Climate-Neutral Agriculture?
Abstract
:1. Introduction
2. Methodology
3. Definitions of Agricultural Climate Neutrality
4. Practices That May Contribute to Agricultural Climate Neutrality
4.1. Practices within the Cradle-to-Farmgate System Boundaries
4.1.1. Increasing Soil Carbon Stocks
4.1.2. Shifting from Protein Outputs Based on Animal Husbandry to Protein Outputs Based on Crops
4.1.3. Forest Conservation
4.1.4. Reducing Enteric Methane Emissions by Ruminants
4.1.5. Replacement of Fossil Fuel Inputs by Solar and Wind Energy
4.1.6. Replacing Field Farming by Agroforestry
4.1.7. Reducing Methane Emissions from Rice Paddies
4.1.8. Net-Zero GHG Emission Fertilizer Inputs into Farming
4.1.9. Reducing N2O Emissions
4.2. Afforestation Outside the Cradle-to-Farmgate System Boundaries
4.3. Discussion
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Pean, C.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; et al. (Eds.) Climate Change 2021. The physical science base. In Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2021; Available online: https://www.ipcc.ch (accessed on 11 February 2023).
- Zhang, X.; Jiao, Z.; Zhao, C.; Qu, L.; Liu, Q.; Zhang, H.; Tong, Y.; Wang, C.; Li, S.; Guo, J.; et al. Review of land surface albedo: Variance characteristics, climate effect and management strategy. Remote Sens. 2022, 14, 1382. [Google Scholar] [CrossRef]
- Breil, M.; Krawczyk, F.; Pinto, J.G. The response of the regional longwave radiation balance and climate system in Europe to an idealized afforestation experiment. Earth Syst. Dynam. 2023, 14, 243–253. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, R.; Han, H. Climate neutral in agricultural production system: A regional case from China. Environ. Sci. Pollut. Res. 2021, 28, 33682–33697. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, R. Making agriculture carbon neutral amid a changing climate: The case of South-Western Australia. Land 2021, 10, 1259. [Google Scholar] [CrossRef]
- Ridoutt, B. Climate neutral livestock production -A radiative forcing-based climate footprint approach. J. Clean. Prod. 2021, 291, 125260. [Google Scholar] [CrossRef]
- Searchinger, T.; Zionts, J.; Wirsenius, S.; Peng, L.; Beringer, T.; Dumas, D. Pathways to Carbon Neutral Agriculture in Denmark; World Resources Institute: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Duffy, C.; Prudhomme, R.; Duffy, B.; Gibbons, J.; O’Donoghue, C.; Ryan, M.; Styles, D. GOBLIN version 1: A land balance model to identify national agriculture and land use pathways to climate neutrality via backcasting. Geosci. Model Dev. 2022, 15, 2239–2264. [Google Scholar] [CrossRef]
- Litskas, V.; Ledo, A.; Lawrence, P.; Chrysargyris, A.; Giannopoulos, G.; Heathcote, R.; Hastings, A.; Tsortzakis, N.; Stavrinides, M. Use of winery and animal waste to achieve climate neutrality in non-irrigated viticulture. Agronomy 2022, 123, 2375. [Google Scholar] [CrossRef]
- Nagothu, U.S. (Ed.) Climate Neutral and Resilient Farming Systems; Earthscan/Routledge: Abingdon, UK, 2023. [Google Scholar]
- Climate Neutral Group. Position Paper Certification. Available online: https://www.climateneutalgroup.com/ (accessed on 12 January 2023).
