Evaluation of Soil Heavy Metal Contamination and Potential Human Health Risk inside Forests, Wildfire Forests and Urban Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Soil Sampling
2.3. Sample Preparation and Analyses
2.4. Soil Metal Pollution Assessment
2.4.1. Contamination Factor
2.4.2. Geo-Accumulation Index
2.4.3. Potential Ecological Risk Index
2.5. Human Exposure and Health Risk Assessment
2.5.1. Ingestion and Dermal Contact Indices
2.5.2. Carcinogenic and Non-Carcinogenic (ACR) Risk Assessment
2.6. Statistical Analyses
3. Results
3.1. Soil Abiotic Properties
- Fe > Al > Mg > Mn >V > Cu> Cr > Ni > Pb > Zn at F sites;
- Fe > Al > Mg > Mn >V > Cu> Ni > Cr > Pb > Zn at WF sites;
- Al > Mg > Fe >Mn >V >Zn > Pb > Cu > Cr > Ni, at U sites.
3.2. PCA of Metals and Site Distributions
3.3. Soil Metal Contamination Assessment
- V > Mn > Cu > Ni > Zn > Cr > Pb > Fe > Al > Mg at WF sites;
- Zn > Pb > Al > Cu > Cr > Mg > V>Mn > Ni > Fe at U sites.
- Zn > Pb at U sites.
- The potential ecological risk (E) trends were as follows:
- Cu > Ni > Pb > Cr> Zn> at FW sites;
- Pb > Cu > Zn > Cr> Ni at U sites.
3.4. Human Health Risk Assessment
- Cu> Cr > Ni> Pb> Zn for adults (A) and Pb> Cu> Cr > Ni> Zn for children (C) at FW;
- Zn > Pb> Cu> Cr > Ni for adults (A) and Pb> Cu> Cr > Ni> Zn for children (C) at U.
3.5. RDA of Soil Contamination and Human Health Risk Indices
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chonokhuu, S.; Batbold, C.; Chuluunpurev, B.; Battsengel, E.; Dorjsuren, B.; Byambaa, B. Contamination and Health Risk Assessment of Heavy Metals in the Soil of Major Cities in Mongolia. Int. J. Environ. Res. Public Health 2019, 16, 2552. [Google Scholar] [CrossRef]
- Memoli, V.; Esposito, F.; Santorufo, L.; Panico, S.C.; Trifuoggi, M.; Di Natale, G.; Maisto, G. Relationships between leaf exposure time to air pollution and metal and particulate matter accumulation for holm oak leaves. Water Air Soil Pollut. 2020, 231, 529. [Google Scholar] [CrossRef]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Giarra, A.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Combined Effects of Wildfire and Vegetation Cover Type on Volcanic Soil (Functions and Properties) in a Mediterranean Region: Comparison of Two Soil Quality Indices. Int. J. Environ. Res. Public Health 2021, 18, 5926. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium and Human Health; Lancet: London, UK, 2012; p. 1256. [Google Scholar]
- Lazarus, J.H. The importance of iodine in public health. Environ. Geochem. Health 2015, 37, 605–618. [Google Scholar] [CrossRef]
- Tepanosyan, G.; Sahakyan, L.; Belyaeva, O.; Asmaryan, S.; Saghatelyan, A. Continuous impact of mining activities on soil heavy metals levels and human health. Sci. Total Environ. 2018, 639, 900–909. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.M.; Hossain, D.; Al-Imran, A.; Khan, M.S.; Begum, M.; Osman, M.H. Environmental Pollution with Heavy Metals: A Public Health Concern, in Heavy Metals—Their Environmental Impacts and Mitigation; IntechOpen: London, UK, 2021. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar]
- Adimalla, N. Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environ. Geochem. Health 2020, 42, 173–190. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Li, J. A review on human health consequences of metals exposure to e-waste in China. Environ. Pollut. 2015, 196, 450–461. [Google Scholar] [CrossRef]
- Samec, P.; Kučera, A.; Tomášová, G. Soil Degradation Processes Linked to Long-Term Forest-Type Damage; IntechOpen, Sustainable Development 2023; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Hernández, T.D.B.; Slater, B.K.; Shaffer, J.M. Characterizing minimally disturbed soils in a highly disturbed urban environment. Agrosyst. Geosci. Environ. 2019, 2, 190053. [Google Scholar] [CrossRef]
- Panico, S.C.; Memoli, V.; Esposito, F.; Maisto, G.; De Marco, A. Plant cover and management practices as drivers of soil quality. Appl. Soil. Ecol. 2018, 129, 34–42. [Google Scholar] [CrossRef]
