Investigation of the Ozonation of Highly PAXHs Contaminated Soil Using Ultrahigh Resolution Mass Spectrometry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Preparation
2.3. Experimental Procedure
2.4. Instrumentation and Data Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Achten, C.; Andersson, J.T. Overview of Polycyclic Aromatic Compounds (PAC). Polycycl. Aromat. Compd. 2015, 35, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Fu, J.X.; Suuberg, E.M. Thermochemical properties and phase behavior of halogenated polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 2012, 31, 486–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bisht, S.; Pandey, P.; Bhargava, B.; Sharma, S.; Kumar, V.; Sharma, K.D. Bioremediation of polyaromatic hydrocarbons (PAHs) using rhizosphere technology. Braz. J. Microbiol. 2015, 46, 7–21. [Google Scholar] [CrossRef] [PubMed]
- Nam, K.; Kukor, J.J. Combined ozonation and biodegradation for remediation of mixtures of polycyclic aromatic hydrocarbons in soil. Biodegradation 2000, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Lima, D.L.D.; Schneider, R.J.; Esteves, V.I. Sorption behavior of EE2 on soils subjected to different long-term organic amendments. Sci. Total Environ. 2012, 423, 120–124. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.J.; Binh, N.T.; Chen, C.W.; Chen, C.F.; Dong, C.D. Treatability assessment of polycyclic aromatic hydrocarbons contaminated marine sediments using permanganate, persulfate and Fenton oxidation processes. Chemosphere 2016, 150, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Biache, C.; Lorgeoux, C.; Andriatsihoarana, S.; Colombano, S.; Faure, P. Effect of pre-heating on the chemical oxidation efficiency: Implications for the PAH availability measurement in contaminated soils. J. Hazard. Mater. 2015, 286, 55–63. [Google Scholar] [CrossRef]
- Yap, C.L.; Gan, S.Y.; Ng, N.K. Ethyl lactate-Fenton treatment of soil highly contaminated with polycyclic aromatic hydrocarbons (PAHs). Chem. Eng. J. 2012, 200, 247–256. [Google Scholar] [CrossRef]
- Hussain, A.; Al-Barakah, F.N.; Al-Sewailem, M.; El-Saeid, M.H.; Waqar, M.; Ahmad, M. Oxidative Photodegradation of Pyrene and Fluoranthene by Fe-Based and Zn-Based Fenton Reagents. Sustainability 2017, 9, 870. [Google Scholar] [CrossRef] [Green Version]
- Marques, M.; Mari, M.; Audi-Miro, C.; Sierra, J.; Soler, A.; Nadal, M.; Domingo, J.L. Photodegradation of polycyclic aromatic hydrocarbons in soils under a climate change base scenario. Chemosphere 2016, 148, 495–503. [Google Scholar] [CrossRef]
- El-Saeid, M.H.; Al-Turki, A.M.; Nadeem, M.E.; Hassanin, A.S.; Al-Wabel, M.I. Photolysis degradation of polyaromatic hydrocarbons (PAHs) on surface sandy soil. Environ. Sci. Pollut. Res. 2015, 22, 9603–9616. [Google Scholar] [CrossRef] [PubMed]
- Goi, A.; Trapido, M. Degradation of polycyclic aromatic hydrocarbons in soil: The Fenton reagent versus ozonation. Environ. Technol. 2004, 25, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Stehr, J.; Muller, T.; Svensson, K.; Kamnerdpetch, C.; Scheper, T. Basic examinations on chemical pre-oxidation by ozone for enhancing bioremediation of phenanthrene contaminated soils. Appl. Microbiol. Biotechnol. 2001, 57, 803–809. [Google Scholar] [CrossRef]
- Masten, S.J.; Davies, S.H.R. Efficacy of in-situ ozonation for the remediation of PAH contaminated soils. J. Contam. Hydrol. 1997, 28, 327–335. [Google Scholar] [CrossRef]
- Haapea, P.; Tuhkanen, T. Integrated treatment of PAH contaminated soil by soil washing, ozonation and biological treatment. J. Hazard. Mater. 2006, 136, 244–250. [Google Scholar] [CrossRef]
