Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Specification | CB4 | CP1 | AQ5000 |
---|---|---|---|
Surface Area (m2·g−1) | 653 | 1106 | 1249 |
Moisture content (%) | 3.1 | 4.8 | 4.7 |
Ash content (%) | 9.8 | 2.8 | 12.9 |
3–25 mesh | 74.8 (65–85) | 95 (90–100) | 84.6 (65–85) |
Iodine number | 603 | 1056 | 1199 |
Pore volume/unit dry mass (mL·g−1) | 0.29 | 2.5 | 0.80 |
Liquid quantity/unit dry mass (µL·g−1) | 151 | 422 | 253 |
2.2. Soil and Soil Spiking
2.3. Determination of Total 14C-phenanthrene Activity in Soil
2.4. Preparing Phenanthrene-Degrading Inoculum
2.5. Extraction of 14C-phenanthrene Associated Activity by HPCD
2.6. Mineralisation of 14C-phenanthrene in Soil
2.7. Uptake of 14C-phenanthrene by Eisenia Fetida
2.8. Statistical Analysis
3. Results
3.1. Total 14C-phenanthrene Associated Activity in Soil
3.2. Mineralisation of 14C-phenanthrene in Soil
3.3. HPCD Extraction of 14C-phenanthrene from Soil
Time (d) | Non Sterile | Sterile | ||||||
---|---|---|---|---|---|---|---|---|
Control (% h−1) | CB4 (% h−1) | AQ5000 (% h−1) | CP1 (% h−1) | Control (% h−1) | CB4 (% h−1) | AQ 5000 (% h−1) | CP1 (% h−1) | |
1 | 0.70 ± 0.02 | 0.14 ± 0.02 | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.72 ± 0.04 | 0.12 ± 0.01 | 0.07 ± 0.01 | 0.03 ± 0.01 |
25 | 0.46 ± 0.01 | 0.02 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.81 ± 0.05 | 0.14 ± 0.02 | 0.06 ± 0.01 | 0.03 ± 0.01 |
50 | 0.41 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 1.01 ± 0.05 | 0.04 ± 0.02 | 0.02 ± 0.01 | 0.02 ± 0.01 |
100 | 0.24 ± 0.06 | 0.01 ± 0.01 | 0.01 ± 0.01 | 0.01 ± 0.01 | 1.39 ± 0.09 | 0.06 ± 0.01 | 0.03 ± 0.01 | 0.01 ± 0.01 |
Ageing (d) | AC | Non-Sterile | Sterile | ||
---|---|---|---|---|---|
Mineralised (%) | Extracted (%) | Mineralised (%) | Extracted (%) | ||
1 | Control | 61.1 ± 2.11 | 74.1 ± 5.11 | 63.4 ± 0.66 | 74.1 ± 3.43 |
CB4 | 18.9 ± 1.34 | 26.5 ± 3.23 | 18.4 ± 0.72 | 20.1 ± 1.25 | |
AQ5000 | 8.41 ± 0.63 | 7.21 ± 0.56 | 11.7 ± 0.48 | 10.8 ± 0.18 | |
CP1 | 5.93 ± 0.94 | 5.42 ± 0.87 | 5.84 ± 0.56 | 5.34 ± 0.24 | |
25 | Control | 54.3 ± 0.61 | 76.1 ± 0.69 | 60.8 ± 1.86 | 71.5 ± 2.38 |
CB4 | 4.93 ± 0.94 | 8.24 ± 0.66 | 12.8 ± 0.74 | 9.81 ± 0.33 | |
AQ5000 | 1.22 ± 0.33 | 7.13 ± 1.74 | 10.4 ± 1.02 | 5.84 ± 0.46 | |
CP1 | 0.71 ± 0.08 | 3.22 ± 0.49 | 5.77 ± 1.64 | 3.22 ± 0.91 | |
50 | Control | 51.5 ± 2.71 | 67.5 ± 5.30 | 57.3 ± 3.91 | 66.8 ± 3.80 |
CB4 | 2.35 ± 0.24 | 4.77 ± 1.21 | 7.07 ± 0.88 | 7.54 ± 0.81 | |
AQ5000 | 1.19 ± 0.38 | 5.82 ± 0.94 | 3.84 ± 1.42 | 3.68 ± 0.84 | |
CP1 | 0.54 ± 0.09 | 0.88 ± 0.33 | 3.13 ± 0.81 | 4.32 ± 0.11 | |
100 | Control | 13.1 ± 1.81 | 15.4 ± 3.61 | 41.8 ± 0.22 | 42.1 ± 2.94 |
CB4 | 1.94 ± 0.09 | 2.93 ± 0.08 | 3.99 ± 0.48 | 3.21 ± 0.12 | |
AQ5000 | 1.41 ± 0.11 | 0.92 ± 0.06 | 3.41 ± 0.21 | 2.81 ± 0.28 | |
CP1 | 0.43 ± 0.06 | 0.88 ± 0.09 | 2.05 ± 0.92 | 1.24 ± 0.09 |
3.4. Earthworm Uptake of 14C-phenanthrene
Time (d) | Non Sterile | Sterile | ||||||
---|---|---|---|---|---|---|---|---|
Control (%) | CB4 (%) | AQ5000 (%) | CP1 (%) | Control (%) | CB4 (%) | AQ5000 (%) | CP1 (%) | |
