Sustainability of Geosynthetics-Based Solutions
Abstract
:1. Introduction
- Geotextiles (GTX)—planar, permeable, polymeric (synthetic or natural) textile material, which may be nonwoven, knitted or woven, used in contact with soil and/or other materials in geotechnical and civil engineering applications.
- −
- Woven geotextiles (GTX-W);
- −
- Knitted geotextiles (GTX-K);
- −
- Non-woven geotextiles (GTX-NW).
- Geotextile-related products (GTP)—planar, permeable, polymeric (synthetic or natural) material used in contact with soil and/or other materials in geotechnical and civil engineering applications, which do not comply with the definition of geotextiles.
- −
- Geogrids (GGR);
- −
- Geonets (GNT);
- −
- Geocells (GCE);
- −
- Geostrips (GST);
- −
- Geomats (GMA);
- −
- Geospacers (GSP);
- −
- Geoblankets (GBL).
- Geosynthetic barriers (GBR)—low-permeability geosynthetic material, used in geotechnical and civil engineering applications, with the purpose of reducing or preventing the flow of fluid through the construction.
- −
- Polymeric geosynthetic barriers (GBR-P)—also called geomembranes;
- −
- Clay geosynthetic barriers (GBR-C)—also called geosynthetic clay liners (GCL);
- −
- Bituminous geosynthetic barriers (GBR-B)—also called bituminous geomembranes.
2. Reducing the Environmental Impact of Construction through the Use of Geosynthetics
- Goal and scope definition;
- Life cycle inventory analysis (LCI);
- Life cycle impact assessment (LCIA);
- Documenting potential environmental impacts of a product or system at each stage of its life cycle;
- Analysing the potential for interrelated environmental impacts in such a way that remedial measures do not lead to new environmental problems (i.e., transfer of pollution);
- Setting priorities for improving the production of goods;
- Comparing different solutions to the same problem;
- Ways of carrying out the same process [50].
- Extraction of raw materials, e.g., sand, gravel, clay, kaolin, limestone, metal ores, crude oil;
- Production using extracted raw materials, e.g., lime, sand, gravel and polymer granulates (PE, PP), and the subsequent use of these products in the manufacturing of, e.g., concrete and geosynthetics;
- Use of products obtained on the construction site;
- Each stage is accompanied by the transport of, for example, extracted raw materials to the producer or received products of the construction site [46].
3. Combination of Geosynthetics and Waste Construction Materials
4. Geosynthetics in Climate Change Adaptation and Mitigation Solutions
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Change 2019, 9, 979–985. [Google Scholar] [CrossRef]
- Qi, J.; He, B.J.; Wang, M.; Zhu, J.; Fu, W.C. Do grey infrastructures always elevate urban temperature? No, utilizing grey infrastructures to mitigate urban heat island effects. Sustain. Cities Soc. 2019, 46, 101392. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. In Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Mishra, V.; Sadhu, A. Towards the effect of climate change in structural loads of urban infrastructure: A review. Sustain. Cities Soc. 2023, 89, 104352. [Google Scholar] [CrossRef]
- Trach, Y.; Trach, R.; Kalenik, M.; Koda, E.; Podlasek, A. A Study of Dispersed, Thermally Activated Limestone from Ukraine for the Safe Liming of Water Using ANN Models. Energies 2021, 14, 8377. [Google Scholar] [CrossRef]
- Zięba, Z.; Dąbrowska, J.; Marschalko, M.; Pinto, J.; Mrówczyńska, M.; Leśniak, A.; Petrovski, A.; Kazak, J.K. Built environment challenges due to climate change. In IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Bristol, UK, 2020; Volume 609, p. 012061. [Google Scholar]
- Zhu, Y.; Zhang, F.; Jia, S. Embodied energy and carbon emissions analysis of geosynthetic reinforced soil structures. J. Clean. Prod. 2022, 370, 133510. [Google Scholar] [CrossRef]
