2% Mage = 14.97 ± 1.85 |
Mean (SD) | Overall Score | Speaking | Listening | Reading | Writing |
---|---|---|---|---|---|
School Levels | |||||
Kindergarten | 5.05 (1.69) | 5.54 (1.76) | 5.83 (1.80) | 4.57 (2.36) | 3.59 (2.43) |
Primary School | 6.21 (1.86) | 6.33 (1.99) | 6.58 (1.93) | 6.13 (2.06) | 5.56 (2.05) |
Secondary School | 6.64 (1.87) | 6.68 (1.97) | 6.89 (2.03) | 6.61 (2.12) | 6.26 (2.03) |
COVID-19 Status | |||||
Long COVID | 5.57 (1.90) | 5.69 (1.99) | 5.93 (2.02) | 5.44 (2.28) | 4.96 (2.38) |
COVID | 6.10 (1.90) | 6.38 (1.89) | 6.63 (1.85) | 5.83 (2.36) | 5.13 (2.50) |
No-COVID | 6.04 (1.92) | 6.28 (1.96) | 6.55 (1.96) | 5.85 (2.31) | 5.11 (2.37) |
Language Proficiency | Variable 1 | Variable 2 | Mean Difference | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Overall Scores | Long COVID | COVID | −0.531 * | 0.134 | <0.001 | −0.859 | −0.204 |
No-COVID | −0.479 * | 0.138 | 0.003 | −0.818 | −0.140 | ||
Speaking | Long COVID | COVID | −0.691 * | 0.136 | <0.001 | −1.026 | −0.357 |
No-COVID | −0.592 * | 0.141 | <0.001 | −0.939 | −0.247 | ||
Listening | Long COVID | COVID | −0.699 * | 0.136 | <0.001 | −1.032 | −0.367 |
No-COVID | −0.622 * | 0.141 | <0.001 | −0.967 | −0.278 | ||
Reading | Long COVID | COVID | −0.395 | 0.163 | 0.053 | −0.794 | 0.004 |
No-COVID | −0.414 * | 0.168 | 0.049 | −0.828 | −0.002 | ||
Writing | Long COVID | COVID | −0.174 | 0.170 | 0.592 | −0.591 | 0.243 |
No-COVID | −0.158 | 0.176 | 0.668 | −0.590 | 0.273 |
Language Type | Measure | F-Value | p-Value | η2 |
---|---|---|---|---|
Chinese (First Language) | Overall Proficiency | 5.62 | 0.004 | 0.009 |
Speaking | 15.504 | <0.001 | 0.024 | |
Listening | 19.99 | <0.001 | 0.031 | |
Reading | 6.535 | 0.091 | 0.005 | |
Writing | 0.828 | 0.437 | 0.001 | |
English (Second Language) | Overall Proficiency | 9.565 | <0.001 | 0.015 |
Speaking | 10.103 | <0.001 | 0.016 | |
Listening | 8.697 | <0.001 | 0.014 | |
Reading | 3.96 | 0.019 | 0.006 | |
Writing | 0.398 | 0.672 | 0.001 |
Language Proficiency | Variable 1 | Variable 2 | Mean Difference | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
Chinese Overall Scores | Long COVID | COVID | −0.462 * | 0.157 | 0.014 | −0.847 | −0.076 |
No-COVID | −0.485 * | 0.162 | 0.012 | −0.884 | −0.086 | ||
Chinese Speaking | Long COVID | COVID | −0.855 * | 0.161 | <0.001 | −1.250 | −0.459 |
No-COVID | −0.730 * | 0.167 | <0.001 | −1.139 | −0.321 | ||
Chinses Listening | Long COVID | COVID | −0.934 * | 0.154 | <0.001 | −1.313 | −0.556 |
No-COVID | −0.780 * | 0.159 | <0.001 | −1.171 | −0.388 | ||
Chinese Reading | Long COVID | COVID | −0.357 | 0.186 | 0.159 | −0.81 | 0.10 |
No-COVID | −0.370 | 0.193 | 0.158 | −0.84 | 0.10 | ||
Chinese Writing | Long COVID | COVID | −0.237 | 0.185 | 0.440 | −0.690 | 0.220 |
No-COVID | −0.153 | 0.191 | 0.726 | −0.620 | 0.320 | ||
English Overall Scores | Long COVID | COVID | −0.596 * | 0.1431 | <0.001 | −0.946 | −0.245 |
No-COVID | −0.508 * | 0.1481 | 0.003 | −0.8717 | −0.145 | ||
English Speaking | Long COVID | COVID | −0.664 * | 0.166 | <0.001 | −1.072 | −0.260 |
No-COVID | −0.677 * | 0.172 | <0.001 | −1.103 | −0.260 | ||
English Listening | Long COVID | COVID | −0.640 * | 0.171 | <0.001 | −1.065 | −0.220 |
No-COVID | −0.641 * | 0.177 | 0.001 | −1.070 | −0.210 | ||
English Reading | Long COVID | COVID | −0.434 * | 0.177 | 0.050 | −0.874 | 0.000 |
No-COVID | −0.459 * | 0.183 | 0.043 | −0.911 | −0.015 | ||