- Cerdà, A. Fire Effects on Soils and Restoration Strategies; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Memoli, V.; Esposito, F.; Panico, S.C.; De Marco, A.; Barile, R.; Maisto, G. Evaluation of tourism impact on soil metal accumulation through single and integrated indices. Sci. Total Environ. 2019, 682, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Memoli, V.; Santorufo, L.; Panico, S.C.; Barile, R.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Stability of Mediterranean burnt soils under different plant covers. Catena 2021, 206, 105581. [Google Scholar] [CrossRef]
- Memoli, V.; Eymar, E.; García-Delgado, C.; Esposito, F.; Santorufo, L.; De Marco, A.; Barile, R.; Maisto, G. Total and fraction content of elements in volcanic soil: Natural or anthropogenic derivation. Sci. Total Environ. 2018, 625, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Mugosa, B.; Durovi, D.; Nedovi-Vukovi, M.; Labovi, S.B.; Miroslav, V.M. Assessment of ecological risk of heavy metal contami- nation in coastal municipalities of Montenegro. Int. J. Environ. Res. Public Health 2016, 13, 393–398. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.H.; Wang, T.J.; Lian, H.Z.; Sun, Y.Y.; Wu, J.C. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Di Gennaro, A.; Aronne, G.; De Mascellis, R.; Vingiani, S.; Sarnataro, M.; Abalsamo, P.; Cona, F.; Vitelli, L.; Arpaia, G. Sistemi di Terre della Campania, Monografia e carta 1:250,000. 2002. Available online: https://hdl.handle.net/11588/179891 (accessed on 23 November 2022).
- Buat-Menard, P.; Chesselet, R. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth Planet Sci. Lett. 1979, 42, 99–411. [Google Scholar] [CrossRef]
- Zhao, Q.; Qixin, X.; Kai, Y. Application of Potential Ecological Risk Index in Soil Pollution of Typical Polluting Industries. J. East China Norm. Univ. Nat. Sci. 2005, 1, 110–115. [Google Scholar]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Chen, H.Y.; Teng, Y.G.; Lu, S.J.; Wang, Y.Y.; Wang, J.S. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512–513, 143–153. [Google Scholar] [CrossRef]
- Solgi, E.; Esmaili-Sari, A.; Riyahi-Bakhtiari, A.; Hadipour, M. Soil contamination of metals in the three industrial estates, Arak, Iran. Bull. Environ. Contam. Toxicol. 2012, 88, 634–641. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Guidelines for the Health Risk Assessment of Chemical Mixtures; US Environmental Protection Agency: Washington, DC, USA, 1986.
- USEPA. Risk Assessment Guidance for SUPERFUND. Human Health Evaluation Manual (Part A, Vol. 1); US Environmental Protection Agency, Office of Emergency and Remedial Response: Washington, DC, USA, 1989.
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response: Washington, DC, USA, 2001.
- USEPA. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites; U.S. Environmental Protection Agency, Office of Emergency and Remedial Response: Washington, DC, USA, 2002.
- USDOE. The Risk Assessment Information System (RAIS); U.S. Department of Energy’s Oak Ridge Operations Office (ORO): Oak Ridge, TN, USA, 2011.
- Shi, P.; Xiao, J.; Wang, Y.; Chen, L. Assessment of ecological and human health risks of heavy metal contamination in agriculture soils disturbed by pipeline construction. Int. J. Environ. Res. Public Health 2014, 11, 2504–2520. [Google Scholar] [CrossRef] [PubMed]
- Finley, B.L.; Scott, P.K.; Mayhall, D.A. Development of a standard soil-to-skin adherence probability density function for use in Monte Carlo analyses of dermal exposure. Risk Anal. 2006, 14, 555–569. [Google Scholar] [CrossRef] [PubMed]
- HC (Health Canada). Federal Contaminated Site Risk Assessment in Canada. Part II: Health Canada Toxicological Reference Values (TRVs) and Chemical-Specific Factors; Health Canada: Ottawa, ON, Canada, 2004.
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmos. Environ. 2005, 39, 4501–4512. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System; U.S. Environmental Protection Agency: Washington, DC, USA, 2014. Available online: http://www.epa.gov/iris/ (accessed on 23 November 2022).