- Lei, J.; Huang, B.; Huang, Y. Life cycle thinking for sustainable development in the building industry. Life Cycle Sustain. Assess. Decis. Methodol. Case Stud. 2020, 125–138. [Google Scholar] [CrossRef]
- Min, J.; Yan, G.; Abed, A.M.; Elattar, S.; Amine Khadimallah, M.; Jan, A.; Elhosiny Ali, H. The effect of carbon dioxide emissions on the building energy efficiency. Fuel 2022, 326, 124842. [Google Scholar] [CrossRef]
- Ryłko-Polak, I.; Komala, W.; Białowiec, A. The Reuse of Biomass and Industrial Waste in Biocomposite Construction Materials for Decreasing Natural Resource Use and Mitigating the Environmental Impact of the Construction Industry: A Review. Materials 2022, 15, 4078. [Google Scholar] [CrossRef]
- Purchase, C.K.; Al Zulayq, D.M.; O’brien, B.T.; Kowalewski, M.J.; Berenjian, A.; Tarighaleslami, A.H.; Seifan, M. Circular Economy of Construction and Demolition Waste: A Literature Review on Lessons, Challenges, and Benefits. Materials 2022, 15, 76. [Google Scholar] [CrossRef]
- Basu, D.; Lee, M. Sustainability considerations in geosynthetic applications. In ICE Handbook of Geosynthetic Engineering: Geosynthetics and Their Applications; Shukla, S.K., Ed.; ICE Publishing: Fitchburg, MA, USA, 2021; pp. 427–457. ISBN 9780727765000. [Google Scholar]
- Basu, D.; Lee, M. A combined sustainability-reliability approach in geotechnical engineering. In Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering; Roshni, T., Samui, P., Tien Bui, D., Kim, D., Khatibi, R., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2022; pp. 379–413. ISBN 9780323856980. [Google Scholar]
- Stucki, M.; Büsser, S.; Itten, R.; Frischknecht, R. Comparative Life Cycle Assessment of Geosynthetics versus Conventional Construction Materials Holger Wallbaum; Zürich on Behalf of the European Association for Geosynthetic Manufacturers (EAGM); Swiss Federal Institute of Technology: Uster, Switzerland, 2011. [Google Scholar]
- UN. General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development A/RES/70/1. 2015. Available online: https://www.refworld.org/docid/57b6e3e44.html (accessed on 5 January 2023).
- D’Adamo, I.; Gastaldi, M. Sustainable Development Goals: A Regional Overview Based on Multi-Criteria Decision Analysis. Sustainability 2022, 14, 9779. [Google Scholar] [CrossRef]
- Ogunmakinde, O.E.; Egbelakin, T.; Sher, W. Contributions of the circular economy to the UN sustainable development goals through sustainable construction. Resour. Conserv. Recycl. 2022, 178, 106023. [Google Scholar] [CrossRef]
- Munaro, M.R.; Tavares, S.F. A review on barriers, drivers, and stakeholders towards the circular economy: The construction sector perspective. Clean. Responsible Consum. 2023, 8, 100107. [Google Scholar] [CrossRef]
- Palmeira, E.M.; Araújo, G.L.S.; Santos, E.C.G. Sustainable solutions with geosynthetics and alternative construction materials—A review. Sustainability 2021, 13, 12756. [Google Scholar] [CrossRef]
- Vo, T.L.; Nash, W.; Del Galdo, M.; Rezania, M.; Crane, R.; Mousavi Nezhad, M.; Ferrara, L. Coal mining wastes valorization as raw geomaterials in construction: A review with new perspectives. J. Clean. Prod. 2022, 336, 130213. [Google Scholar] [CrossRef]
- Kiersnowska, A.; Fabianowski, W.; Koda, E. The Influence of the Accelerated Aging Conditions on the Properties of Polyolefin Geogrids Used for Landfill Slope Reinforcement. Polymers 2020, 12, 1874. [Google Scholar] [CrossRef]
- Cascone, S. Green Roof Design: State of the Art on Technology and Materials. Sustainability 2019, 11, 3020. [Google Scholar] [CrossRef] [Green Version]
- Markiewicz, A.; Koda, E.; Kawalec, J. Geosynthetics for Filtration and Stabilisation: A Review. Polymers 2022, 14, 5492. [Google Scholar] [CrossRef]
- CEN ISO 10318-1:2015; Geosynthetics—Part 1: Terms and Definitions.European Committee for Standardization. Rue de la Science 23: Bruxelles, Belgium, 2015.