- Stavi, I.; Lal, R. Agroforestry and biochar to offset climate change. Agron. Sustain. Develop. 2013, 33, 91–96. [Google Scholar] [CrossRef]
- Ruser, R.; Schultz, R. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils. J. Plant Nutr. Soil Sci. 2015, 178, 171–188. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adam, J.; Ellis, P.W.; Houghton, R.A.; Lomax, G.; Mileva, D.A.; Schlesinger, W.H.; Shoch, D.; Slikamaki, A.V.; Smith, P.; et al. Natural climate solutions. Proc. Natl. Acad. Sci USA 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Minasny, B.; Malone, B.P.; McBratney, A.-B.; Aners, D.J.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.; Cheng, K.; Das, B.B.; et al. Soil carbon 4 per mille. Geoderma 2017, 291, 59–80. [Google Scholar] [CrossRef]
- Gorjian, S.; Ebadi, H.; Trommsdorff, H.M.; Sharon, H.; Demant, M.; Schindele, S. The advent of solar powered electrical agricultural machinery: A solution for sustainable farm operations. J. Clean. Prod. 2012, 292, 126030. [Google Scholar] [CrossRef]
- Searchinger, T.; Waite, R.; Hanson, C.; Ranganathan, J. Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2019; Available online: www.wri.org (accessed on 18 February 2023).
- Byrne, M.P.; Tobin, J.T.; Forrestal, M.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Horgan, S.A.; O’Callaghan, T.F.O. Urease and nitrification inhibitors as mitigation tools for greenhouse gas emissions in sustainable dairy systems. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Dimpka, C.O.; Fugice, J.; Singh, U.; Lewis, T.D. Development of fertilizers for enhanced nitrogen use efficiency- trends and perspectives. Sci. Total Environ. 2020, 731, 139111. [Google Scholar]
- Black, J.L.; Davison, T.M.; Box, I. Methane emissions from ruminants in Australia: Mitigation potential and applicability of mitigation strategies. Animals 2021, 11, 957. [Google Scholar] [CrossRef]
- Gupta, K.; Kumar, R.; Baruah, K.K.; Hazarika, S.; Karmakar, D.; Bordoloi, N. Greenhouse gas emissions from rice fields: A review from Indian context. Environ. Sci. Pollut. Res. 2021, 28, 30551–30572. [Google Scholar] [CrossRef]
- Adu-Poku, D.; Ackerson, N.O.B.; Devine, R.N.O.A.; Addo, A.G. Climate mitigation efficiency of nitrification and urease inhibitors: Impact on N2O emission—A review. Sci. Afric. 2022, 16, e01170. [Google Scholar] [CrossRef]
- Ouikhalfan, M.; Lakbita, O.; Delhali, A.; Assen, A.H.; Belmabkhout, Y. Towards net-zero emission fertilizers industry. Greenhouse gas emissions analyses and decarbonization solutions. Energy Fuels 2022, 36, 4198–4223. [Google Scholar] [CrossRef]
- Shukla, P.; Skea, J.; Reisinger, A. (Eds.) Climate Change 2022 Mitigation of Climate Change. In Working Group III Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2022; Available online: https://www.ipcc.ch (accessed on 10 February 2023).
- Gao, Y.; Serrenho, A.C. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one fifth of current levels by 2050 with combined interventions. Nat. Food 2023, 4, 170–178. [Google Scholar] [CrossRef]
- Holka, M.; Bienkowski, J. Carbon footprint and life cycle costs of maize production in conventional and non-inversion tillage. Agronomy 2020, 10, 1877. [Google Scholar] [CrossRef]