1 | 6.75 ± 0.21 | 0.63 ± 0.02 | 0.59 ± 0.11 | 0.61 ± 0.08 | 6.75 ± 0.21 | 0.63 ± 0.02 | 0.59 ± 0.11 | 0.61 ± 0.08 |
25 | 8.30 ± 0.02 | 0.11 ± 0.05 | 0.06 ± 0.02 | 0.11 ± 0.05 | 5.85 ± 0.78 | 0.24 ± 0.05 | 0.21 ± 0.04 | 0.13 ± 0.02 |
50 | 5.01 ± 0.07 | 0.09 ± 0.03 | 0.04 ± 0.04 | 0.09 ± 0.07 | 4.02 ± 0.07 | 0.11 ± 0.01 | 0.17 ± 0.03 | 0.09 ± 0.01 |
100 | 3.73 ± 0.04 | 0.10 ± 0.05 | 0.08 ± 0.03 | 0.10 ± 0.04 | 2.18 ± 0.04 | 0.14 ± 0.05 | 0.10 ± 0.07 | 0.11 ± 0.09 |
3.5. Relationship between Microbial Mineralisation and HPCD Extractability of 14C-phenanthrene
3.6. Relationship between 14C-phenanthrene Uptake in Earthworms and HPCD Extractability
4. Discussion
4.1. Measurement of 14C-phenanthrene Bioaccessibility by HPCD in AC-Amended Soil
4.2. Biota-14C-phenanthrene Interactions in AC-Amended Soils
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Semple, K.T.; Morriss, A.W.J.; Paton, G.I. Bioavailability of hydrophobic organic contaminants in soils: Fundamental concepts and techniques for analysis. Eur. J. Soil Sci. 2003, 54, 809–818. [Google Scholar] [CrossRef]
- Oyelami, A.O.; Okere, U.V.; Orwin, K.H.; de Deyn, G.B.; Jones, K.C.; Semple, K.T. Effects of plant species identity, diversity and soil fertility on biodegradation of phenanthrene in soil. Environ. Pollut. 2013, 173, 231–237. [Google Scholar] [PubMed]
- Leglize, P.; Alain, S.; Jacques, B.; Corinne, L. Adsorption of phenanthrene on activated carbon increases mineralization rate by specific bacteria. J. Hazard. Mater. 2008, 151, 339–347. [Google Scholar] [PubMed]
- Koelmans, A.A.; Jonker, M.T.O.; Cornelissen, G.; Bucheli, T.D.; van Noort, P.C.M.; Gustafsson, Ö. Black carbon: The reverse of its dark side. Chemosphere 2006, 63, 365–377. [Google Scholar] [PubMed]
- Cornelissen, G.; Cousins, I.T.; Wiberg, K.; Tysklind, M.; Holmstrom, H.; Broman, D. Black carbon-dominated PCDD/Fs sorption to soils at a former wood impregnation site. Chemosphere 2008, 72, 1455–1461. [Google Scholar] [PubMed]
- Huang, W.; Peng, P.; Yu, Z.; Fu, J. Effects of organic matter heterogeneity on sorption and desorption of organic contaminants by soils and sediments. Appl. Geochem. 2003, 18, 955–972. [Google Scholar]
- Cornelissen, G.; Gustafsson, O. Sorption of phenanthrene to environmental black carbon in sediment with and without organic matter and native sorbates. Environ. Sci. Technol. 2004, 38, 148–155. [Google Scholar] [PubMed]
- Jonker, M.T.O.; Koelmans, A.A. Extraction of polycyclic aromatic hydrocarbons from soot and sediment: Solvent evaluation and implications for sorption mechanism. Environ. Sci. Technol. 2002, 36, 4107–4113. [Google Scholar] [PubMed]
- Cornelissen, G.; Breedveld, G.D.; Kalaitzidis, S.; Christanis, K.; Kibsgaard, A.; Oen, A.M.P. Strong sorption of native PAHs to pyrogenic and unburned carbonaceous geosorbents in sediments. Environ. Sci. Technol. 2006, 40, 1197–1203. [Google Scholar] [PubMed]
