Feasibility for the Recovery of Excavated Soils in Compressed Earth Blocks as a Sustainable Building Material
Abstract
:1. Introduction
2. Materials and Method
2.1. Sample Preparation
2.2. Testing of Earth Bricks
3. Results and Discussion
3.1. Characteristics of Excavated Soils
3.2. Characteristics of Earth Bricks
3.2.1. Physical Characteristics of Earth Bricks
3.2.2. Flexural Strength of Earth Bricks
3.2.3. Compressive Strength of Earth Bricks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, T.; Kou, S.; Liu, D.; Li, D.; Xing, F. Evaluation of the Techno-Economic Feasibility for Excavated Soil Recycling in Shenzhen, China. Sustainability 2022, 14, 3028. [Google Scholar] [CrossRef]
- FFB. Mieux Gérer les Déchets de Chantier du Bâtiment. Bâtir pour la Planète, 2021. Available online: http://www.dechets-chantier.ffbatiment.fr/ (accessed on 10 February 2023).
- Bastin, A. Vers une gestion circulaire des matières inertes issues de la démolition et des travaux publics en région parisienne: Une lecture croisant transition sociotechnique et approches territoriales. Flux-Cah. Sci. Int. Réseaux Territ. 2020, 116–117, 42–57. [Google Scholar] [CrossRef]
- Choi, H.; Park, M.-H.; Jeong, D.-M.; Kim, J.-H. Soil recycling among construction sites by optimizing schedule and costs for earthmoving. J. Asian Archit. Build. Eng. 2017, 16, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Kuno, G.; Okamoto, S.; Shibata, Y. Recycling excavated soil to back-filling material with liquefied stabilized soil method. In Proceedings of the CIB World Building Congress, Gaevle, Sweden, 7–12 June 1998; 8p. [Google Scholar]
- Zihler, J.; Dettwiler, J.; Zäch, C. Reuse of Excavated Soils, Soil Excavation Guideline, Editor SAEFL-Swiss Agency for the Environment; Forests and Landscape: Zürich, Switzerland, 2001; 20p. [Google Scholar]
- Xu, J.; Xiong, W.; Guo, X.; Lai, T.; Liu, Y.; Ying, W. Properties of using excavated soil waste as fine and coarse aggregates in unfired clay bricks after dry-wet cycles. Case Stud. Constr. Mater. 2022, 17, e01471. [Google Scholar] [CrossRef]
- Scialpi, G.; Perrotti, D. The use of urban biowaste and excavated soil in the construction sector: A literature review. Waste Manag. Res. 2022, 40, 262–273. [Google Scholar] [CrossRef]
- Hale, S.E.; Roque, A.J.; Okkenhaug, G.; Sørmo, E.; Lenoir, T.; Carlsson, C.; Kupryianchyk, D.; Flyhammar, P.; Žlender, B. The reuse of excavated soils from construction and demolition projects: Limitations and possibilities. Sustainability 2021, 13, 6083. [Google Scholar] [CrossRef]
- Magnusson, S.; Lundberg, K.; Svedberg, B.; Knutsson, S. Sustainable management of excavated soil and rock in urban areas–A literature review. J. Clean. Prod. 2015, 93, 18–25. [Google Scholar] [CrossRef] [Green Version]
- Guo, Q.; Zhan, L.; Shen, Y.; Wu, L.; Chen, Y. Classification and quantification of excavated soil and construction sludge: A case study in Wenzhou, China. Front. Struct. Civ. Eng. 2022, 16, 202–213. [Google Scholar] [CrossRef]
- Kataguiri, K.; Boscov, M.E.G.; Teixeira, C.E.; Angulo, S.C. Characterization flowchart for assessing the potential reuse of excavation soils in Sao Paulo city. J. Clean. Prod. 2019, 240, 118215. [Google Scholar] [CrossRef]
- MTECT. Sites et Sols Pollués. Ministère de la Transition Ecologique et de la Cohesion des Territoires. 2022. Available online: https://www.ecologie.gouv.fr/sites-et-sols-pollues (accessed on 3 February 2023).
- Müller, N.; Harnisch, J. A Blueprint for a Climate Friendly Cement Industry; WWF International: New York, NY, USA, 2009. [Google Scholar]
- International Energy Agency. Final Energy Consumption in the Buildings Sector, 2021. 2022. Available online: https://www.iea.org/data-and-statistics/charts/final-energy-consumption-in-the-buildings-sector-202 (accessed on 3 February 2023).