- Pazmino, M.L.; Ramirez, A.D. Life cycle assessment as methodological framework for the evaluation of the environmental sustainability of pig and pork production.in Ecuador. Sustainability 2021, 13, 11693. [Google Scholar] [CrossRef]
- Mosterd, P.F.; Bos, A.P.; van Harn, J.; de Jong, J.C. The impact of changing towards higher welfare broiler production systems on greenhouse gas emissions: A Dutch case study using life cycle assessment. Poultry Sci. 2022, 101, 102151. [Google Scholar] [CrossRef] [PubMed]
- Cabot, M.I.; Lado, J.; Sanjuan, N. Multi-season environmental life cycle assessment of lemons: A case study in South Uruguay. J. Environ. Manag. 2023, 326, 116719. [Google Scholar] [CrossRef]
- Solomon, S.; Daniel, J.S.; Sanford, T.J.; Murphy, D.M.; Plattner, G.; Knutti, S.; Friedlingstein, P. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl. Acad. Sci. USA 2010, 107, 18354–18359. [Google Scholar] [CrossRef] [PubMed]
- Myrhe, G.; Shindell, D.; Bréon, F.; Fuglestvedt, J.; Huang, J.; Koch, D.; Lamarque, J.; Lee, D.; Mendoza, B.; Nakajima, T.; et al. Anthropogenic and natural radiative forcing. In Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report on the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Huijbregts, M.A.J.; Steinman, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Viera, M.D.M.; Hollander, A.; Zijp, M.; van Zelm, R. ReCiPe 2016. In RIVM Report 2016-0104; RIVM: Bilthoven, The Netherlands, 2016; p. 191. [Google Scholar]
- Meyer, M. Desfurane should des-appear: Global and financial rationale. Anesthes. Analges. 2020, 131, 1317–1322. [Google Scholar] [CrossRef] [PubMed]
- Mashruk, S.; Okafor, I.C.; Kovaleva, M.; Alnasif, A.; Pugh, D.; Hayakawa, A.S.; Valera-Medina, A. Evolution of N2O production at lean combustion condition in NH3/H2/air premixed swirling flames. Combust. Flame 2022, 244, 112299. [Google Scholar] [CrossRef]
- Reijnders, L. Positive and negative impacts of agricultural production of liquid biofuels. In Environmental Impacts of Modern Agriculture; Harrison, R.M., Hester, R.E., Eds.; RSC Publishing: Cambridge, UK, 2012; pp. 150–167. [Google Scholar]
- Zhou, C.; Zelinka, M.D.; Dressler, A.E.; Wang, M. Greater committed warming after accounting for the pattern effect. Nat. Clim. Chang. 2021, 11, 132–136. [Google Scholar] [CrossRef]
- Rogelj, J.; Geden, O.; Cowie, A.; Reisinger, A. Three ways to improve net-zero emission targets. Nature 2021, 591, 365–368. [Google Scholar] [CrossRef]
- Baveye, P.C.; Berthelin, J.; Tessier, D.; Lemaire, G. The `4 per 1000´initiative: A credibility issue for the soil science community? Geoderma 2018, 309, 116–123. [Google Scholar] [CrossRef]
- Woolf, D.; Amonette, J.F.; Street-Perrott, A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun. 2010, 1, 56. [Google Scholar] [CrossRef]
- Verheijen, F.G.A.; Jeffery, S.; van der Velde, M.; Penizek, V.; Beland, M.; Bastos, A.C.; Keizer, J.J. Reduction in soil surface albedo as a function of biochar application rate: Implications for global radiative forcing. Environ. Res. Lett. 2013, 8, 044008. [Google Scholar]
- Minasny, B.; Malone, B.P.; McBratney, A.-B.; Aners, D.J.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.; Cheng, K.; Das, B.B.; et al. Rejoinder to comments on Minasny et al. 2017 soil carbon 4 per mille, Geoderma 292. 59-86. Geoderma 2018, 309, 124–129. [Google Scholar] [CrossRef]