- Rhodes, A.H.; Carlin, A.; Semple, K.T. Impact of black carbon in the extraction and mineralization of phenanthrene in soil. Environ. Sci. Technol. 2008, 42, 740–745. [Google Scholar] [PubMed]
- Hale, S.E.; Elmquist, M.; Brandli, R.; Hartnik, T.; Jakob, L.; Henriksen, T.; Werner, D.; Cornelissen, G. Activated carbon amendment to sequester PAHs in contaminated soil: A lysimeter field trial. Chemosphere 2012, 87, 177–184. [Google Scholar] [PubMed]
- Hansen, M.C.; Borresen, M.H.; Schlabach, M.; Cornelissen, G. Sorption of perfluorinated compounds from contaminated water to activated carbon. J. Soils Sediments 2010, 10, 179–185. [Google Scholar] [CrossRef]
- Rhodes, A.H.; Riding, M.J.; McAllister, L.E.; Lee, K.; Semple, K.T. Influence of activated charcoal on desorption kinetics and biodegradation of phenanthrene in soil. Environ. Sci. Technol. 2012, 46, 12445–12451. [Google Scholar] [PubMed]
- Kupryianchyk, D.; Rakowska, M.I.; Grotenhuis, J.T.C.; Koelmans, A.A. In situ sorption of hydrophobic organic compounds to sediment amended with activated carbon. Environ. Pollut. 2012, 161, 23–29. [Google Scholar] [PubMed]
- Brandli, R.C.; Hartnik, T.; Henriksen, T.; Cornelissen, G. Sorption of native polyaromatic hydrocarbons (PAH) to black carbon and amended activated carbon in soil. Chemosphere 2008, 73, 1805–1810. [Google Scholar] [CrossRef] [PubMed]
- Jonker, M.T.O.; Suijkerbuijk, M.P.W.; Schmitt, H.; Sinnige, T.L. Ecotoxicological effects of activated carbon addition to sediments. Environ. Sci. Technol. 2009, 43, 5959–5966. [Google Scholar] [PubMed]
- Reid, B.J.; Stokes, J.D.; Jones, K.C.; Semple, K.T. Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ. Sci. Technol. 2000, 34, 3174–3179. [Google Scholar]
- Barthe, M.; Pelletier, E. Comparing bulk extraction methods for chemically available polycyclic aromatic hydrocarbons with bioaccumulation in worms. Environ. Chem. 2007, 4, 271–283. [Google Scholar]
- Swindell, A.L.; Reid, B.J. Comparison of selected non-exhaustive extraction techniques to assess PAH availability in dissimilar soils. Chemosphere 2006, 62, 1126–1134. [Google Scholar] [PubMed]
- Gomez-Eyles, J.L.; Collins, C.D.; Hodson, M.E. Relative proportions of polycyclic aromatic hydrocarbons differ between accumulation bioassays and chemical methods to predict bioavailability. Environ. Pollut. 2010, 158, 278–284. [Google Scholar] [PubMed]
- Jager, T.; van der Wal, L.; Fleuren, R.; Barendregt, A.; Hermens, J.L.M. Bioaccumulation of organic chemicals in contaminated soils: Evaluation of bioassays with earthworms. Environ. Sci. Technol. 2005, 39, 293–298. [Google Scholar] [CrossRef] [PubMed]
- Jonker, M.T.O.; Hoenderboom, A.M.; Koelmans, A.A. Effects of sedimentary sootlike materials on bioaccumulation and sorption of polychlorinated biphenyls. Environ. Toxicol. Chem. 2004, 23, 2563–2570. [Google Scholar] [CrossRef] [PubMed]
- Janssen, E.M.L.; Choi, Y.; Luthy, R.G. Assessment of nontoxic, secondary effects of sorbent amendment to sediments on the deposit-feeding organism Neanthes arenaceodentata. Environ. Sci. Technol. 2012, 46, 4134–4141. [Google Scholar] [CrossRef] [PubMed]