- Wu, J.; Jiang, Y.; Ye, Z.; Prabhakar, M.; Yu, R.; Zhou, H. Comparison between continuous and intermittent ozonation for remediation of soils contaminated with polycyclic aromatic hydrocarbons. Int. J. Environ. Sci. Technol. 2015, 12, 3457–3462. [Google Scholar] [CrossRef] [Green Version]
- Kulik, N.; Goi, A.; Trapido, M.; Tuhkanen, T. Degradation of polycyclic aromatic hydrocarbons by combined chemical pre-oxidation and bioremediation in creosote contaminated soil. J. Environ. Manag. 2006, 78, 382–391. [Google Scholar] [CrossRef]
- Liu, J.F. Soil remediation using soil washing followed by ozone oxidation. J. Ind. Eng. Chem. 2018, 65, 31–34. [Google Scholar] [CrossRef]
- Willach, S.; Lutze, H.V.; Somnitz, H.; Terhalle, J.; Stojanovic, N.; Lüling, M.; Jochmann, M.A.; Hofstetter, T.B.; Schmidt, T.C. Carbon Isotope Fractionation of Substituted Benzene Analogs during Oxidation with Ozone and Hydroxyl Radicals: How Should Experimental Data Be Interpreted? Environ. Sci. Technol. 2020, 54, 6713–6722. [Google Scholar] [CrossRef]
- Rivas, J.; Gimeno, O.; de la Calle, R.G.; Beltran, F.J. Ozone treatment of PAH contaminated soils: Operating variables effect. J. Hazard. Mater. 2009, 169, 509–515. [Google Scholar] [CrossRef]
- Gomez-Alvarez, M.; Poznyak, T.; Rios-Leal, E.; Silva-Sanchez, C. Anthracene decomposition in soils by conventional ozonation. J. Environ. Manag. 2012, 113, 545–551. [Google Scholar] [CrossRef]
- Luster-Teasley, S.; Ubaka-Blackmoore, N.; Masten, S.J. Evaluation of soil pH and moisture content on in-situ ozonation of pyrene in soils. J. Hazard. Mater. 2009, 167, 701–706. [Google Scholar] [CrossRef]
- Jung, H.; Choi, H. Effects of in situ ozonation on structural change of soil organic matter. Environ. Eng. Sci. 2003, 20, 289–299. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, X.; Li, G.H. Compositional Changes of Hydrocarbons of Residual Oil in Contaminated Soil During Ozonation. Ozone-Sci. Eng. 2013, 35, 366–374. [Google Scholar] [CrossRef]
- Bailey, P.S.; Batterbee, J.E.; Lane, A.G. Ozonation of benz[a]anthracene. J. Am. Chem. Soc. 1968, 90, 1027–1033. [Google Scholar] [CrossRef]
- Bernal-Martinez, A.; Patureau, D.; Delgenes, J.P.; Carrere, H. Removal of polycyclic aromatic hydrocarbons (PAH) during anaerobic digestion with recirculation of ozonated digested sludge. J. Hazard. Mater. 2009, 162, 1145–1150. [Google Scholar] [CrossRef] [PubMed]
- Potin, O.; Rafin, C.; Veignie, E. Bioremediation of an aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil. Int. Biodeterior. Biodegrad. 2004, 54, 45–52. [Google Scholar] [CrossRef]
- Vollmann, H.; Becker, H.; Corell, M.; Streeck, H. Beiträge zur Kenntnis des Pyrens und seiner Derivate. Justus Liebigs Ann. Chem. 1937, 531, 1–159. [Google Scholar] [CrossRef]
- Sturrock, M.G.; Duncan, R.A. Ozonization of pyrene. A monomeric monoozonide formed in polar solvents. J. Org. Chem. 1968, 33, 2149–2152. [Google Scholar] [CrossRef]
- Kornmuller, A.; Cuno, M.; Wiesmann, U. Selective ozonation of polycyclic aromatic hydrocarbons in oil/water-emulsions. Water Sci. Technol. 1997, 35, 57–64. [Google Scholar] [CrossRef]
- Hong, P.K.A.; Chao, J.C. A polar-nonpolar, acetic acid/heptane, solvent medium for degradation of pyrene by ozone. Ind. Eng. Chem. Res. 2004, 43, 7710–7715. [Google Scholar] [CrossRef]
- Jonsson, S.; Persson, Y.; Frankki, S.; van Bavel, B.; Lundstedt, S.; Haglund, P.; Tysklind, M. Degradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soils by Fenton’ reagent: A multivariate evaluation of the importance of soil characteristics and PAH properties. J. Hazard. Mater. 2007, 149, 86–96. [Google Scholar] [CrossRef]
- Chiu, C.-Y.; Chen, Y.-H.; Huang, Y.-H. Removal of naphthalene in Brij 30-containing solution by ozonation using rotating packed bed. J. Hazard. Mater. 2007, 147, 732–737. [Google Scholar] [CrossRef]