- CEN ISO 10318-1:2015/Amd 1:2018; Geosynthetics—Part 1: Terms and Definitions—Amendment. Rue de la Science 23: Bruxelles, Belgium, 2018.
- Touze, N. Healing the world: A geosynthetics solution. Geosynth. Int. 2021, 28, 1–31. [Google Scholar] [CrossRef]
- Lejcuś, K.; Burszta-Adamiak, E.; Dąbrowska, J.; Wróblewska, K.; Orzeszyna, H.; Śpitalniak, M.; Misiewicz, J. Good Practice Catalogue—The Rules for Sustainable Management of Stormwater from Road Surface; Municipality of Wroclaw: Wrocław, Poland, 2017. [Google Scholar]
- Han, J.; Guo, J. Geosynthetics used to stabilize vegetated surfaces for environmental sustainability in civil engineering. Front. Struct. Civ. Eng. 2017, 11, 56–65. [Google Scholar] [CrossRef]
- PIANC. PIANC REPORT No 113. In The Application of Geosynthetics in Waterfront Areas; PIANC: Brussels, Belgium, 2011. [Google Scholar]
- Marczak, D.; Lejcuś, K.; Misiewicz, J. Characteristics of biodegradable textiles used in environmental engineering: A comprehensive review. J. Clean. Prod. 2020, 268, 122129. [Google Scholar]
- Prambauer, M.; Wendeler, C.; Weitzenböck, J.; Burgstaller, C. Biodegradable geotextiles—An overview of existing and potential materials. Geotext. Geomembr. 2019, 47, 48–59. [Google Scholar] [CrossRef]
- Shukla, S.K. Geosynthetics and Ground Engineering: Sustainability Considerations. Int. J. Geosynth. Gr. Eng. 2021, 7, 1–3. [Google Scholar] [CrossRef]
- Cislaghi, A.; Sala, P.; Borgonovo, G.; Gandolfi, C.; Bischetti, G.B. Towards More Sustainable Materials for Geo-Environmental Engineering: The Case of Geogrids. Sustainability 2021, 13, 2585. [Google Scholar] [CrossRef]
- Jeon, H.Y. Geotextile composites having multiple functions. In Geotextiles: From Design to Applications; Koerner, R.M., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 413–425. ISBN 9780081002346. [Google Scholar]
- Rimoldi, P.; Shamrock, J.; Kawalec, J.; Touze, N. Sustainable use of geosynthetics in dykes. Sustainability 2021, 13, 4445. [Google Scholar] [CrossRef]
- Richardson, G.N.; Zhao, A. Geosynthetic Fundamentals in Landfill Design; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Fontana, F. Opportunities and limits of recycling in the production of geosynthetics in a circular economy perspective. In Proceedings of the XXXII Convegno Nazionale Geosintetici, Bologna, Italy, 20 October 2022; pp. 23–27. [Google Scholar]
- Giglio, C.; Vocaturo, G.S.; Palmieri, R. A Scientometric Study of LCA-Based Industrialization and Commercialization of Geosynthetics in Infrastructures. Appl. Sci. 2023, 13, 2328. [Google Scholar] [CrossRef]
- Christopher, B.R. Cost savings by using geosynthetics in the construction of civil works projects. In Proceedings of the 10th International Conference on Geosynthetics, ICG 2014, Berlin, Germany, 21–25 September 2014; pp. 1–19. [Google Scholar]
- Koerner, R.M.; Koerner, J.R.; Koerner, G.R. Relative Sustainability (i.e., Embodied Carbon) Calculations with Respect to Applications Using Traditional Materials versus Geosynthetics; Geosynthetic Institute: Folsom, CA, USA, 2019. [Google Scholar]
- Touze, N. The role of geosynthetics in sustainable development and the circular economy. In Proceedings of the XXXII Convegno Nazionale Geosintetici, Bologna, Italy, 20 October 2022; pp. 7–21. [Google Scholar]
- Dixon, N.; Raja, J.; Fowmes, G.; Frost, M. Sustainability aspects of using geotextiles. In Geotextiles: From Design to Applications; Koerner, R.M., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 577–596. ISBN 9780081002346. [Google Scholar]
- Abu-Farsakh, M.; Hanandeh, S.; Mohammad, L.; Chen, Q. Performance of geosynthetic reinforced/stabilized paved roads built over soft soil under cyclic plate loads. Geotext. Geomembr. 2016, 44, 845–853. [Google Scholar] [CrossRef]
- Popov, V. A new landfill system for cheaper landfill gas purification. Renew. Energy 2005, 30, 1021–1029. [Google Scholar] [CrossRef]
- Fifer Bizjak, K.; Lenart, S. Life cycle assessment of a geosynthetic-reinforced soil bridge system—A case study. Geotext. Geomembr. 2018, 46, 543–558. [Google Scholar] [CrossRef]
- Heerten, G. Reduction of climate-damaging gases in geotechnical engineering practice using geosynthetics. Geotext. Geomembr. 2012, 30, 43–49. [Google Scholar] [CrossRef]
- CEN ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. European Committee for Standardization. Rue de la Science 23: Bruxelles, Belgium, 2006; pp. 1–20.