- Bradford, M.A.; Carey, C.J.; Atwood, L.; Bossio, D.; Fenichel, I.D.; Gennet, S.; Fargione, J.; Fisher, J.R.B.; Fuller, E.; Kane, D.A.; et al. Soil carbon science for policy and practice. Nat. Sustain. 2019, 2, 1070–1072. [Google Scholar] [CrossRef]
- Basile-Doelsch, I.; Balesdent, J.; Pellerin, S. Review and syntheses: The mechanisms underlying carbon storage in soil. Biogeosciences 2020, 17, 5222–5242. [Google Scholar]
- Bradford, M.A.; Wieder, W.E.; Bonan, G.B.; Fierer, N.; Raymond, P.A.; Crowther, T.W. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Chang. 2016, 6, 751–758. [Google Scholar]
- Nottingham, A.T.; Meir, P.; Velasquez, E.; Turner, R.L. Soil carbon loss by experimental warming in a tropical forest. Nature 2020, 584, 234–237. [Google Scholar] [CrossRef]
- Lugato, E.; Lavallee, J.M.; Haddix, M.L.; Panagos, D.; Cotrufo, M.F. Different climate sensitivity of particulate and mineral associated soil organic matter. Nat. Geosci. 2021, 14, 295–300. [Google Scholar] [CrossRef]
- Heikkinen, J.; Keskinen, R.; Kostensalo, J.; Nuutinen, V. Climate change induces carbon loss of arable soils in boreal conditions. Glob. Chang. Biol. 2022, 28, 3960–3973. [Google Scholar] [CrossRef]
- Bianchi, A.; Larmola, I.; Kekkonen, H.; Saarnio, S.; Lang, K. Review of greenhouse gas emissions by rewetted agricultural soils. Wetlands 2021, 41, 108. [Google Scholar] [CrossRef]
- Tan, Z.D.; Lupascu, M.; Wijedasa, L.S. Paludiculture as a sustainable use alternative for tropical peat lands. Sci. Total Environ. 2021, 753, 142111. [Google Scholar]
- Tanneberger, F.; Birr, F.; Couwenberg, J.; Kaiser, M.; Luthardt, V.; Nerger, M.; Pfister, S.; Oppermann, R.; Zeitz, J.; Beyer, C.; et al. Saving soil carbon, greenhouse gas emissions biodiversity and the economy: Paludiculture as sustainable land use options for German fern peatlands. Region. Environ. Chang. 2022, 69, 22. [Google Scholar] [CrossRef]
- FAO (Food and Agricultural Organization of the United Nations). Global Livestock Environmental Assessment Model. 2018. Available online: https//www.fao.org./gleam (accessed on 15 February 2023).
- Clune, S.; Crossin, E.; Verghese, K. Systematic review of greenhouse gas emissions for different fresh food categories. J. Clean Prod. 2017, 140, 766–781. [Google Scholar]
- Wirsenius, S.; Azar, C.; Berndes, G. How much land is needed for global food production under scenarios of dietary change and terrestrial productivity increases in 2030. Agric. Syst. 2010, 103, 621–638. [Google Scholar]
- Franco-Solis, A.; Montania, C.V. Dynamics of deforestation worldwide: A structural decomposition analysis of agricultural land use in South America. Land Use Policy 2021, 109, 105619. [Google Scholar]
- Pendrill, F.; Garner, T.A.; Meyerfroid, P.; Persson, U.M.; Adams, J.; Azevedo, T.; Lima, M.G.; Baumann, M.; Curtis, P.G.; de Sy, V.; et al. Disentangling numbers behind. agriculture-driven tropical deforestation. Science 2022, 377, 1168. [Google Scholar]
- Interpol. Forest Crime. 2023. Available online: https://www.interpoö.int/crime7environmental-crime/forestry-crime (accessed on 7 March 2023).