- Cagnon, H.; Aubert, J.E.; Coutand, M.; Magniont, C. Hygrothermal properties of earth bricks. J. Energy Build. 2014, 80, 208–217. [Google Scholar] [CrossRef]
- MTECT. Stratégie Nationale Bas-Carbone. Ministère de la Transition Ecologique et de la Cohesion des Territoires. 2022. Available online: https://www.ecologie.gouv.fr/strategie-nationale-bas-carbone-snbc (accessed on 8 February 2023).
- Hussain, M.; Levacher, D.; Leblanc, N.; Zmamou, H.; Djeran-Maigre, I.; Razakamanantsoa, A.; Saouti, L. Reuse of harbour and river dredged sediments in adobe bricks. J. Clean. Mat. 2022, 3, 100046. [Google Scholar] [CrossRef]
- Little, B.; Morton, T. Building with Earth in Scotland: Innovative Design and Sustainability; Scottish Executive Central Research Unit: Edinburgh, UK, 2001. [Google Scholar]
- Gomes, M.I.; Faria, P.; Gonçalves, T.D. Earth-based mortars for repair and protection of rammed earth walls. Stabilization with mineral binders and fibers. J. Clean. Prod. 2018, 172, 2401–2414. [Google Scholar] [CrossRef] [Green Version]
- Alassaad, F.; Touati, K.; Levacher, D.; Sebaibi, N. Effect of latent heat storage on thermal comfort and energy consumption in lightweight earth-based housings. Build Environ. 2023, 229, 109915. [Google Scholar] [CrossRef]
- Shaaban, M. Sustainability of excavation soil and red brick waste in rammed earth. Civ. Eng. Archit. 2021, 9, 789–798. [Google Scholar] [CrossRef]
- Adam, E.A.; Agib, A.R.A. Compressed Stabilised Earth Block Manufacture in Sudan; UNESCO: Paris, France, 2001; Volume 1, Available online: https://unesdoc.unesco.org/ark:/48223/pf0000128236 (accessed on 15 February 2023).
- Siddiqua, S.; Barreto, P.N.M. Chemical stabilization of rammed earth using calcium carbide residue and fly ash. Constr. Build. Mater. 2018, 169, 364–371. [Google Scholar] [CrossRef]
- Raza, I.A.; Navdeep; Maaze, R.; Attri, G.K.; Shrivastava, S. Comparative life cycle assessment of recycled soil-stabilized bricks and traditional bricks. Mater. Today Proc. 2023, 80, 532–537. [Google Scholar] [CrossRef]
- Bui, H.; Sebaibi, N.; Boutouil, M.; Levacher, D. Determination and Review of Physical and Mechanical Properties of Raw and Treated Coconut Fibers for Their Recycling in Construction Materials. Fibers 2020, 8, 37. [Google Scholar] [CrossRef]
- Maniatidis, V.; Walker, P. A Review of Rammed Earth Construction. DTI Project Report, Developing Rammed Earth for UK Housing. 2003. Available online: https://researchportal.bath.ac.uk/en/publications/a-review-of-rammed-earth-construction (accessed on 2 February 2023).
- McHenry, P.G. Adobe and rammed earth buildings. In Design and Construction; A Wiley Interscience Publication: New York, NY, USA, 1984; ISBN 978-0471876779. [Google Scholar]
- Norton, J. Building with Earth. A Handbook, 2nd ed.; Intermediate Technology Publications: London, UK, 1997; ISBN 0946688338. [Google Scholar]
- Seifi, S.; Sebaibi, N.; Levacher, D.; Boutouil, M. Mechanical performance of a dry mortar without cement, based on paper fly ash and blast furnace slag. J. Build. Eng. 2018, 22, 113–121. [Google Scholar] [CrossRef]
- BRGM. Cartes Géologiques et Banque de Données du Sous-Sol. 2021. Available online: https://infoterre.brgm.fr (accessed on 18 July 2023).
- AFNOR NF X31-107; Qualité du Sol-Détermination de la Distribution Granulométrique des Particules du Sol-Méthode à la Pipette. AFNOR: Paris, France, 2003.
- AFNOR NF EN ISO 17892-12; Reconnaissance et Essais Géotechniques-Essais de Laboratoire Sur Les Sols-Partie 12: Détermination des Limites de Liquidité et de Plasticité. AFNOR: Paris, France, 2018.
- AFNOR NF P 94-068; Sols Reconnaissance et Essais-Mesure de la Capacité D’adsorption de Bleu de Méthylène D’un Sol ou D’un Matériau Rocheux-Détermination de la Valeur de Bleu de Méthylène D’un Sol ou D’un Matériau Rocheux Par L’essai à la Tache. AFNOR: Paris, France, 1998.