- Lu, X.W.; Zhang, X.L.; Li, L.Y.; Chen, H. Assessment of metals pollution and health risk in dust from nursery schools in Xian, China. Environ. Res. 2014, 128, 27–34. [Google Scholar] [CrossRef]
- Fryer, M.; Collins, C.D.; Ferrier, H.; Colvile, R.N.; Nieuwenhuijsen, M.J. Human exposure modeling for chemical risk assessment: A review of current approaches and research and policy implications. Environ. Sci. Policy 2006, 9, 261–274. [Google Scholar] [CrossRef]
- De Nicola, F.; Maisto, G.; Alfani, A. Assessment of nutritional status and trace element contamination of holm oak woodlands through analyses of leaves and surrounding soils. Sci. Total Environ. 2003, 311, 191–203. [Google Scholar] [CrossRef]
- Santorufo, L.; Memoli, V.; Panico, S.C.; Santini, G.; Barile, R.; Di Natale, G.; Trifuoggi, M.; De Marco, A.; Maisto, G. Early post-fire changes in properties of Andosols within a Mediterranean area. Geoderma 2021, 394, 115016. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and health risk of arsenic, mercury and other metals in urban street dusts from a mega-city, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef]
- Bilos, C.; Colombo, J.C.; Skorupka, C.N.; Presa, M.R. Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ. Pollut. 2001, 111, 149–158. [Google Scholar] [CrossRef]
- Soltani, N.; Keshavarzi, B.; Moore, F.; Tavakol, T.; Lahijanzadeh, A.R.; Jaafarzadeh, N.; Kermani, M. Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis, Iran. Sci. Total Environ. 2015, 505, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Esposito, F.; Memoli, V.; Di Natale, G.; Trifuoggi, M.; Maisto, G. Quercus ilex L. leaves as filters of air Cd, Cr, Cu, Ni and Pb. Chemosphere 2019, 218, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Santorufo, L.; Cortet, J.; Nahmani, J.; Pernin, C.; Salmon, S.; Pernot, A.; Morel, J.L.; Maisto, G. Responses of functional and taxonomic collembolan community structure to site management in Mediterranean urban and surrounding areas. Eur. J. Soil Biol. 2015, 70, 46–57. [Google Scholar] [CrossRef]
- Khalid, N.; Hussain, M.; Young, H.S. Effects of road proximity on heavy metal concentrations in soils and common road side plants in Southern California. Environ. Sci. Pollut. Res. 2018, 25, 35257–35265. [Google Scholar] [CrossRef] [PubMed]
- Wawer, M.; Magiera, T.; Ojha, G.; Appel, E.; Kusza, G.; Hu, S.; Basavaiah, N. Traffic-related pollutants in roadside soils of different countries in Europe and Asia. Water Air Soil Pollut. 2015, 226, 216. [Google Scholar] [CrossRef]
- Li, J.T.; Qiu, J.W.; Wang, X.W.; Zhong, Y.; Lan, C.Y.; Shu, W.S. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guangzhou, China. Environ. Pollut. 2006, 143, 159–165. [Google Scholar] [CrossRef]
- Cardoso-Silva, S.; Meirelles, S.T.; Frascareli, D.; López-Doval, J.C.; Rosa, A.H.; Moschini-Carlos, V.; Pompêo, M. Metals in superficial sediments of a cascade multisystem reservoir: Contamination and potential ecological risk. Env. Earth Sci. 2017, 76, 756. [Google Scholar] [CrossRef]
- Iwegbue, C.; Martincigh, B.S. Ecological and human health risks arising from exposure to metals in urban soils under different land use in Nigeria. Environ. Sci. Pollut. Res. 2018, 25, 12373–12390. [Google Scholar] [CrossRef]
- Qing, X.; Yutong, Z.; Shenggao, L. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotoxicol. Environ. Saf. 2015, 120, 377–385. [Google Scholar] [CrossRef]
- Ying, L.; Shaogang, L.; Xiaoyang, C. Assessment of heavy metal pollution and human health risk in urban soils of a coal mining city in East China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 1359–1374. [Google Scholar] [CrossRef]