- Carrere, H.; Bernal-Martinez, A.; Patureau, D.; Delgenes, J.P. Parameters explaining removal of PAHs from sewage sludge by ozonation. AIChE J. 2006, 52, 3612–3620. [Google Scholar] [CrossRef]
- Schrader, W.; Geiger, J.; Hoffmann, T.; Klockow, D.; Korte, E.-H. Application of gas chromatography–cryocondensation–Fourier transform infrared spectroscopy and gas chromatography–mass spectrometry to the identification of gas phase reaction products from the α-pinene/ozone reaction. J. Chromatogr. A 1999, 864, 299–314. [Google Scholar] [CrossRef] [PubMed]
- Lubeck, J.S.; Poulsen, K.G.; Knudsen, S.B.; Soleimani, M.; Furbo, S.; Tomasi, G.; Christensen, J.H. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Khuzestan province, Iran. Mar. Pollut. Bull. 2016, 110, 584–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubeck, J.S.; Malmquist, L.M.V.; Christensen, J.H. Supercritical fluid chromatography for the analysis of oxygenated polycyclic aromatic compounds in unconventional oils. J. Chromatogr. A 2019, 1589, 162–172. [Google Scholar] [CrossRef]
- Andersson, J.T.; Achten, C. Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycycl. Aromat. Compd. 2015, 35, 330–354. [Google Scholar] [CrossRef] [Green Version]
- Headley, J.V.; Barrow, M.P.; Peru, K.M.; Fahlman, B.; Frank, R.A.; Bickerton, G.; McMaster, M.E.; Parrott, J.; Hewitt, L.M. Preliminary fingerprinting of Athabasca oil sands polar organics in environmental samples using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. 2011, 25, 1899–1909. [Google Scholar] [CrossRef]
- Palacio Lozano, D.C.; Gavard, R.; Arenas-Diaz, J.P.; Thomas, M.J.; Stranz, D.D.; Mejía-Ospino, E.; Guzman, A.; Spencer, S.E.F.; Rossell, D.; Barrow, M.P. Pushing the analytical limits: New insights into complex mixtures using mass spectra segments of constant ultrahigh resolving power. Chem. Sci. 2019, 10, 6966–6978. [Google Scholar] [CrossRef]
- Miettinen, I.; Mäkinen, M.; Vilppo, T.; Jänis, J. Compositional Characterization of Phase-Separated Pine Wood Slow Pyrolysis Oil by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Energy Fuels 2015, 29, 1758–1765. [Google Scholar] [CrossRef]
- Miettinen, I.; Kuittinen, S.; Paasikallio, V.; Mäkinen, M.; Pappinen, A.; Jänis, J. Characterization of fast pyrolysis oil from short-rotation willow by high-resolution Fourier transform ion cyclotron resonance mass spectrometry. Fuel 2017, 207, 189–197. [Google Scholar] [CrossRef]
- Hartman, B.E.; Hatcher, P.G. Hydrothermal liquefaction of isolated cuticle of Agave americana and Capsicum annuum: Chemical characterization of petroleum-like products. Fuel 2015, 156, 225–233. [Google Scholar] [CrossRef]
- Panda, S.K.; Andersson, J.T.; Schrader, W. Characterization of Supercomplex Crude Oil Mixtures: What Is Really in There? Angew. Chem. 2009, 121, 1820–1823. [Google Scholar] [CrossRef]
- Zubarev, R.A.; Makarov, A. Orbitrap mass spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef] [PubMed]
- Vetere, A.; Schrader, W. Mass Spectrometric Coverage of Complex Mixtures: Exploring the Carbon Space of Crude Oil. Chemistryselect 2017, 2, 849–853. [Google Scholar] [CrossRef]
- Kondyli, A.; Schrader, W. High-resolution GC/MS studies of a light crude oil fraction. J. Mass Spectrom. 2019, 54, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Farmani, Z.; Vetere, A.; Poidevin, C.; Auer, A.A.; Schrader, W. Studying natural Buckyballs and Buckybowls in fossil materials. Angew. Chem. Int. Ed. 2020, 59, 15008–15013. [Google Scholar] [CrossRef]
- Luo, R.; Schrader, W. Development of a Non-Targeted Method to Study Petroleum Polyaromatic Hydrocarbons in Soil by Ultrahigh Resolution Mass Spectrometry Using Multiple Ionization Methods. Polycycl. Aromat. Compd. 2022, 42, 643–658. [Google Scholar] [CrossRef] [Green Version]