- Muthee, K.; Duguma, L.; Wainana, P.; Minang, P.; Nzyoka, J. A review of global policy mechanisms designed for tropical forest conservation and climate risks management. Front. For. Glob. Chang. 2022, 4, 748170. [Google Scholar]
- Bastos Lima, M.G.; Persson, U.M.; Meyfroidt, P. Leakage and boosting effects in environmental governance: A framework for analysis. Environ. Res. Lett. 2019, 14, 105026. [Google Scholar]
- Streck, C. 2021, REDD+ and leakage: Debunking myths and promoting integrated solutions. Clim. Policy 2021, 21, 843–854. [Google Scholar] [CrossRef]
- Arnold, A.I.M.; Grüning, M.; Simon, J.; Reiinhardt, A.; Lamersdorf, N.; Thies, C. Forest defoliator pests alter carbon and nitrogen cycles. Roy. Soc. Open Sci. 2016, 3, 160361. [Google Scholar] [CrossRef]
- Fei, S.; Morin, R.S.; Ostwalt, C.M.; Liebhold, A.M. Biomass losses resulting from insect and disease invasions in US forests. Proc. Natl. Acad. Sci. USA 2019, 116, 17371–17376. [Google Scholar]
- Brodribb, T.; Power, J.; Cochard, H.; Choat, B. Hanging by a thread? Forests and drought. Science 2020, 368, 261–266. [Google Scholar] [CrossRef]
- Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Klaus, T.; Leutner, B.; Kuenzer, C. Earth observation based monitoring of forests in Germany: A review. Remote Sens. 2020, 12, 1310. [Google Scholar]
- Van Wees, D.; Van der Werf, G.R.; Randerson, J.T.; Andela, N.; Chen, Y.; Morton, D.C. The role of fire in global forest loss dynamics. Glob. Chang. Biol. 2021, 27, 2377–2391. [Google Scholar] [CrossRef] [PubMed]
- Bendall, E.R.; Bedward, M.; Boer, M.; Clarcke, H.; Collins, L.; Leigh, A.; Bradstock, R.A. Mortality and resprouting responses in forests driven more by ecosystem characteristics than drought severity and fire frequencies. Forest Ecol. Manag. 2022, 509, 12007. [Google Scholar] [CrossRef]
- Maja, M.M.; Avano, S.F. the impact on population growth on natural resources and farmer´s capacity to adapt to climate change.in low-income countries. Earth Syst. Environ. 2021, 5, 271–283. [Google Scholar]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, C.A. Climate change and livestock; impacts, adaptation and mitigation. Clim. Risk. Manag. 2017, 16, 145–167. [Google Scholar]
- Palangi, V.; Taghizadeh, A.; Abachi, S.; Lackne, M. Strategies to mitigate enteric methane emissions in ruminants: A review. Sustainability 2022, 14, 132229. [Google Scholar]
- Scherer, L.; Verberg, P.H. Mapping and linking supply- and demand-side measures in climate-smart agriculture. Agronomy Sustain. Develop. 2017, 37, 66. [Google Scholar]
- Pellegrini, P.; Fernandez, R.J. Crop intensification. land use and on-farm energy use efficiency during the worldwide spread of the green revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 2335–2340. [Google Scholar] [CrossRef]
- Reijnders, L. Sustainability of soil fertility and the use of lignocellulosic crop harvest residues for the production of biofuels.: A literature review. Environ. Technol. 2013, 34, 1725–1734. [Google Scholar]
- Sarkar, S.; Skalicky, M.; Hossain, A.; Brestic, M.; Saha, S.; Garai, S.; Ray, K.; Brahmachari, K. Management of crop residues for improving impact use efficiency and agricultural sustainability. Sustainability 2020, 12, 9808. [Google Scholar] [CrossRef]
- Mahlia, T.M.I.; Ismail, N.; Hossain, N.; Silitonga, A.S.; Shamsuddin, A.H. Palm oil and its wastes as bioenergy sources: A comprehensive review. Environ. Sci. Pollut. Res. 2019, 26, 14849–14866. [Google Scholar]
- Dijkman, T.J.; Benders, R.M.J. Comparison of renewable fuels based on their land use using energy densities. Renew. Sustain. Energy Rev. 2010, 14, 3148–3155. [Google Scholar] [CrossRef]
- Nugent, D.; Sovacool, B.K. Assessing the life cycle greenhouse gas e missions from solar PV and wind energy: A critical meta-survey. Energy Policy 2014, 65, 229–244. [Google Scholar] [CrossRef]