English Writing | Long COVID | COVID | −0.111 | 0.180 | 0.826 | −0.552 | 0.332 |
No-COVID | −0.163 | 0.186 | 0.680 | −0.623 | 0.291 |
School Levels | Language Proficiency | Variable 1 | Variable 2 | Mean Difference (I-J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | |||||||
Kindergarten | Overall scores | Long COVID | COVID | −0.036 | 0.210 | 0.985 | −0.554 | 0.481 |
No-COVID | −0.061 | 0.218 | 0.961 | −0.596 | 0.474 | |||
Speaking | Long COVID | COVID | −0.307 | 0.219 | 0.376 | −0.844 | 0.231 | |
No-COVID | −0.375 | 0.226 | 0.254 | −0.931 | 0.181 | |||
Listening | Long COVID | COVID | −0.253 | 0.224 | 0.529 | −0.804 | 0.298 | |
No-COVID | −0.175 | 0.232 | 0.752 | −0.744 | 0.394 | |||
Reading | Long COVID | COVID | 0.216 | 0.293 | 0.762 | −0.504 | 0.936 | |
No-COVID | 0.213 | 0.303 | 0.781 | −0.532 | 0.958 | |||
Writing | Long COVID | COVID | 0.441 | 0.302 | 0.344 | −0.300 | 1.183 | |
No-COVID | 0.305 | 0.312 | 0.620 | −0.461 | 1.072 | |||
Primary School | Overall scores | Long COVID | COVID | −0.700 | 0.195 | 0.002 | −1.178 | −0.222 |
No-COVID | −0.653 * | 0.202 | 0.006 | −1.151 | −0.157 | |||
Speaking | Long COVID | COVID | −0.779 * | 0.209 | 0.001 | −1.292 | −0.267 | |
No-COVID | −0.620 * | 0.217 | 0.017 | −1.153 | −0.088 | |||
Listening | Long COVID | COVID | −0.757 * | 0.202 | <0.001 | −1.253 | −0.262 | |
No-COVID | −0.753 * | 0.210 | 0.002 | −1.268 | −0.240 | |||
Reading | Long COVID | COVID | −0.553 * | 0.217 | 0.040 | −1.086 | −0.020 | |
No-COVID | −0.589 * | 0.225 | 0.033 | −1.143 | −0.037 | |||
Writing | Long COVID | COVID | −0.641 * | 0.215 | 0.012 | −1.171 | −0.113 | |
No-COVID | −0.618 * | 0.224 | 0.023 | −1.167 | −0.069 | |||
Secondary School | Overall scores | Long COVID | COVID | −1.105 * | 0.259 | <0.001 | −1.744 | −0.467 |
No-COVID | −0.890 * | 0.267 | 0.004 | −1.547 | −0.235 | |||
Speaking | Long COVID | COVID | −1.209 * | 0.272 | <0.001 | −1.880 | −0.539 | |
No-COVID | −0.950 * | 0.280 | 0.004 | −1.639 | −0.262 | |||
Listening | Long COVID | COVID | −1.333 * | 0.280 | <0.001 | −2.022 | −0.644 | |
No-COVID | −1.081 * | 0.288 | 0.001 | −1.789 | −0.374 | |||
Reading | Long COVID | COVID | −1.185 * | 0.294 | <0.001 | −1.910 | −0.461 | |
No-COVID | −1.152 * | 0.302 | <0.001 | −1.897 | −0.409 | |||
Writing | Long COVID | COVID | −0.530 | 0.289 | 0.188 | −1.242 | 0.182 | |
No-COVID | −0.253 | 0.297 | 0.697 | −0.984 | 0.478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.S.; Li, Y.; Li, W.; Capio, C.M.; Tso, W.W.Y.; Chan, D.K.C. The Impact of Long COVID on Language Proficiency Across Different School Levels in Hong Kong. Behav. Sci. 2025, 15, 432. https://doi.org/10.3390/bs15040432
Xu SS, Li Y, Li W, Capio CM, Tso WWY, Chan DKC. The Impact of Long COVID on Language Proficiency Across Different School Levels in Hong Kong. Behavioral Sciences. 2025; 15(4):432. https://doi.org/10.3390/bs15040432
Chicago/Turabian StyleXu, Shebe S., Yixun Li, Wanyi Li, Catherine M. Capio, Winnie W. Y. Tso, and Derwin K. C. Chan. 2025. "The Impact of Long COVID on Language Proficiency Across Different School Levels in Hong Kong" Behavioral Sciences 15, no. 4: 432. https://doi.org/10.3390/bs15040432
APA StyleXu, S. S., Li, Y., Li, W., Capio, C. M., Tso, W. W. Y., & Chan, D. K. C. (2025). The Impact of Long COVID on Language Proficiency Across Different School Levels in Hong Kong. Behavioral Sciences, 15(4), 432. https://doi.org/10.3390/bs15040432