- AFNOR XP P 94-047; Sols: Reconnaissance et Essais. Détermination de la Teneur Pondérale en Matières Organiques D’un Matériau. AFNOR: Paris, France, 2007.
- DIN 51913:2013-05; Testing of Carbonaceous Materials-Determination of Density by Gas Pycnometer (Volumetric) Using Helium as the Measuring Gas-Solid Materials. German Technical Standard: Berlin, Germany, 2013.
- AFNOR NF P 94-093; Sols: Reconnaissance et Essais. Détermination des Références de Compactage D’un Matériau. AFNOR: Paris, France, 1999.
- AFNOR NF EN 1015-11; Méthodes D’essai des Mortiers Pour Maçonnerie—Partie 11: Détermination de la Résistance en Flexion et en Compression du Mortier Durci. AFNOR: Paris, France, 2019.
- Fgaier, F.; Lafhaj, Z.; Chapiseau, C.; Antczak, E. Effect of sorption capacity on thermo-mechanical properties of unfired clay bricks. J. Build. Eng. 2016, 6, 86–92. [Google Scholar] [CrossRef]
- NZS 4298; Materials and Workmanship for Erth Buildings, Building Code Compliance Document. New Zealand Standard on Earth Construction: Wellington, New Zealand, 1998; E2 (AS2). 91p. Available online: https://cobcode.s3.amazonaws.com/supporting-docs/NZS4298-1998-Materials_and_Workmanship_For_Earth_Buildings.pdf (accessed on 24 March 2023).
- AFNOR EN 196-1; Méthodes D’essais des Ciments—Partie 1: Détermination des Résistances. AFNOR: Paris, France, 2016.
- Hussain, M. Sustainable Reuse of Sediments in Bio-Based Materials-Application to Fluvial Sediments with Incorporation of Natural Fibers. Ph.D. Thesis, Université de Rouen, Mont-Saint-Aignan, France, 2022. [Google Scholar]
- Dormohamadi, M.; Rahimnia, R. Combined effect of compaction and clay content on the mechanical properties of adobe brick. Case Stud. Constr. Mater. 2020, 13, e00402. [Google Scholar] [CrossRef]
- ASTM C1557-03; Standard Test Methods for Tensile Strength and Young’s Modulus of Fibers. American Society for Testing and Materials: West Conshohocken, PA, USA, 2004.
- USDA. Soil survey manual. In USDA Handbook; U.S. Department of Agriculture: Washington, DC, USA, 1951; 503p. [Google Scholar]
- Whitlow, R. Basic Soil Mechanics; Construction Press: London, UK, 1983. [Google Scholar]
- AFNOR XP P13-901; Compressed Earth Blocks for Walls and Partitions: Definitions–Specifications–Test Methods–Delivery Acceptance Conditions. AFNOR: Paris, France, 2001.
- Houben, H.; Guillaud, H. Earth Construction: A Comprehensive Guide; Intermediate Technology Publications: London, UK, 1994; ISBN 1-85339-193-X. [Google Scholar]
- GTR. Réalisation des remblais et des couches de forme. In Guide Technique Paris, 2nd ed.; LCPC, SETRA: Paris, France, 2000; 211p. [Google Scholar]
- AFNOR XP P 94-011 1999; Sols: Reconnaissance et essais—Description. Identification. Dénomination des Sols—Terminologie. Éléments de classification. AFNOR: Paris, France, 1992.
- Blake, G.R. Particle density. In Encyclopedia of Soil Science. Encyclopedia of Earth Sciences Series; Chesworth, W., Ed.; Springer: Dordrecht, The Netherlands, 2008. [Google Scholar] [CrossRef]
- AFNOR NF P 11-300; Earthworks Classification of Materials for Use in the Construction of Embankments and Capping Layers of Road Infrastructures. AFNOR: Paris, France, 1992.
- Velde, B. Clay minerals. In Terra Literature Review-An Overview of Research in Earthen Architecture Conservation; Avrami, E., Guillaud, H., Hardy, M., Eds.; The Getty Conservation Institute: Los Angeles, CA, USA, USA, 2008; p. 1e7. [Google Scholar]
- Fukue, M.; Nakamura, T.; Kato, Y. Cementation of soils due to calcium carbonate. Soils Found. 1999, 39, 55–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AFNOR EN 1015-10; Methods of Test for Mortar for Masonry. Part 10: Determination of Dry Bulk Density Harden Mortar for Masonry. AFNOR: Paris, France, 1999.