- Satilmis, I.; Schrader, W. Studying the Fenton treatment of polycyclic aromatic compounds in a highly contaminated soil with different modifiers by high resolution mass spectrometry. J. Hazard. Mater. Adv. 2022, 8, 100200. [Google Scholar] [CrossRef]
- Huba, A.K.; Huba, K.; Gardinali, P.R. Understanding the atmospheric pressure ionization of petroleum components: The effects of size, structure, and presence of heteroatoms. Sci. Total Environ. 2016, 568, 1018–1025. [Google Scholar] [CrossRef] [PubMed]
- Southam, A.D.; Payne, T.G.; Cooper, H.J.; Arvanitis, T.N.; Viant, M.R. Dynamic range and mass accuracy of wide-scan direct infusion nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry-based metabolomics increased by the spectral stitching method. Anal. Chem. 2007, 79, 4595–4602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaspar, A.; Schrader, W. Expanding the data depth for the analysis of complex crude oil samples by Fourier transform ion cyclotron resonance mass spectrometry using the spectral stitching method. Rapid Commun. Mass Spectrom. 2012, 26, 1047–1052. [Google Scholar] [CrossRef] [PubMed]
- Luo, R.; Schrader, W. Getting a better overview of a highly PAH contaminated soil: A non-targeted approach assessing the real environmental contamination. J. Hazard. Mater. 2021, 418, 126352. [Google Scholar] [CrossRef] [PubMed]
- Huba, A.K.; Gardinali, P.R. Characterization of a crude oil weathering series by ultrahigh-resolution mass spectrometry using multiple ionization modes. Sci. Total Environ. 2016, 563, 600–610. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.; Zellermann, E.; Lababidi, S.; Reece, J.; Schrader, W. Impact of different ionization methods on the molecular assignments of asphaltenes by FT-ICR mass spectrometry. Anal. Chem. 2012, 84, 5257–5267. [Google Scholar] [CrossRef] [PubMed]
- Ferrarese, E.; Andreottola, G.; Oprea, I.A. Remediation of PAH-contaminated sediments by chemical oxidation. J. Hazard. Mater. 2008, 152, 128–139. [Google Scholar] [CrossRef]
- Han, Y.M.; Bandowe, B.A.M.; Wei, C.; Cao, J.J.; Wilcke, W.; Wang, G.H.; Ni, H.Y.; Jin, Z.D.; An, Z.S.; Yan, B.Z. Stronger association of polycyclic aromatic hydrocarbons with soot than with char in soils and sediments. Chemosphere 2015, 119, 1335–1345. [Google Scholar] [CrossRef] [Green Version]
- Amr, S.S.A.; Aziz, H.A.; Adlan, M.N.; Aziz, S.Q. Effect of Ozone and Ozone/Fenton in the Advanced Oxidation Process on Biodegradable Characteristics of Semi-aerobic Stabilized Leachate. Clean-Soil Air Water 2013, 41, 148–152. [Google Scholar] [CrossRef]
- Deng, Y.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Curr. Pollut. Rep. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Ndjou’ou, A.C.; Cassidy, D. Surfactant production accompanying the modified Fenton oxidation of hydrocarbons in soil. Chemosphere 2006, 65, 1610–1615. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satilmis, I.; Schrader, W. Investigation of the Ozonation of Highly PAXHs Contaminated Soil Using Ultrahigh Resolution Mass Spectrometry. Environments 2023, 10, 18. https://doi.org/10.3390/environments10020018
Satilmis I, Schrader W. Investigation of the Ozonation of Highly PAXHs Contaminated Soil Using Ultrahigh Resolution Mass Spectrometry. Environments. 2023; 10(2):18. https://doi.org/10.3390/environments10020018
Chicago/Turabian StyleSatilmis, Ilker, and Wolfgang Schrader. 2023. "Investigation of the Ozonation of Highly PAXHs Contaminated Soil Using Ultrahigh Resolution Mass Spectrometry" Environments 10, no. 2: 18. https://doi.org/10.3390/environments10020018
APA StyleSatilmis, I., & Schrader, W. (2023). Investigation of the Ozonation of Highly PAXHs Contaminated Soil Using Ultrahigh Resolution Mass Spectrometry. Environments, 10(2), 18. https://doi.org/10.3390/environments10020018