Spatial Pattern Assessment and Prediction of Water and Sedimentary Mud Quality Changes in Lake Maurepas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Sites
2.3. Measurements
2.4. IDW Interpolation and Predictive Modeling Techniques
2.4.1. Geospatial Contaminant Variation Patterns
2.4.2. Water Quality Forecasting
3. Results and Discussion
3.1. Physical Properties of Lake Water in 2023
3.2. Chemical Properties of Lake Water from June-November 2023
3.3. Geostatistical Modeling of Chemical Properties
3.4. Geospatial Analysis of Mercury (Hg) Distribution in Sedimentary Mud of Lake Maurepas
3.5. Predictive Modeling of Water Quality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ho, L.T.; Goethals, P.L. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef]
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging Threats and Persistent Conservation Challenges for Freshwater Biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed]
- Koski, V.; Kotamäki, N.; Hämäläinen, H.; Meissner, K.; Karvanen, J.; Kärkkäinen, S. The Value of Perfect and Imperfect Information in Lake Monitoring and Management. Sci. Total Environ. 2020, 726, 138396. [Google Scholar] [CrossRef] [PubMed]
- Hassan, B.; Qadri, H.; Ali, M.N.; Khan, N.A.; Yatoo, A.M. Impact of Climate Change on Freshwater Ecosystem and Its Sustainable Management. In Fresh Water Pollution Dynamics and Remediation; Qadri, H., Bhat, R., Mehmood, M., Dar, G., Eds.; Springer: Singapore, 2020; pp. 105–121. [Google Scholar] [CrossRef]
- Bhattarai, S. Spatial Distribution of Heavy Metals in Louisiana Sediments and Study of Factors Impacting the Concentrations. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2006. [Google Scholar]
- Burlakova, L.E.; Hinchey, E.K.; Karatayev, A.Y.; Rudstam, L.G. US EPA Great Lakes National Program Office Monitoring of the Laurentian Great Lakes: Insights from 40 Years of Data Collection. J. Great Lakes Res. 2018, 44, 535–538. [Google Scholar] [CrossRef]
- Carlson, D.L.; Swackhamer, D.L. Results from the US Great Lakes Fish Monitoring Program and Effects of Lake Processes on Bioaccumulative Contaminant Concentrations. J. Great Lakes Res. 2006, 32, 370–385. [Google Scholar] [CrossRef]
- Heidtke, T.; Hartig, J.H.; Zarull, M.A.; Yu, B. PCB Levels and Trends within the Detroit River-Western Lake Erie Basin: A Historical Perspective of Ecosystem Monitoring. Environ. Monit. Assess. 2006, 112, 23–33. [Google Scholar] [CrossRef]
- Boegehold, A.G.; Burtner, A.M.; Camilleri, A.C.; Carter, G.; DenUyl, P.; Fanslow, D.; Fyffe Semenyuk, D.; Godwin, C.M.; Gossiaux, D.; Johengen, T.H.; et al. Routine Monitoring of Western Lake Erie to Track Water Quality Changes Associated with Cyanobacterial Harmful Algal Blooms. Earth Syst. Sci. Data Discuss. 2023, 15, 3853–3868. [Google Scholar] [CrossRef]
- Seelbach, P.W.; Fogarty, L.R.; Bunnell, D.B.; Haack, S.K.; Rogers, M.W. A Conceptual Framework for Lake Michigan Coastal/Nearshore Ecosystems, with Application to Lake Michigan Lakewide Management Plan (LaMP) Objectives; U.S. Geological Survey: Reston, VI, USA, 2013; No. 2013-1138. [Google Scholar] [CrossRef]
- McCormick, M.J.; Pazdalski, J.D. Monitoring Midlake Water Temperature in Southern Lake Michigan for Climate Change Studies. Clim. Chang. 1993, 25, 119–125. [Google Scholar] [CrossRef]
- Zhang, X.; Rygwelski, K.R.; Rossmann, R. The Lake Michigan Contaminant Transport and Fate Model, LM2-Toxic: Development, Overview, and Application. J. Great Lakes Res. 2009, 35, 128–136. [Google Scholar] [CrossRef]
- Ji, G.; Havens, K. Periods of Extreme Shallow Depth Hinder but Do Not Stop Long-Term Improvements of Water Quality in Lake Apopka, Florida (USA). Water 2019, 11, 538. [Google Scholar] [CrossRef]
- Waters, M.N.; Schelske, C.L.; Brenner, M. Cyanobacterial Dynamics in Shallow Lake Apopka (Florida, USA) Before and After the Shift from a Macrophyte-Dominated to a Phytoplankton-Dominated State. Freshw. Biol. 2015, 60, 1571–1580. [Google Scholar] [CrossRef]
- Schelske, C.L.; Coveney, M.F.; Aldridge, F.J.; Kenney, W.F.; Cable, J.E. Wind or Nutrients: Historic Development of Hypereutrophy in Lake Apopka, Florida. Adv. Limnol. 2000, 55, 543–563. [Google Scholar]
- Louisiana Clean Energy Complex USA. 2024. Available online: https://www.airproducts.com/louisiana-clean-energy (accessed on 28 April 2024).