- Guettala, S.; Bachar, M.; Azzouz, L. Properties of the compressed-stabilized earth brick containing cork granules. J. Earth Sci. Clim. Chang. 2016, 7, 353. [Google Scholar] [CrossRef] [Green Version]
- Salih, M.M.; Osofero, A.I.; Imbabi, M.S. Critical review of recent development in fiber reinforced adobe bricks for sustainable construction. Front. Struct. Civ. Eng. 2020, 14, 839–854. [Google Scholar] [CrossRef]
- Turco, C.; Junior, A.P.; Teixeira, E.; Mateus, R. Authors closure to the Discussion of the Review article “Optimisation of Compressed earth blocks (CEBs) using natural origin materials: A systematic literature review”. Constr. Build. Mater. 2022, 325, 126888. [Google Scholar] [CrossRef]
- Koroneos, C.; Dompros, A. Environmental assessment of brick production in Greece. Build. Environ. 2007, 42, 2114–2123. [Google Scholar] [CrossRef]
- Djeran-Maigre, I.; Morsel, A.; Hussain, M.; Levacher, D.; Razakamanantsoa, A.; Delfosse, E. Behaviour of masonry lateral loaded walls made with sediment-based bricks from the Usumacinta River (Mexico). Clean. Eng. Technol. 2022, 11, 100587. [Google Scholar] [CrossRef]
- Araya-Letelier, G.; Antico, F.C.; Burbano-Garcia, C.; Concha-Riedel, J.; Norambuena-Contreras, J.; Concha, J.; Flores, E.I.S. Experimental evaluation of adobe mixtures reinforced with jute fibers. Constr. Build. Mater. 2021, 276, 122127. [Google Scholar] [CrossRef]
- Kumar, N.; Barbato, M. Effects of sugarcane bagasse fibers on the properties of compressed and stabilized earth blocks. Constr. Build. Mater. 2022, 315, 125552. [Google Scholar] [CrossRef]
- Khoudja, D.; Taallah, B.; Izemmouren, O.; Aggoun, O.; Herihiri, O.; Guettala, A. Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste. Constr. Build. Mater. 2021, 270, 121824. [Google Scholar] [CrossRef]
- Nassar, S.; Saliba, J.; Saiyouri, N. Investigation of the possible valorization of dredged sediments in compressed earth blocks. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- NORMA E.080. Diseño y Construcción Con Tierra Reforzada. Ministerio de Vivienda, Construcción y Saneamiento. Anexo-Resolución Ministerial N◦ 121-2017-Vivienda. 2017. Available online: https://procurement-notices.undp.org/view_file.cfm?doc_id=109376 (accessed on 15 January 2023).
- Haurine, F. Caractérisation D’atterrissements D’argiles Récents Sur le Territoire Français, en Vue de Leur Valorisation Dans L’industrie des Matériaux de Construction en Terre Cuite. Sciences de la Terre. Ph.D. Thesis, Ecole Nationale Supérieure des Mines de Paris, Paris, France, 2015. [Google Scholar]
- NMAC, New Mexico Administrative Code (NMAC). New Mexico Earthen Building, 2009, Title 14, Chapter 7, Part 4; The Construction Industries Division of the Regulation and Licensing Department: Santa Fe, NM, USA, 2009.
- SAZS 724; Zimbabwe Standard. Rammed Earth Structures. Standards Association of Zimbabwe: Harare, Zimbabwe, 2001.
- Shrestha, H.D. CSEB Green buildings in Nepal. Standard Norms and Specification for CSEB Block; Government of Nepal, Ministry of Education: Kathmandu, Nepal, 2012.