- CEN ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. European Committee for Standardization. Rue de la Science 23: Bruxelles, Belgium, 2006; pp. 1–46.
- Muralikrishna, I.V.; Manickam, V. Environmental Management, Science and Engineering for Industry; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Lewandowska, A. LCA Środowiskowa Ocena Cyklu Życia Produktu; Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu: Poznań, Poland, 2006. [Google Scholar]
- Chen, R.; Kong, Y. A comprehensive review of greenhouse gas based on subject categories. Sci. Total Environ. 2023, 866, 161314. [Google Scholar] [CrossRef]
- UN. Kyoto Protocol to the United Nations Framework Convention on Climate Change. Doc FCCC/CP/1997/7/Add.1; New York, USA. 1988. Available online: https://unfccc.int/documents/2409 (accessed on 3 January 2023).
- IPCC. Climate Change 2022: Mitigation of Climate Change. In Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPPC: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- CEN ISO 14067:2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification. Rue de la Science 23: Bruxelles, Belgium, 2018; pp. 1–46.
- Labaran, Y.H.; Mathur, V.S.; Muhammad, S.U.; Musa, A.A. Carbon footprint management: A review of construction industry. Clean. Eng. Technol. 2022, 9, 100531. [Google Scholar] [CrossRef]
- IPCC. Climate change 2001, Synthesis Report. In Contribution of Working Groups I, II, and III to the Third Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2001. [Google Scholar]
- Pandey, D.; Agrawal, M.; Pandey, J.S. Carbon footprint: Current methods of estimation. Environ. Monit. Assess. 2011, 178, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Kiersnowska, A.; Koda, E.; Fabianowski, W. Study of the accelerated aging on the mechanical parameters of polyethylene geogrids used on waste dumps. Przem. Chem. 2018, 97, 1349–1352. [Google Scholar]
- Dixon, N.; Fowmes, G.; Frost, M. Global challenges, geosynthetic solutions and counting carbon. Geosynth. Int. 2017, 24, 451–464. [Google Scholar] [CrossRef] [Green Version]
- UNFCCC. Doha Amendment to the Kyoto Protocol UNFCCC Doc. FCCC/KP/CMP/2012/13/Add.1, Decision 1/CMP.8; Doha. 2012. Available online: https://unfccc.int/process/the-kyoto-protocol/the-doha-amendment (accessed on 3 January 2023).