- Wang, S.; Wang, S.; Liu, J. Life cycle green-house gas emissions from onshore and offshore wind turbines. J. Clean. Prod. 2019, 210, 804–810. [Google Scholar] [CrossRef]
- Bhandari, R.; Kumar, B.; Mayer, F. Life cycle greenhouse gas emissions from wind farms in reference to turbine size and capacity factors. J. Clean. Prod. 2020, 277, 123385. [Google Scholar]
- Tiffin, A.; Tiffin, R. Estimates of food elasticities for Great Britain: 1972–1994. J. Agric. Econ. 1999, 50, 140–147. [Google Scholar] [CrossRef]
- Hoang, H.K. Analysis of food demand in Vietnam and short-term impacts of market shocks on quantity and calorie consumption. Agric. Econ. 2018, 49, 83–95. [Google Scholar] [CrossRef]
- Del Pero, F.; Delogu, M.; Pierini, M. Life cycle assessment in the automotive sector: A comparative case study of the internal combustion engine (ICE) and electric car. Proced. Struct. Integrit. 2018, 12, 521–537. [Google Scholar] [CrossRef]
- Sahoo, A.U.; Raheman, H. Development of an electric reaper: Clean harvesting machine for cereal crops. Clean Technol. Environ. Policy 2020, 22, 955–964. [Google Scholar]
- Yang, Z.; Wang, H.; Sun, H.; Wang, P.; Cao, Q. Experimental study on electrical harvesting of combine harvester. J. Phys. Conf. Ser. 2022, 2218, 012064. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, X.; Au, W.; Kang, H.; Chen, C. Intelligent robots for fruit harvesting; recent developments and future challenges. Precis. Agric. 2022, 23, 1856–1907. [Google Scholar]
- Shine, P.; Upton, J.; Sefeedpari, P.; Murphy, M.D. Energy consumption in dairy farming: A review of monitoring, prediction, modelling, and analyses. Energies 2020, 15, 1288. [Google Scholar] [CrossRef]
- Tangorra, F.M.; Calcante, A. Energy consumption and technical-economic analysis of an automatic feeding system for dairy farming.: Results of a field test. J. Agric. Engin. 2018, 869, 228–232. [Google Scholar] [CrossRef]
- Malik, A.; Kohli, S. Electric tractors: Survey of challenges and opportunities in India. Mater. Today Proc. 2020, 28, 2318–2324. [Google Scholar]
- Dhyani, S.; Murthy, I.K.; Kadaverugu, R.; Dasgupta, R.; Kumar, M.; Gadpayle, K.A. Agroforestry to achieve global climate adaptation and mitigation targets. Are South Asian countries sufficiently prepared. Forests 2021, 12, 30. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.L.; Graves, A.R.; Burgess, P.J.; Crous-Daran, J.; Moreno, G.; Herzog, F.; Palma, J.H.N.; Kay, S.; de Jalon, S.G. Whole system valuation of arable, agroforestry and tree-only systems at three case study sites in Europe. J. Clean. Prod. 2020, 269, 122283. [Google Scholar] [CrossRef]
- Cardinael, R.; Cadish, G.; Gosme, M.; Oelbermann, M.; van Noordwijk, M. climate change mitigation and adaptation in agriculture: Why agroforestry should be a part of the solution. Agric. Ecosyst. Environ. 2021, 318, 107555. [Google Scholar]
- Nath, A.J.; Sileshi, G.; Laskar, S.Y.; Pathal, K.; Rean, D.; Nath, A.; Das, A.K. Quantifying carbon stock and sequestration potential in agroforestry systems under different management scenarios relevant to India´s nationally determined contribution. J. Clean. Prod. 2021, 281, 124831. [Google Scholar] [CrossRef]
- Ma, Z.; Bork, E.W.; Carlyle, C.; Tieu, J.; Gross, C.D.; Chang, S.X. Carbon stocks differ among land uses in agroforestry systems in Western Canada. Agric. Forest Meteorol. 2022, 313, 108756. [Google Scholar] [CrossRef]
- Agevi, H.; Onwonga, R.; Kuyah, S.; Tsingalia, H. Carbon stocks and stock changes in agroforestry practices: A review. Tropic. Subtropic. Agroecoyst. 2017, 20, 101–109. [Google Scholar]
- Kaczan, D.; Arslan, A.; Lipper, L. Climate Smart Agriculture. A Review of Current Practice in Agroforestry and Conservation Agriculture in Malawi and Zambia. 2013. ESA Working Paper 13-07. Available online: www.fao.org/economic/esa (accessed on 17 January 2023).
