When the Household Becomes Environmentally Friendly—Dynamic Simulation of Hybrid Energy System’s Feasibility
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electricity Sector in Latvia
2.2. The Structure of the Exploratory Model
2.3. Model Components and Parameters
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Shetwi, A.Q. Sustainable development of renewable energy integrated power sector: Trends, environmental impacts, and recent challenges. Sci. Total Environ. 2022, 822, 153645. [Google Scholar] [CrossRef] [PubMed]
- Wiatros-Motyka, M. Global Electricity Review 2023. Ember. 2023, p. 163. Available online: https://ember-climate.org/insights/research/global-electricity-review-2023/#supporting-material (accessed on 27 August 2023).
- Wang, W.; Kang, K.; Sun, G.; Xiao, L. Configuration optimization of energy storage and economic improvement for household photovoltaic system considering multiple scenarios. J. Energy Storage 2023, 67, 107631. [Google Scholar] [CrossRef]
- Elmorshedy, M.F.; Elkadeem, M.; Kotb, K.M.; Taha, I.B.; Mazzeo, D. Optimal design and energy management of an isolated fully renewable energy system integrating batteries and supercapacitors. Energy Convers. Manag. 2021, 245, 114584. [Google Scholar] [CrossRef]
- Zhao, Z. Operation Simulation and Economic Analysis of Household Hybrid PV and BESS Systems in the Improved TOU Mode. Sustainability 2023, 15, 8853. [Google Scholar] [CrossRef]
- Degefa, M.Z.; Sperstad, I.B.; Sæle, H. Comprehensive classifications and characterizations of power system flexibility resources. Electr. Power Syst. Res. 2021, 194, 107022. [Google Scholar] [CrossRef]
- Blanco, H.; Faaij, A. A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage. Renew. Sustain. Energy Rev. 2018, 81, 1049–1086. [Google Scholar] [CrossRef]
- Rafał, K.; Radziszewska, W.; Grabowski, O.; Biedka, H.; Verstraete, J. Energy Cost Minimization with Hybrid Energy Storage System Using Optimization Algorithm. Appl. Sci. 2022, 13, 518. [Google Scholar] [CrossRef]
- Lund, H.; Salgi, G.; Elmegaard, B.; Andersen, A.N. Optimal operation strategies of compressed air energy storage (CAES) on electricity spot markets with fluctuating prices. Appl. Therm. Eng. 2009, 29, 799–806. [Google Scholar] [CrossRef]
- European Commission; Directorate-General for Energy; Hoogland, O.; Fluri, V.; Kost, C.; Marian, K.; Matthias, K.; Manish, K.; Michelle, A.; Joris, K.; et al. Study on Energy Storage. Publications Office of the European Union. 2023. Available online: https://op.europa.eu/en/publication-detail/-/publication/dfcaa78b-c217-11ed-8912-01aa75ed71a1/language-en (accessed on 27 August 2023).
- O’Dea, S. Projected Global Battery Demand from 2020 to 2030, by Application. Statista. 2023. Available online: https://www.statista.com/statistics/1103218/global-battery-demand-forecast/ (accessed on 27 August 2023).