- Hunt, A.J.; Sin, E.H.; Marriott, R.; Clark, J.H. Generation, Capture, and Utilization of Industrial Carbon Dioxide. ChemSusChem 2010, 3, 306–322. [Google Scholar] [CrossRef]
- Massarweh, O.; Al-Khuzaei, M.; Al-Shafi, M.; Bicer, Y.; Abushaikha, A.S. Blue Hydrogen Production from Natural Gas Reservoirs: A Review of Application and Feasibility. J. CO2 Util. 2023, 70, 102438. [Google Scholar] [CrossRef]
- Air Products and Chemicals, Inc. Project Updates USA. 2024. Available online: https://www.airproducts.com/louisiana-clean-energy/project-updates (accessed on 2 May 2024).
- Khalil, S.M.; Forrest, B.M.; Lowiec, M.; Suthard, B.C.; Raynie, R.C.; Haywood, E.L.; Robertson, Q.; Andrews, J. Overview of Statewide Geophysical Surveys for Ecosystem Restoration in Louisiana. Shore Beach 2020, 88, 102–109. [Google Scholar] [CrossRef]
- Burden, D.G.; Malone, R.F.; Geaghan, J. Development of a Condition Index for Louisiana Lakes. Lake Reserv. Manag. 1985, 1, 68–72. [Google Scholar]
- Singer, M. Down Cancer Alley: The Lived Experience of Health and Environmental Suffering in Louisiana’s Chemical Corridor. Med. Anthropol. Q. 2011, 25, 141–163. [Google Scholar] [CrossRef]
- Montanio, P.A. Bayou Dupont Marsh and Ridge Creation CWPPRA Project, Fed No. BA-48: Environmental Assessment; Jefferson and Plaquemines Parishes: Barataria, LA, USA, 2011. Available online: https://repository.library.noaa.gov/view/noaa/4124 (accessed on 2 May 2024).
- Li, J.; Huang, J.F.; Wang, X.Z. A GIS-Based Approach for Estimating Spatial Distribution of Seasonal Temperature in Zhejiang Province, China. J. Zhejiang Univ.-Sci. A 2006, 7, 647–656. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, G.; Li, H.; Luo, H.; Huang, S.L. GIS Application in Mineral Resource Analysis—A Case Study of Offshore Marine Placer Gold at Nome, Alaska. Comput. Geosci. 2007, 33, 773–788. [Google Scholar] [CrossRef]
- Baustian, M.M.; Clark, F.R.; Jerabek, A.S.; Wang, Y.; Bienn, H.C.; White, E.D. Modeling Current and Future Freshwater Inflow Needs of a Subtropical Estuary to Manage and Maintain Forested Wetland Ecological Conditions. Ecol. Indic. 2018, 85, 791–807. [Google Scholar] [CrossRef]
- Nijmeijer, R.; de Haas, A.; Dost, R.J.J.; Budde, P.E. ILWIS 3.0 Academic: User’s Guide, ITC, ILWIS: Enschede, The Netherlands, 2001.
- Shyu, G.S.; Cheng, B.Y.; Chiang, C.T.; Yao, P.H.; Chang, T.K. Applying Factor Analysis Combined with Kriging and Information Entropy Theory for Mapping and Evaluating the Stability of Groundwater Quality Variation in Taiwan. Int. J. Environ. Res. Public Health 2011, 8, 1084–1109. [Google Scholar] [CrossRef] [PubMed]
- Kushwaha, S.P.S.; Khan, A.; Habib, B.; Quadri, A.; Singh, A. Evaluation of Sambar and Muntjak Habitats Using Geostatistical Modeling. Curr. Sci. 2004, 86, 1390–1400. [Google Scholar]
- Zarco-Perello, S.; Simões, N. Ordinary Kriging vs Inverse Distance Weighting: Spatial Interpolation of the Sessile Community of Madagascar Reef, Gulf of Mexico. PeerJ 2017, 5, e4078. [Google Scholar] [CrossRef] [PubMed]
- Karydas, C.G.; Gitas, I.Z.; Koutsogiannaki, E.; Lydakis-Simantiris, N.; Silleos, G.N. Evaluation of Spatial Interpolation Techniques for Mapping Agricultural Topsoil Properties in Crete. EARSeL eProceedings 2009, 8, 26–39. [Google Scholar]
- USGS Earth Explorer USA. 2024. Available online: https://earthexplorer.usgs.gov/ (accessed on 23 April 2024).
