Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Processing
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Herting, M.M.; Chu, X. Exercise, cognition, and the adolescent brain. Birth Defects Res. 2017, 109, 1672–1679. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Dunn, A.; Cooper, D. Affect, exercise, and physical activity among healthy adolescents. J. Sport Exerc. Psychol. 2009, 31, 706–723. [Google Scholar] [CrossRef]
- Hay, J.; Maximova, K.; Durksen, A.; Carson, V.; Rinaldi, R.L.; Torrance, B.; Ball, G.D.C.; Majumdar, S.R.; Plotnikoff, R.C.; Veugelers, P.; et al. Physical activity intensity and cardiometabolic risk in youth. JAMA Pediatrics 2012, 166, 1022–1029. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans, 2nd ed.; Department of Health and Human Services: Washington, DC, USA, 2018.
- National Physical Activity Plan Alliance. 2016 US Report Card on Physical Activity for Children and Youth; National Physical Activity Plan Alliance: Columbia, SC, USA, 2016. [Google Scholar]
- Lubans, D.R.; Boreham, C.A.; Kelly, P.; Foster, C.E. The relationship between active travel to school and health-related fitness in children and adolescents: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Collins, P.; Al-Nakeeb, Y.; Lyons, M. Tracking the commute home from school utilizing GPS and heart rate monitoring: Establishing the contribution to free-living physical activity. J. Phys. Act. Health 2015, 12, 155–162. [Google Scholar] [CrossRef]
- Southward, E.F.; Page, A.S.; Wheeler, B.W.; Cooper, A.R. Contribution of the school journey to daily physical activity in children aged 11–12 years. Am. J. Prev. Med. 2012, 43, 201–204. [Google Scholar] [CrossRef] [PubMed]
- Larouche, R.; Saunders, T.J.; John Faulkner, G.E.; Colley, R.; Tremblay, M. Associations between active school transport and physical activity, body composition, and cardiovascular fitness: A systematic review of 68 studies. J. Phys. Act. Health 2014, 11, 206–227. [Google Scholar] [CrossRef] [PubMed]
- Strasburger, V.C.; Jordan, A.B.; Donnerstein, E. Health effects of media on children and adolescents. Pediatrics 2010, 125, 756–767. [Google Scholar] [CrossRef] [PubMed]
- McGregor, D.E.; Palarea-Albaladejo, J.; Dall, P.M.; Stamatakis, E.; Chastin, S.F.M. Differences in physical activity time-use composition associated with cardiometabolic risks. Prev. Med. Rep. 2019, 13, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Babey, S.H.; Hastert, T.A.; Wolstein, J. Adolescent sedentary behaviors: Correlates differ for television viewing and computer use. J. Adolesc. Health 2013, 52, 70–76. [Google Scholar] [CrossRef]
- Carson, V.; Staiano, A.E.; Katzmarzyk, P.T. Physical activity, screen time, and sitting among US adolescents. Pediatric Exerc. Sci. 2015, 27, 151–159. [Google Scholar] [CrossRef]
- Manz, K.; Schlack, R.; Poethko-Muller, C.; Mensink, G.; Finger, J.; Lampert, T.; KiGGS Study Group. Physical activity and electronic media use in children and adolescents: Results of the KiGGS study: First follow-up (KiGGS wave 1). Bundesgesunheitsblatt Gesundheitsforschung Gesundheitsschutz 2014, 57, 840–848. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, G.L.; Araujo, T.L.; Oliveira, L.C.; Matsudo, V.; Fisberg, M. Association between electronic equipment in the bedroom and sedentary lifestyle, physical activity, and body mass index of children. J. Pediatr. (Rio J.) 2015, 91, 574–582. [Google Scholar] [CrossRef] [Green Version]
- Pfledderer, C.; Burns, R.D.; Brusseau, T.A. Association between access to electronic devices in the home environment and cardiorespiratory fitness in children. Children 2019, 6, 8. [Google Scholar] [CrossRef] [PubMed]