- Raja, J.; Dixon, N.; Fowmes, G.; Frost, M.; Assinder, P. Obtaining reliable embodied carbon values for geosynthetics. Geosynth. Int. 2015, 22, 393–401. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.; Huang, M.; Waldman, B.; Carlisle, S.; Simenon, K. Environmental Product Declaration Requirements in Procurement Policies: An Analysis of EPD Definitions in Buy Clean and Other North American Procurement Policies; Carbon Leadership Forum; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Vilches, A.; Garcia-Martinez, A.; Sanchez-Montañes, B. Life cycle assessment (LCA) of building refurbishment: A literature review. Energy Build. 2017, 135, 286–301. [Google Scholar] [CrossRef]
- Mandloi, P.; Hegde, A. Performance evaluation of reinforced earth walls with sustainable backfills subjected to railway loading. Front. Built Environ. 2022, 8, 1–13. [Google Scholar] [CrossRef]
- Abedi, M.; Gomes Correia, A.; Fangueiro, R. Geotechnical and piezoresistivity properties of sustainable cementitious stabilized sand reinforced with recycled fibres. Transp. Eng. 2021, 6, 100096. [Google Scholar] [CrossRef]
- Benahsina, A.; El Haloui, Y.; Taha, Y.; Elomari, M.; Bennouna, M.A. Natural sand substitution by copper mine waste rocks for concrete manufacturing. J. Build. Eng. 2022, 47, 103817. [Google Scholar] [CrossRef]
- Petrella, A.; Notarnicola, M. Recycled Materials in Civil and Environmental Engineering. Materials 2022, 15, 3955. [Google Scholar] [CrossRef]
- Gayarre, F.L.; López-Colina, C.; Carral, L.; Serrano, M.A.; Suárez, J.M.; Martínez, R. Recycled aggregates and their properties. Recycl. Concr. 2023, 119–159. [Google Scholar] [CrossRef]
- Hana, J.; Thakur, J.K. Sustainable roadway construction using recycled aggregates with geosynthetics. Sustain. Cities Soc. 2015, 14, 342–350. [Google Scholar] [CrossRef]
- Vieira, C.S.; Pereira, P.M. Influence of the Geosynthetic Type and Compaction Conditions on the Pullout Behaviour of Geosynthetics Embedded in Recycled Construction and Demolition Materials. Sustainability 2022, 14, 1207. [Google Scholar] [CrossRef]
- Hossain, M.U.; Poon, C.S.; Lo, I.M.C.; Cheng, J.C.P. Comparative environmental evaluation of aggregate production from recycled waste materials and virgin sources by LCA. Resour. Conserv. Recycl. 2016, 109, 67–77. [Google Scholar] [CrossRef]
- Ramsey, B.J. Geosynthetics and Sustainability: How is our Industry doing? Geosynth. Mag. 2022, 14–23. [Google Scholar]
- Li, J.H.; Hsieh, J.C.; Lou, C.W.; Hsieh, C.T.; Pan, Y.J.; Hsing, W.H.; Lin, J.H. Using nonwoven fabrics as culture mediums for extensive green roofs: Physical properties and cooling effect. Fibers Polym. 2016, 17, 1111–1114. [Google Scholar] [CrossRef]
- Śpitalniak, M.; Lejcuś, K.; Dabrowska, J.; Garlikowski, D.; Bogacz, A. The influence of a water absorbing geocomposite on soil water retention and soil matric potential. Water 2019, 11, 1731. [Google Scholar] [CrossRef] [Green Version]
- Wróblewska, K.; Chohura, P.; Dębicz, R.; Lejcuś, K.; Dąbrowska, J. Water absorbing geocomposite: A novel method improving water and fertilizer efficiency in Brunnera macrophylla cultivation. Part I. Plant growth. Acta Sci. Pol. Hortorum Cultus 2018, 17, 49–56. [Google Scholar] [CrossRef]
- Lejcuś, K.; Dąbrowska, J.; Garlikowski, D.; Śpitalniak, M. The application of water-absorbing geocomposites to support plant growth on slopes. Geosynth. Int. 2015, 22, 452–456. [Google Scholar] [CrossRef]
- Śpitalniak, M.; Bogacz, A.; Zięba, Z. The assessment of water retention efficiency of different soil amendments in comparison to water absorbing geocomposite. Materials 2021, 14, 6658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dąbrowska, J.; Kiersnowska, A.; Zięba, Z.; Trach, Y. Sustainability of Geosynthetics-Based Solutions. Environments 2023, 10, 64. https://doi.org/10.3390/environments10040064
Dąbrowska J, Kiersnowska A, Zięba Z, Trach Y. Sustainability of Geosynthetics-Based Solutions. Environments. 2023; 10(4):64. https://doi.org/10.3390/environments10040064
Chicago/Turabian StyleDąbrowska, Jolanta, Agnieszka Kiersnowska, Zofia Zięba, and Yuliia Trach. 2023. "Sustainability of Geosynthetics-Based Solutions" Environments 10, no. 4: 64. https://doi.org/10.3390/environments10040064
APA StyleDąbrowska, J., Kiersnowska, A., Zięba, Z., & Trach, Y. (2023). Sustainability of Geosynthetics-Based Solutions. Environments, 10(4), 64. https://doi.org/10.3390/environments10040064