- Qais, M.; Loo, K.H.; Hasanien, H.M.; Alghuwainem, S. Optimal Comfortable Load Schedule for Home Energy Management Including Photovoltaic and Battery Systems. Sustainability 2023, 15, 9193. [Google Scholar] [CrossRef]
- Miletić, M.; Gržanić, M.; Pavić, I.; Pandžić, H.; Capuder, T. The effects of household automation and dynamic electricity pricing on consumers and suppliers. Sustain. Energy Grids Netw. 2022, 32, 100931. [Google Scholar] [CrossRef]
- Garces, E.; Franco, C.J.; Tomei, J.; Dyner, I. Sustainable electricity supply for small off-grid communities in Colombia: A system dynamics approach. Energy Policy 2023, 172, 113314. [Google Scholar] [CrossRef]
- Kubli, M.; Ulli-Beer, S. Decentralisation dynamics in energy systems: A generic simulation of network effects. Energy Res. Soc. Sci. 2016, 13, 71–83. [Google Scholar] [CrossRef]
- Zapata Riveros, J.; Kubli, M.; Ulli-Beer, S. Prosumer communities as strategic allies for electric utilities: Exploring future decentralization trends in Switzerland. Energy Res. Soc. Sci. 2019, 57, 101219. [Google Scholar] [CrossRef]
- Environment and Energy Statistics Section of the Central Statistics Bureau. Overall Energy Consumption Decreased by 6.1%. Central Statistics Bureau; 2021. Available online: https://stat.gov.lv/lv/statistikas-temas/noz/energetika/preses-relizes/7129-energoresursu-paterins-latvija-2020-gada (accessed on 13 July 2023). (In Latvian)
- Cabinet of Ministers of the Republic of Latvia. Order No 46. on Latvia’s National Energy and Climate Plan for 2021–2030; Cabinet of Ministers of the Republic of Latvia: Riga, Latvia, 2020. (In Latvian)
- Environment and Energy Statistics Section of the Central Statistics Bureau. RES Consumption in 2021 was 3% higher than the year before. Central Statistics Bureau; 2022. Available online: https://stat.gov.lv/lv/statistikas-temas/noz/energetika/preses-relizes/8732-atjaunigo-energoresursu-paterins-2021-gada (accessed on 27 August 2023). (In Latvian)
- Mendziņš, K. The Number of Solar Panels in Latvia Increased Six Times in the First Quarter of the Year. Uzladets.lv. 2022. Available online: https://uzladets.lv (accessed on 27 August 2023). (In Latvian).
- Nord Pool Group. About Nord Pool Group. Nord Pool AS. 2023. Available online: https://www.nordpoolgroup.com/en/About-us/ (accessed on 19 June 2023).
- The Parliament of the Republic of Latvia. Electricity Market Law; The Parliament of the Republic of Latvia: Riga, Latvia, 2005. [Google Scholar]
- Cabinet of Ministers of the Republic of Latvia. National Energy and Climate Plan of Latvia 2021–2030. 2020. Available online: https://energy.ec.europa.eu/system/files/2020-02/lv_final_necp_main_lv_0.pdf (accessed on 13 July 2023). (In Latvian).
- Dolge, K.; Bohvalovs, G.; Kirsanovs, V.; Blumberga, A.; Blumberga, D. Bioeconomy in the Shade of Green Deal: The System Dynamic Approach. Environ. Clim. Technol. 2022, 26, 1221–1233. [Google Scholar] [CrossRef]
- Barisa, A.; Kirsanovs, V.; Safronova, A. Future transport policy designs for biomethane promotion: A system Dynamics model. J. Environ. Manag. 2020, 269, 110842. [Google Scholar] [CrossRef]
- Blumberga, A.; Gravelsins, A.; Blumberga, D. Deliberation Platform for Energy Transition Policies: How to Make Complex Things Simple. Energies 2022, 15, 90. [Google Scholar] [CrossRef]
- Pakere, I.; Gravelsins, A.; Bohvalovs, G.; Rozentale, L.; Blumberga, D. Will Aggregator Reduce Renewable Power Surpluses? A System Dynamics Approach for the Latvia Case Study. Energies 2021, 14, 7900. [Google Scholar] [CrossRef]
- Solar Radiation Data from Center of Environment, Geology and Meteorology of Latvia. Available online: https://videscentrs.lvgmc.lv/ (accessed on 27 August 2023).
- The Danish Energy Agency. Catalogues of Technology Data by Danish Energy Agency. Available online: https://ens.dk/en/our-services/projections-and-models/technology-data (accessed on 27 August 2023).
- Enefit LLC. Solar Energy Solutions. Available online: https://www.enefit.lv/majai/saules-paneli (accessed on 21 June 2023). (In Latvian).
- AS “Sadales tīkls”. Electricity Distribution System Service Tariffs. Available online: https://sadalestikls.lv/lv/sadales-tikls-tarifi#_ftn3 (accessed on 21 June 2023). (In Latvian).
- energija24.lv Group. Comparison of Electricity Traders. Available online: https://www.energija24.lv (accessed on 21 June 2023).