- Mathers, M.; Canterfold, L.; Olds, T.; Hesketh, K.; Ridley, K.; Wake, M. Electronic media use and adolescent health and well-being: Cross-sectional community study. Acad. Pediatrics 2009, 9, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Rosen, L.D.; Lim, A.F.; Felt, J.; Carrier, L.M.; Cheever, N.A.; Lara-Ruiz, J.M.; Mendoza, J.S.; Rokkum, J. Media and technology use predicts ill-being among children, preteens and teenagers independent of the negative health impacts of exercise and eating habits. Comput. Hum. Behav. 2014, 35, 364–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nebeling, L.C.; Hennessy, E.; Oh, A.Y.; Dwyer, L.A.; Patrick, H.; Blanck, H.M.; Perna, F.M.; Ferrer, R.A.; Yaroch, A.L. The FLASHE Study: Survey development, dyadic perspectives, and participant characteristics. Am. J. Prev. Med. 2017, 52, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Oh, A.Y.; Davis, T.; Dwyeer, L.A.; Hennessy, E.; Li, T.; Yaroch, A.L.; Nebeling, L.C. Recruitment, enrollment, and response of parent-adolescent dyads in the FLASHE Study. Am. J. Prev. Med. 2017, 52, 849–855. [Google Scholar] [CrossRef]
- Saint-Maurice, P.F.; Kim, Y.; Hibbing, P.; Oh, A.Y.; Perna, F.M.; Welk, G.J. Calibration and validation of the Youth Activity Profile: The FLASHE study. Am. J. Prev. Med. 2017, 52, 880–887. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Nisson, A.; Andersen, L.B.; Ommundsen, Y.; Froberg, K.; Sardinha, L.B.; Piehl-Aulin, K.; Ekelund, U. Correlates of objectively assessed physical activity and sedentary time in children: A cross-sectional study (The European Heart Study). BMC Public Health 2009, 9, 322. [Google Scholar] [CrossRef]
- Gupta, N.; Mathiassen, S.E.; Mateu-Figeras, G.; Heiden, M.; Hallman, D.M.; Jørgensen, M.B.; Holtermann, A. A comparison of standard and compositional data analysis in studies addressing group differences in sedentary behavior and physical activity. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 53. [Google Scholar] [CrossRef] [PubMed]
- Brusseau, T.A.; Burns, R.D. Physical activity, health-related fitness, and classroom behavior in children: A discriminant function analysis. Res. Q Exerc. Sport 2018, 89, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Magnon, V.; Vallet, G.T.; Auxiette, C. Sedentary behavior at work and cognitive functioning: A systematic review. Front. Public Health 2018, 6, 239. [Google Scholar] [CrossRef] [PubMed]
- Silva, K.S.; Vasques, D.G.; Martins, C.D.O.; Williams, L.A.; Lopes, A.S. Active commuting: Prevalence, barriers, and associated variables. J. Phys. Act. Health 2011, 8, 750–757. [Google Scholar] [CrossRef] [PubMed]
- Carver, A.; Salmon, J.; Campbell, K.; Baur, L.; Garnett, S.; Crawford, D. How do perceptions of local neighborhood relate to adolescents’ walking and cycling? Am. J. Health Promot. 2005, 20, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Hume, C.; Salmon, J.; Ball, K. Associations of children’s perceived neighborhood environments with walking and physical activity. Am. J. Health Promot. 2007, 21, 201–207. [Google Scholar] [CrossRef]
- Loucaides, C.A.; Jaqo, R.; Theophanous, M. Prevalence and correlates of active traveling to school among adolescents in Cyprus. Cent. Eur. J. Public Health 2010, 18, 151–156. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, J.; Hsu, P.; Chen, S. Factors affecting students’ walking/biking rates: Initial findings from a safe route to school survey in Florida. J. Transp. Saf. Secur. 2010, 2, 14–27. [Google Scholar] [CrossRef]
- Nelson, N.M.; Woods, C.B. Neighborhood perceptions and active commuting to school among adolescent boys and girls. J. Phys. Act. Health 2010, 7, 257–266. [Google Scholar] [CrossRef]
- Federal Highway Administration. NHTS Brief: National Household Travel Survey: Travel to School: The Distance Factor; Federal Highway Administration: Washington, DC, USA, 2008.