- Barazzetti, L.; Previtali, M.; Roncoroni, F. Visualization and Processing of Structural Monitoring Data Using Space-Time Cubes. In Proceedings of the International Conference on Computational Science and Its Applications, Malaga, Spain, 4–7 July 2022; Springer International Publishing: Cham, Switzerland, 2022; pp. 19–31. [Google Scholar] [CrossRef]
- Asmat, A.; Hazali, N.A.; Nor, A.N.M.; Zuhan, F.K. Seasonal-Spatial of Putrajaya Lake Water Quality Parameter (WQP) Concentration Using Geographic Information System (GIS). Int. J. Eng. Technol. (UAE) 2018, 7, 176–181. [Google Scholar] [CrossRef]
- Schindler, D.W.; Bayley, S.E.; Parker, B.R.; Beaty, K.G.; Cruikshank, D.R.; Fee, E.J.; Schindler, E.U.; Stainton, M.P. The Effects of Climatic Warming on the Properties of Boreal Lakes and Streams at the Experimental Lakes Area, Northwestern Ontario. Limnol. Oceanogr. 1996, 41, 1004–1017. [Google Scholar] [CrossRef]
- Vasistha, P.; Ganguly, R. Water quality assessment in two lakes of Panchkula, Haryana, using GIS: Case study on seasonal and depth wise variations. Environ. Sci. Pollut. Res. 2022, 29, 43212–43236. [Google Scholar] [CrossRef]
- Cieśliński, R. Extreme Changes in Salinity Levels in the Waters of Coastal Lakes in Poland. Limnol. Rev. 2009, 9, 73–80. [Google Scholar]
- Obolewski, K.; Glińska-Lewczuk, K.; Szymańska, M.; Mrozińska, N.; Bąkowska, M.; Astel, A.; Lew, S.; Paturej, E. Patterns of Salinity Regime in Coastal Lakes Based on Structure of Benthic Invertebrates. PLoS ONE 2018, 13, e0207825. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, Y.; Wang, D.; Wu, H.; Lin, A.; He, L. Using principal components analysis and IDW interpolation to determine spatial and temporal changes of surface water quality of Xianjiang river in Huangshan, China. Int. J. Environ. Res. Public Health 2020, 17, 2942. [Google Scholar] [CrossRef]
- VanLandeghem, M.M.; Meyer, M.D.; Cox, S.B.; Sharma, B.; Patiño, R. Spatial and Temporal Patterns of Surface Water Quality and Ichthyotoxicity in Urban and Rural River Basins in Texas. Water Res. 2012, 46, 6638–6651. [Google Scholar] [CrossRef] [PubMed]
- Baalousha, M.; McNeal, S.; Scott, G.I. An Assessment of Nonpoint Source Pollution in Stormwater Pond Systems in Coastal South Carolina. Stormwater Ponds Coast. South Carol. 2019, 192. [Google Scholar]
- WBRZ-TV (News) Public File. Available online: https://www.wbrz.com/news/death-toll-rises-to-8-in-i-55-pileup-caused-by-super-fog-bridge-will-need-significant-repairs/ (accessed on 2 May 2024).
- Xu, R.; Lu, L.; Hu, Y.; Liu, S. Spatio-temporal characteristics of the impacts of land-use change on carbon emission: A case study of Hangzhou, China. In Proceedings of the 2023 11th International Conference on Agro-Geoinformatics, Wuhan, China, 25–28 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Gao, K.; Beardall, J.; Häder, D.P.; Hall-Spencer, J.M.; Gao, G.; Hutchins, D.A. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front. Mar. Sci. 2019, 6, 322. [Google Scholar] [CrossRef]
- Lv, Z.; Ran, X.; Liu, J.; Feng, Y.; Zhong, X.; Jiao, N. Effectiveness of Chemical Oxygen Demand as an Indicator of Organic Pollution in Aquatic Environments. Ocean.-Land-Atmos. Res. 2024, 3, 0050. [Google Scholar] [CrossRef]
- Bargu, S.; Hiatt, M.; Maiti, K.; Miller, P.; White, J.R. The Future of Cyanobacteria Toxicity in Estuaries Undergoing Pulsed Nutrient Inputs: A Case Study from Coastal Louisiana. Water 2023, 15, 3816. [Google Scholar] [CrossRef]
- Mance, G. Pollution Threat of Heavy Metals in Aquatic Environments; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Chigira, M.; Oyama, T. Mechanism and effect of chemical weathering of sedimentary rocks. Dev. Geotech. Eng. 2000, 84, 267–278. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, D.; Cai, Y.; Wang, X.; Zhang, L.; Chen, Y. Water quality assessment based on the water quality index method in Lake Poyang: The largest freshwater lake in China. Sci. Rep. 2017, 7, 17999. [Google Scholar] [CrossRef]
- USGS Coastal and Marine Geology Program USA, 2020–2030. Available online: https://pubs.usgs.gov/of/2002/of02-206/biology/pg71fig1.html (accessed on 25 April 2024).