- Kupryianchyk, D.; Reichman, E.P.; Rakowska, M.I.; Peeters, E.; Grotenhuis, J.T.C.; Koelmans, A.A. Ecotoxicological effects of activated carbon amendments on macroinvertebrates in nonpolluted and polluted sediments. Environ. Sci. Technol. 2011, 45, 8567–8574. [Google Scholar] [PubMed]
- Doick, K.J.; Lee, P.H.; Semple, K.T. Assessment of spiking procedures for the introduction of a phenanthrene-LNAPL mixture into field-wet soil. Environ. Pollut. 2003, 126, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Reid, B.J.; MacLeod, C.J.A.; Lee, P.H.; Morriss, A.W.J.; Stokes, J.D.; Semple, K.T. A simple C-14-respirometric method for assessing microbial catabolic potential and contaminant bioavailability. Fems Microbiol. Lett. 2001, 196, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Doick, K.J.; Semple, K.T. The effect of soil: Water ratios on the mineralisation of phenanthrene: LNAPL mixtures in soil. Fems Microbiol. Lett. 2003, 220, 29–33. [Google Scholar] [CrossRef] [PubMed]
- OECD. Test No. 317: Bioaccumulation in Terrestrial Oligochaetes 2010. Available online: www.oecd-ilibrary.org/docserver/download/9731701e.pdf?expires=1413946541&id=id&accname=guest&checksum=C56FF78483BFB38AD60455F2BE7BD8BE (accessed on 21 October 2014).
- Doick, K.J.; Dew, N.M.; Semple, K.T. Linking catabolism to cyclodextrin extractability: Determination of the microbial availability of PAHs in soil. Environ. Sci. Technol. 2005, 39, 8858–8864. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, A.; Reid, B.J.; Semple, K.T. Prediction of microbial accessibility of carbon-14-phenanthrene in soil in the presence of pyrene or benzo[a]pyrene using an aqueous cyclodextrin extraction technique. J. Environ. Qual. 2007, 36, 1385–1391. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, A.H.; Dew, N.M.; Semple, K.T. Relationship between cyclodextrin extraction and biodegradation of phenanthrene in soil. Environ. Toxicol. Chem. 2008, 27, 1488–1495. [Google Scholar] [PubMed]
- Sopena, F.; Semple, K.; Sohi, S.; Bending, G. Assessing the chemical and biological accessibility of the herbicide isoproturon in soil amended with biochar. Chemosphere 2012, 88, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wang, F.; Yang, X.L.; Liu, C.Y.; Kengara, F.O.; Jin, X.; Jiang, X. Chemical extraction to assess the bioavailability of chlorobenzenes in soil with different aging periods. J. Soils Sediments 2011, 11, 1345–1354. [Google Scholar]
- Hickman, Z.A.; Reid, B.J. Towards a more appropriate water based extraction for the assessment of organic contaminant availability. Environ. Pollut. 2005, 138, 299–306. [Google Scholar] [PubMed]
- Semple, K.T.; Dew, N.M.; Doick, K.J.; Rhodes, A.H. Can microbial mineralization be used to estimate microbial availability of organic contaminants in soil? Environ. Pollut. 2006, 140, 164–172. [Google Scholar] [CrossRef]