Reference of Sample | BDC | CL | CS | CL-CS | BDC-CL | BDC-CS |
---|---|---|---|---|---|---|
Composition | 100% | 100% | 100% | 50% CL + 50% CS | +50% BDC + 50% CL | 50% BDC + 50% CS |
Wopt (%) | ρopt (kg/m3) | PL (%) | LL (%) | PI (%) | Wi (%) | MBV (g/100 g) | ρs (g/cm3) | OM (%) | |
---|---|---|---|---|---|---|---|---|---|
BDC | 9.5 | 1985 | 20.4 | 29.5 | 9.1 | 13 | 1.2 | 2.7 | 3.0 |
Calma | 16.4 | 1743 | 21.7 | 31.7 | 10.0 | 9.6 | 1.6 | 2.6 | 8.7 |
Cesson | 12.9 | 1892 | 17.3 | 27.3 | 10.0 | 11 | 1.3 | 2.6 | 6.6 |
Clay (%) | Silt (%) | Sand (%) | D50 (μm) | Cc | Ac | |
---|---|---|---|---|---|---|
BDC | 13 | 6 | 81 | 716 | 5.3 | 0.7 |
Calma | 57 | 12 | 31 | 14.2 | 0.7 | 0.2 |
Cesson | 16 | 6 | 78 | 541.9 | 2.3 | 0.6 |
Clay | Feldspar | Mica | Carbonates | |||||
---|---|---|---|---|---|---|---|---|
It (%) | Chm (%) | Cli (%) | Ab (%) | Bt (%) | Qz (%) | Cal (%) | Others (%) | |
BDC | 50.8 | 1.5 | - | - | - | 36.5 | 4.1 | - |
Calma | 63.1 | 2.4 | 6.7 | 1.9 | - | 11.9 | - | 0.5 |
Cesson | 11.7 | - | - | 59.1 | 5.9 | 12.8 | - | 4 |
Brick | Dry Density (kg/m3) | Linear Shrinkage (%) |
---|---|---|
BDC | 1698 ± 27 | 0.6 |
CL | 1661 ± 23 | 2.2 |
CS | 1718 ± 30 | 0.6 |
CL-CS | 1682 ± 35 | 1.2 |
BDC-CL | 1702 ± 32 | 1.0 |
BDC-CS | 1752 ± 17 | 0.5 |
Bricks | BDC | CS | CL | BDC-CS | BDC-CL | CL-CS |
---|---|---|---|---|---|---|
σc (MPa) | 0.9 ± 0.15 | 1.7 ± 0.20 | 1.7 ± 0.43 | 2.2 ± 0.30 | 1.0 ± 0.14 | 1.6 ± 0.16 |
σt (MPa) | 0.3 ± 0.02 | 0.4 ± 0.02 | 0.7 ± 0.04 | 0.7 ± 0.03 | 0.5 ± 0.04 | 0.5 ± 0.04 |
Peak deformation (%) | 2.0 | 2.3 | 3.7 | 4.6 | 4.6 | 2.5 |
Deformation modulus (MPa) | 50 | 140 | 50 | 60 | 20 | 100 |
Bending stiffness (N/mm) | 1468 | 1436 | 2205 | 2845 | 1726 | 2097 |
σc/σt | 3.7 | 4.0 | 2.5 | 1.9 | 3.4 |
Standard | Country | Bricks | Compressive Strength |
---|---|---|---|
AFNOR XP P13-901 2001 [47] | France | Compressed earth blocks | 1 to 6 MPa |
NORMA E.080 2017 [65] | Mexico | Earthen materials | 1 MPa |
SAZS 724 2001 [68] | Zimbabwe | Rammed earth | 1.5 MPa |
NMAC 2009 [67] | Mexico | All earthen materials | 2 MPa |
CSEB Green buildings [69] | Nepal | Cement stabilized blocks | 2 to 7 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hussain, M.; Zmamou, H.; Provost, A.; Mahieu, A.; Leblanc, N.; Levacher, D.; Chenot, E.; Kane, A. Feasibility for the Recovery of Excavated Soils in Compressed Earth Blocks as a Sustainable Building Material. Environments 2023, 10, 131. https://doi.org/10.3390/environments10080131
Hussain M, Zmamou H, Provost A, Mahieu A, Leblanc N, Levacher D, Chenot E, Kane A. Feasibility for the Recovery of Excavated Soils in Compressed Earth Blocks as a Sustainable Building Material. Environments. 2023; 10(8):131. https://doi.org/10.3390/environments10080131
Chicago/Turabian StyleHussain, Mazhar, Hafida Zmamou, Antony Provost, Angélique Mahieu, Nathalie Leblanc, Daniel Levacher, Elise Chenot, and Abdoulaye Kane. 2023. "Feasibility for the Recovery of Excavated Soils in Compressed Earth Blocks as a Sustainable Building Material" Environments 10, no. 8: 131. https://doi.org/10.3390/environments10080131
APA StyleHussain, M., Zmamou, H., Provost, A., Mahieu, A., Leblanc, N., Levacher, D., Chenot, E., & Kane, A. (2023). Feasibility for the Recovery of Excavated Soils in Compressed Earth Blocks as a Sustainable Building Material. Environments, 10(8), 131. https://doi.org/10.3390/environments10080131