- Zhang, Z.; Liu, X.; Zhao, D.; Post, S.; Chen, J. Overview of the development and application of wind energy in New Zealand. Energy Built Environ. 2023, 4, 725–742. [Google Scholar] [CrossRef]
- Kudurs, E.; Atvare, E.; Dolge, K.; Blumberga, D. Ranking of Electricity Accumulation Possibilities: Multicriteria Analysis. Appl. Sci. 2023, 13, 7349. [Google Scholar] [CrossRef]
- European Association for Storage of Energy. Energy Storage Technology Descriptions Lithium-Ion Battery. Available online: www.ease-storage.eu (accessed on 27 August 2023).
NordPool Data | Grid Connection, EUR/Year | Added PV Panels, EUR/Year | With Added Accumulation System EUR/Year |
---|---|---|---|
2019 | 1779.78 | 710.14 | 642.18 |
2020 | 1554.06 | 646.98 | 571.34 |
2021 | 2663.55 | 715.82 | 639.41 |
2022 | 4851.32 | 968.97 | 858.02 |
2019 | Annual Cost for Grid Electricity | Annual Savings | Payback Time | Grid Electricity Consumed |
---|---|---|---|---|
EUR/Year | EUR/Year | Years | kWh/Year | |
Grid electricity | 889 | - | - | 7755.55 |
PV system | 293 | 596 | 16.8 | 331.32 |
Battery | 858 | 31 | 448.3 | 7862.27 |
PV + Battery system | 260 | 629 | 22.3 | 372.39 |
2020 | Annual Cost for Grid Electricity | Annual Savings | Payback Time | Grid Electricity Consumed |
---|---|---|---|---|
EUR/Year | EUR/Year | Years | kWh/Year | |
Grid electricity | 776 | - | - | 7755.55 |
PV system | 285 | 491 | 20.35 | 331.32 |
Battery | 724 | 52 | 266.9 | 7857.75 |
PV + Battery system | 250 | 526 | 26.6 | 368.78 |
2021 | Annual Cost for Grid Electricity | Annual Savings | Payback Time | Grid Electricity Consumed |
---|---|---|---|---|
EUR/Year | EUR/Year | Years | kWh/Year | |
Grid electricity | 1331 | - | - | 7755.55 |
PV system | 293 | 1038 | 9.6 | 331.32 |
Battery | 1223 | 108 | 129.2 | 7862.81 |
PV + Battery system | 259 | 1072 | 13.1 | 370.68 |
2022 | Annual Cost for Grid Electricity | Annual Savings | Payback Time | Grid Electricity Consumed |
---|---|---|---|---|
EUR/Year | EUR/Year | Years | kWh/Year | |
Grid electricity | 2425 | - | - | 7755.55 |
PV system | 350 | 2075 | 4.8 | 331.32 |
Battery | 2164 | 261 | 53.7 | 7860.62 |
PV + Battery system | 307 | 2118 | 6.6 | 367.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atvare, E.; Gravelsins, A.; Kudurs, E.; Rozakis, S.; Blumberga, D. When the Household Becomes Environmentally Friendly—Dynamic Simulation of Hybrid Energy System’s Feasibility. Environments 2023, 10, 164. https://doi.org/10.3390/environments10090164
Atvare E, Gravelsins A, Kudurs E, Rozakis S, Blumberga D. When the Household Becomes Environmentally Friendly—Dynamic Simulation of Hybrid Energy System’s Feasibility. Environments. 2023; 10(9):164. https://doi.org/10.3390/environments10090164
Chicago/Turabian StyleAtvare, Erlanda, Armands Gravelsins, Edgars Kudurs, Stelios Rozakis, and Dagnija Blumberga. 2023. "When the Household Becomes Environmentally Friendly—Dynamic Simulation of Hybrid Energy System’s Feasibility" Environments 10, no. 9: 164. https://doi.org/10.3390/environments10090164
APA StyleAtvare, E., Gravelsins, A., Kudurs, E., Rozakis, S., & Blumberga, D. (2023). When the Household Becomes Environmentally Friendly—Dynamic Simulation of Hybrid Energy System’s Feasibility. Environments, 10(9), 164. https://doi.org/10.3390/environments10090164