- Ma, L.L.; Zhang, J.; Han, L.S.; Li, W.M.; Xu, L.; Hu, F.; Li, H.X. The effects of aging time on the fraction distribution and bioavailability of PAH. Chemosphere 2012, 86, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Towell, M.G.; Browne, L.A.; Paton, G.I.; Semple, K.T. Impact of carbon nanomaterials on the behaviour of 14C-phenanthrene and 14C-benzo-[a] pyrene in soil. Environ. Pollut. 2011, 159, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Hunter, W.; Tao, S.; Crowley, D.; Gan, J. Effects of activated carbon on microbial availability in soils. Environ. Toxicol. Chem. 2009, 28, 2283–2288. [Google Scholar] [PubMed]
- Gomez-Eyles, J.L.; Sizmur, T.; Collins, C.D.; Hodson, M.E. Effects of biochar and the earthworm Eisenia fetida on the bioavailability of polycyclic aromatic hydrocarbons and potentially toxic elements. Environm. Pollut. 2011, 159, 616–622. [Google Scholar]
- Song, Y.; Wang, F.; Bian, Y.R.; Kengara, F.O.; Jia, M.Y.; Xie, Z.B.; Jiang, X. Bioavailability assessment of hexachlorobenzene in soil as affected by wheat straw biochar. J. Hazard. Mater. 2012, 217, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Paul, P.; Ghosh, U. Influence of activated carbon amendment on the accumulation and elimination of PCBs in the earthworm Eisenia fetida. Environ. Pollut. 2011, 159, 3763–3768. [Google Scholar] [PubMed]
- Kelsey, J.W.; Kottler, B.D.; Alexander, M. Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 1997, 31, 214–217. [Google Scholar] [CrossRef]
- Gomez-Eyles, J.L.; Jonker, M.T.O.; Hodson, M.E.; Collins, C.D. Passive samplers provide a better prediction of pah bioaccumulation in earthworms and plant roots than exhaustive, mild solvent, and cyclodextrin extractions. Environ. Sci. Technol. 2012, 46, 962–969. [Google Scholar] [PubMed]
- Bergknut, M.; Sehlin, E.; Lundstedt, S.; Andersson, P.L.; Haglund, P.; Tysklind, M. Comparison of techniques for estimating PAH bioavailability: Uptake in Eisenia fetida, passive samplers and leaching using various solvents and additives. Environ. Pollut. 2007, 145, 154–160. [Google Scholar] [PubMed]
- Gevao, B.; Mordaunt, C.; Semple, K.T.; Piearce, T.G.; Jones, K.C. Bioavailability of nonextractable (bound) pesticide residues to earthworms. Environ. Sci. Technol. 2001, 35, 501–507. [Google Scholar] [PubMed]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oyelami, A.; Elegbede, B.; Semple, K. Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils. Environments 2014, 1, 137-156. https://doi.org/10.3390/environments1020137
Oyelami A, Elegbede B, Semple K. Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils. Environments. 2014; 1(2):137-156. https://doi.org/10.3390/environments1020137
Chicago/Turabian StyleOyelami, Ayodeji, Babajide Elegbede, and Kirk Semple. 2014. "Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils" Environments 1, no. 2: 137-156. https://doi.org/10.3390/environments1020137
APA StyleOyelami, A., Elegbede, B., & Semple, K. (2014). Impact of Different Types of Activated Carbon on the Bioaccessibility of 14C-phenanthrene in Sterile and Non-Sterile Soils. Environments, 1(2), 137-156. https://doi.org/10.3390/environments1020137