- Beck, L.F.; Nguyen, D.D. School transportation mode, by distance between home and school, United States, Consumer Styles 2012. J. Saf. Res. 2017, 62, 245–251. [Google Scholar] [CrossRef]
- Parra-Saldias, M.; Castro-Pinero, J.; Castillo Paredes, A.; Palma Leal, X.; Díaz Martínez, X.; Rodríguez-Rodríguez, F. Active commuting behaviors from high school to university in Chile: A retrospective study. Int. J. Environ. Res. Public Health 2019, 16, 53. [Google Scholar] [CrossRef]
- LeBlanc, A.G.; Katzmarzyk, P.T.; Barreira, T.V.; Broyles, S.T.; Chaput, J.P.; Church, T.S.; Fogelholm, M.; Harrington, D.M.; Hu, G.; Kuriyan, R. Correlates of total sedentary time and screen time in 9–11-year-old children around the world: The international study of childhood obesity, lifestyle and the environment. PLoS ONE 2015, 10, e0129622. [Google Scholar] [CrossRef] [PubMed]
- Tandon, P.S.; Zhou, C.; Sallis, J.F.; Cain, K.L.; Frank, L.D.; Saelens, B.E. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Delmas, C.; Platat, C.; Schweitzer, B.; Wagner, A.; Oujaa, M.; Simon, C. Association between television in bedroom and adiposity throughout adolescence. Obesity 2007, 15, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Barr-Anderson, D.J.; Van Den Berg, P.; Neumark-Sztainer, D.; Story, M. Characteristics associated with older adolescents who have a television in their bedrooms. Pediatrics 2008, 121, 718–724. [Google Scholar] [CrossRef]
- Fanning, J.; Mullen, S.P.; McAuley, E. Increasing physical activity with mobile devices: A meta-analysis. J. Med. Internet Res. 2012, 14, e161. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.G.; Queiros, A.; Neto, M.; Rocha, N.P. Type and quantity of physical activity and screen-based activities of students from the 7th to the 12th grades: Characterization and association. Rev. Portiguesa Saude Publica 2016, 34, 236–243. [Google Scholar] [CrossRef]
- Gorden-Larsen, P.; Nelson, M.C.; Page, P.; Popkin, B.M. Inequality in the built environment underlies key health disparities in physical activity and obesity. Pediatrics 2006, 117, 417–424. [Google Scholar] [CrossRef]
- Hidding, L.M.; Chinapaw, M.J.M.; van Poppel, M.N.M.; Mokkink, L.B.; Altenburg, T.M. An updated systematic review of childhood physical activity questionnaires. Sports Med. 2018, 48, 2797–2842. [Google Scholar] [CrossRef] [PubMed]
- Molina-Garcia, J.; Garcia-Masso, X.; Estevan, I.; Queralt, A. Built environment, psychosocial factors and active commuting to school in adolescents: Clustering a self-organizing map analysis. Int. J. Environ. Res. Public Health 2019, 16, 83. [Google Scholar] [CrossRef] [PubMed]
Total Sample (N = 1445) | Girls (n = 742) | Boys (n = 703) | |
---|---|---|---|
Age (years) | 14.5 (1.6) | 14.4 (1.6) | 14.5 (1.6) |
BMI (kg/m2) | 22.2 (4.9) | 22.2 (5.0) | 22.2 (4.7) |
Phone Use | 2.7 (1.4) | 3.0 † (1.4) | 2.4 (1.3) |
Video Game Use | 2.6 (1.3) | 2.1 (1.2) | 3.0 † (1.2) |
Computer Use | 2.8 (1.3) | 2.8 (1.3) | 2.8 (1.2) |
Television Use | 3.2 (1.1) | 3.2 (1.1) | 3.2 (1.2) |
AT to School | 1.68 (1.4) | 1.55 (1.29) | 1.84 † (1.50) |
AT from School | 1.80 (1.4) | 1.72 (1.42) | 1.87 † (1.53) |
Weekly MVPA (min) | 468.3 (97.4) | 466.3 (95.9) | 470.6 (99.1) |
Model 1 b-coefficient (95% CI) | Model 2 b-coefficient (95% CI) | Model 3 b-coefficient (95% CI) | |
---|---|---|---|
Phone use | −11.81 † (−15.79–−7.83) | −12.81 † (−16.55–−9.06) | 1.23 (−0.48–3.96) |
Video Game Use | 8.99 † (4.78–13.20) | 7.80 † (3.82–11.77) | −0.22 (−2.03–1.60) |
Computer Use | −8.00 † (−12.35–−3.65) | −8.20 † (−12.30–−4.10) | 1.12 (−0.69–2.93) |
Television Use | 0.76 (−3.98–5.51) | 0.86 (−3.65–5.36) | 0.19 (−1.77–2.16) |
AT to School | 14.30 † (7.56–21.03) | 12.32 † (9.72–14.93) | |
AT from School | 10.27 † (4.07–16.46) | 7.18 † (4.79–9.57) | |
Age (years) | −52.8 † (−54.4–−51.3) | ||
Sex (boy referent) | −7.5 † (−12.3–−2.7) | ||
BMI (kg/m2) | −0.33 (−0.76–0.09) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burns, R.D.; Pfledderer, C.D.; Brusseau, T.A. Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents. Behav. Sci. 2019, 9, 32. https://doi.org/10.3390/bs9030032
Burns RD, Pfledderer CD, Brusseau TA. Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents. Behavioral Sciences. 2019; 9(3):32. https://doi.org/10.3390/bs9030032
Chicago/Turabian StyleBurns, Ryan D., Christopher D. Pfledderer, and Timothy A. Brusseau. 2019. "Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents" Behavioral Sciences 9, no. 3: 32. https://doi.org/10.3390/bs9030032
APA StyleBurns, R. D., Pfledderer, C. D., & Brusseau, T. A. (2019). Active Transport, Not Device Use, Associates with Self-Reported School Week Physical Activity in Adolescents. Behavioral Sciences, 9(3), 32. https://doi.org/10.3390/bs9030032