- Masri, S.; LeBron, A.M.W.; Logue, M.D.; Valencia, E.; Ruiz, A.; Reyesf, A.; Wu, J. Risk assessment of soil heavy metal contamination at the census tract level in the city of Santa Ana, CA: Implications for health and environmental justice. Environ. Sci. Process. Impacts 2021, 2, 812. [Google Scholar] [CrossRef] [PubMed]
- Maisonet, M.; Bove, F.J.; Kaye, W.E. A Case-Control Study to Determine Risk Factors for Elevated Blood Lead Levels in Children, Idaho. Toxicol. Ind. Health 1997, 13, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Zahran, S.; Laidlaw, M.A.S.; McElmurry, S.P.; Filippelli, G.M.; Taylor, M. Linking Source and Effect: Resuspended Soil Lead, Air Lead, and Children’s Blood Lead Levels in Detroit, Michigan. Environ. Sci. Technol. 2013, 47, 2839–2845. [Google Scholar] [CrossRef] [PubMed]
Sites | |||
---|---|---|---|
Metals | F | WF | U |
Al (mg kg−1 d.w.) | 19,969 B ±2553 | 12,508 B ±1910 | 28,390 A ±3793 |
Cr (mg kg−1 d.w.) | 53.0 A ±0.4 | 40 B ±0.4 | 38 B ±0.3 |
Cu (mg kg−1 d.w.) | 70.6 A ±3.2 | 64.3 B ±2.5 | 63.8 B ±2.1 |
Fe (mg kg−1 d.w.) | 26,967 A ±2157 | 19,053 B ±468 | 702 C ±43.5 |
Mg (mg kg−1 d.w.) | 17,007 A ±1912. | 9422 B ±1042 | 12,261 B ±928 |
Mn (mg kg−1 d.w.) | 911.3 A ±23.8 | 838 A ±35.6 | 421 B ±0.0 |
Ni (mg kg−1 d.w.) | 52 A ±0.2 | 45 A ±0.2 | 21 B ±0.8 |
Pb (mg kg−1 d.w.) | 48.5 B ±4.1 B | 35.8 B ±2.6 | 83.8 A ±14.9 |
V (mg kg−1 d.w.) | 197.2 A ±7.7 | 189.8 A ±9.0 | 111.6 B ±7.6 |
Zn (mg kg−1 d.w.) | 29 B ±0.4 | 23 B ±0.2 | 100 A ±4.6 |
CF | GI | E | ||||
---|---|---|---|---|---|---|
FW | U | FW | U | FW | U | |
Al | 0.62 | 1.42 | −1.25 | −0.1 | 0.00 | 0.00 |
Cr | 0.75 | 0.72 | −1.0 | −1.1 | 1.51 | 1.43 |
Cu | 0.91 | 0.90 | −0.72 | −0.73 | 4.55 | 4.51 |
Fe | 0.71 | 0.03 | −1.10 | −5.85 | 0.00 | 0.00 |
Mg | 0.55 | 0.72 | −1.43 | −1.05 | 0.00 | 0.00 |
Mn | 0.92 | 0.46 | −0.70 | −1.70 | 0.00 | 0.00 |
Ni | 0.86 | 0.40 | −0.80 | −1.90 | 4.32 | 2.10 |
Pb | 0.73 | 1.73 | −1.0 | 0.20 | 3.70 | 8.64 |
V | 0.96 | 0.56 | −0.64 | −1.41 | 0.00 | 0.00 |
Zn | 0.79 | 3.45 | −0.92 | 1.20 | 0.79 | 3.45 |
ADIi HQI | ACR | |||||||
---|---|---|---|---|---|---|---|---|
FW | U | FW | U | |||||
A | C | A | C | A | C | A | C | |
Cr | 0.02 | 0.04 | 0.03 | 0.04 | 0.01 | 0.02 | 0.01 | 0.02 |
Cu | 0.04 | 0.06 | 0.04 | 0.06 | - | - | - | - |
Ni | 0.02 | 0.04 | 0.01 | 0.02 | 0.01 | 0.03 | 0.04 | 0.01 |
Pb | 0.02 | 0.08 | 0.05 | 0.08 | 0.0002 | 0.0007 | 0.0004 | 0.0007 |
Zn | 0.01 | 0.02 | 0.06 | 0.1 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panico, S.C.; Santorufo, L.; Memoli, V.; Esposito, F.; Santini, G.; Di Natale, G.; Trifuoggi, M.; Barile, R.; Maisto, G. Evaluation of Soil Heavy Metal Contamination and Potential Human Health Risk inside Forests, Wildfire Forests and Urban Areas. Environments 2023, 10, 146. https://doi.org/10.3390/environments10080146
Panico SC, Santorufo L, Memoli V, Esposito F, Santini G, Di Natale G, Trifuoggi M, Barile R, Maisto G. Evaluation of Soil Heavy Metal Contamination and Potential Human Health Risk inside Forests, Wildfire Forests and Urban Areas. Environments. 2023; 10(8):146. https://doi.org/10.3390/environments10080146
Chicago/Turabian StylePanico, Speranza Claudia, Lucia Santorufo, Valeria Memoli, Francesco Esposito, Giorgia Santini, Gabriella Di Natale, Marco Trifuoggi, Rossella Barile, and Giulia Maisto. 2023. "Evaluation of Soil Heavy Metal Contamination and Potential Human Health Risk inside Forests, Wildfire Forests and Urban Areas" Environments 10, no. 8: 146. https://doi.org/10.3390/environments10080146
APA StylePanico, S. C., Santorufo, L., Memoli, V., Esposito, F., Santini, G., Di Natale, G., Trifuoggi, M., Barile, R., & Maisto, G. (2023). Evaluation of Soil Heavy Metal Contamination and Potential Human Health Risk inside Forests, Wildfire Forests and Urban Areas. Environments, 10(8), 146. https://doi.org/10.3390/environments10080146