- Rodenburg, J.; Mollee, E.; Coe, R.; Sinclair, F. Global analysis of yield benefits and risks from integrating trees with rice and implications for agroforestry research in Africa. Field Crop. Res. 2022, 281, 108504. [Google Scholar] [CrossRef]
- Staton, F.; Breeze, T.D.; Walters, R.J.; Smith, J.; Girling, R.D. Productivity, biodiversity trade-offs and farm income in agroforestry versus an arable system. Ecol. Econ. 2022, 191, 107214. [Google Scholar] [CrossRef]
- Kraft, P.; Rizaei, E.E.; Breurer, L.; Ewert, E.; Große-Stoltenberg, A.; Kleinebecker, T.; Seserman, D.M.; Nendel, C. Modelling agroforestry contributions to people- a review of available models. Agronomy 2021, 11, 2106. [Google Scholar] [CrossRef]
- Rohatyn, S.; Rotenberg, E.; Taratinov, E.; Carmel, Y.; Yakir, D. Large variation in afforestation- related cooling and warming effects across short distances. Commun. Earth Environ. 2023, 4, 18. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, H.; Muhammad, A.; Huang, G. Emission mechanism and reduction countermeasures of agricultural greenhouse gases—A review. Greenhouse Gas. Sci. Technol. 2019, 9, 160–174. [Google Scholar]
- Liu, X.; Zhou, T.; Liu, Y.; Zhang, X.; Li, L.; Pan, G. Effect of mid-season irrigation on CH4 and N2O emissions and grain yield in rice ecosystem: A meta-analysis. Agric. Water Manag. 2019, 213, 1028–1039. [Google Scholar] [CrossRef]
- Levi, P.G.; Cullen, J.M. Mapping global flows of chemicals from fossil fuel feedstocks to chemical products. Environ. Sci. Technol. 2018, 52, 1725–1734. [Google Scholar] [CrossRef]
- Walling, E.; Vaneeckhaule, C. Nitrogen fertilizers and the environment. In Nitrate Handbook; Tsadilas, C., Ed.; CRC Press: Boca Raton, FL, USA, 2022; pp. 103–136. [Google Scholar]
- Pfromm, P.H. Towards sustainable agriculture: Fossil-free ammonia. J. Renew. Sustain. Energy 2017, 9, 034702. [Google Scholar] [CrossRef]
- Soloveichik, G. Electrochemical synthesis of ammonia as potential alternative to the Haber-Bosch process. Nat. Catal. 2019, 2, 377–380. [Google Scholar] [CrossRef]
- Chaanaoui, M.; Abderafi, S.; Vaudreuil, S.; Bounahmidi, T. Prototype of phosphate sludge rotary dryer coupled to a parabolic trough collector solar loop; integration and experimental analysis. Solar Energy 2021, 216, 365–376. [Google Scholar] [CrossRef]
- Beath, A.; Meybodi, M.A.; Drewer, G. Techno-economic assessment of application of particle-based solar thermal systems in Australian industry. J. Renew. Sustain. Energy 2022, 14, 0333702. [Google Scholar] [CrossRef]
- Carlson, K.M.; Gerber, J.; Mueller, N.D.; Herrero, M.; MacDonald, G.K.; Bauman, K.A.; Havlik, P.; O’Connel, C.S.; Johnson, J.A.; Saatchi, S.; et al. Greenhouse gas emissions intensity of agricultural crop land. Nat. Clim. Chang. 2017, 7, 63–68. [Google Scholar] [CrossRef]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, A.-A.; Mahmood, A.; Chen, Z.; Li, Q.; Zeng, X.; Liu, Y.; Li, Y. Fate of nitrogen in agriculture and environment: Agronomic, eco-physiological and molecular approaches to improve nitrogen use efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Sharma, L.K.; Bali, S.K. A review of methods to improve nitrogen use efficiency in agriculture. Sustainability 2018, 10, 51. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, I.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing N for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Folina, A.; Tataridas, A.; Mavroeidis, A.; Kausta, A.; Katsenios, N.; Efthimiadou, A.; Travlos, I.S.; Roussos, I.; Darawsheh, M.K.; Papastylianou, P.; et al. Evaluation of various nitrogen indexes in N fertilizers with inhibitors in field cops. Agronomy 2021, 11, 418. [Google Scholar] [CrossRef]
- Woodward, E.E.; Edwards, T.M.; Givens, C.E.; Kolpin, D.W.; Hladik, M.L. Widespread use of the nitrification inhibitor nitrapyrin; assessing benefits and costs to agriculture, ecosystems, and environmental health. Environ. Sci. Technol. 2021, 55, 1345–1353. [Google Scholar] [CrossRef]
- Beeckman, F.; Motte, M.; Beeckman, T. Nitrification in agricultural soils: Impact, actors and mitigation. Curr. Opin. Biotechnol. 2018, 50, 166–173. [Google Scholar] [CrossRef]
- Li, W.; Xiao, Q.; Hu, C.; Sun, R. A comparison of the efficiency of different urease inhibitors on soil prokaryotic community in a short-term incubation experiment. Geoderma 2019, 354, 113877. [Google Scholar] [CrossRef]
- Jiang, D.; Jiang, N.; Jiang, H.; Chen, L. Urease inhibitors increased soil ureC gene abundance and intracellular urease activity when extracellular urease activity was inhibited. Geoderma 2023, 430, 116295. [Google Scholar] [CrossRef]
- Liu, T.; Zheng, S.; Yu, L.; Bu, K.; Yang, J.; Chang, L. Simulation of regional temperature change effect on land cover change in agroforestry ecotone of Nenjang river basin in China. Theoret. Appl. Climatol. 2017, 128, 971–981. [Google Scholar] [CrossRef]
Greenhouse Gas | Global Warming Potential over a Period of 100 Years (GWP100) Relative to CO2 | Global Warming over a Period of 20 Years (GWP20) Relative to CO2 |
---|---|---|
CO2 | 1 | 1 |
CH4 | 28–36 | 83–85 |
N2O | 265–298 | 264–289 |
Protein Source | Rough Estimates of Relative Average Cradle-to-Farmgate Greenhouse Gas Emissions (as GWP100 CO2 Equivalents) per kg Protein |
---|---|
Soybeans, pulses | 1 |
Poultry (meat, eggs) | 3–4 |
Pork | 6 |
Lamb | >20 |
Beef | >20 |
Practice | Number of Section Where This Practice Is Discussed | Estimate of Net Reduction in Yearly Current GHG Emissions That Might Be Achieved When Applied Worldwide in Pg of GWP100 CO2 Equivalents. |
---|---|---|
Replacement of fossil fuel inputs by solar and wind energy | 4.1.5 | 1 |
Reducing methane emissions from rice paddies | 4.1.7 | about 0.4 |
Net-zero greenhouse gas emission fertilizer inputs | 4.1.8 | about 0.6 |
Reducing N2O emission by improving nitrogen efficiency | 4.1.9 | about 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reijnders, L. Climate-Neutral Agriculture? Environments 2023, 10, 72. https://doi.org/10.3390/environments10050072
Reijnders L. Climate-Neutral Agriculture? Environments. 2023; 10(5):72. https://doi.org/10.3390/environments10050072
Chicago/Turabian StyleReijnders, Lucas. 2023. "Climate-Neutral Agriculture?" Environments 10, no. 5: 72. https://doi.org/10.3390/environments10050072
APA StyleReijnders, L. (2023). Climate-Neutral Agriculture? Environments, 10(5), 72. https://doi.org/10.3390/environments10050072