- Wicke, D.; Cochrane, T.A.; O’Sullivan, A.D. Atmospheric deposition and storm induced runoff of heavy metals from different impermeable urban surfaces. J. Environ. Monit. 2012, 14, 209–216. [Google Scholar] [CrossRef]
- Huang, J.; Huang, Y.; Zhang, Z. Coupled Effects of Natural and Anthropogenic Controls on Seasonal and Spatial Variations of River Water Quality During Baseflow in a Coastal Watershed of Southeast China. PLoS ONE 2014, 9, e91528. [Google Scholar] [CrossRef]
- Dökmen, F. Temporal variation of biological oxygen demand (BOD), chemical oxygen demand (COD), and pH values in surface waters of Gölcük-Kocaeli, Turkey. Plants Pollut. Remed. 2015, 341–347. [Google Scholar] [CrossRef]
- Zou, D.; Chi, Y.; Dong, J.; Fu, C.; Wang, F.; Ni, M. Supercritical water oxidation of tannery sludge: Stabilization of chromium and destruction of organics. Chemosphere 2013, 93, 1413–1418. [Google Scholar] [CrossRef] [PubMed]
- Renaut, R.W.; Owen, R.B. Lake processes and sedimentation. In The Kenya Rift Lakes: Modern and Ancient: Limnology and Limnogeology of Tropical Lakes in a Continental Rift; Springer: Berlin/Heidelberg, Germany, 2023; pp. 129–160. [Google Scholar] [CrossRef]
- Hach Chemical Company. Oxygen Demand, Chemical Using Reactor Digestion Method; HACH 8000, 40 CFR 136.3(a), 2007. Available online: https://law.resource.org/pub/us/cfr/ibr/004/index.html (accessed on 28 April 2024).
- Hach Chemical Company. Persulfate Digestion Method; Method 10071, 2007. Available online: https://www.hach.com/asset-get.download.jsa?id=7639984837&srsltid=AfmBOopqI9kaeRsLjtGbV00M-3QS4NOopgLknfKU_SzVy6HmY3wyMaf0 (accessed on 28 April 2024).
- Hach Chemical Company. Salicylate Method; Method 10023, Nitrogen, Ammonia, 2007. Available online: https://ca.hach.com/nitrogen-ammonia-reagent-set-tnt-amver-salicylate-low-range/product-details?id=14533975510&srsltid=AfmBOopnj2izfds5futzZepshZhfo1yzPgcbysI8GJdrJXwbUHxaynh3 (accessed on 28 April 2024).
- USEPA. PhosVer® 3 with Acid Persulfate Digestion Method; Phosphorus, Total, Method 8190. Available online: https://www.hach.com/asset-get.download-en.jsa?id=7639983838&srsltid=AfmBOoqITSvmiv0zS9ozjDkWkwYY94-F1vWyKCgwC7fkXKnU79P3Jkp6 (accessed on 28 April 2024).
- Esri. How Inverse Distance Weighted Interpolation Works. 2024. Available online: https://help.supermap.com/iDesktopX/1101/en/tutorial/Analyst/Raster/interpolation/IDWinterpolation (accessed on 28 April 2024).
- Esri. Curve Fit Forecast (Space Time Pattern Mining). 2024. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/curvefitforecast.htm (accessed on 28 April 2024).
- Esri. How Exponential Smoothing Forecast Works. 2024. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoreexponentialsmoothingforecast.htm (accessed on 29 April 2024).
- Esri. Forest-Based and Boosted Classification and Regression (Spatial Statistics). 2024. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/forestbasedclassificationregression.htm (accessed on 29 April 2024).
- World Health Organization. WHO Guidelines for Drinking Water Quality, 3rd ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Sudha, R.; Sangeetha, T. Comparative study of water quality parameters of lake water (Chinna Eri) with surrounding bore well water samples, Thuraiyur (Tk), Tiruchirappalli (Dt), Tamil Nadu. Int. J. Curr. Res. Chem. Pharm. Sci. 2017, 4, 14–18. [Google Scholar]
- Abdul Hameed, M.; Jawad, A.; Haider, S.A.; Bahram, K.M. Application of water quality index for assessment of Dokan Lake ecosystem, Kurdistan region, Iraq. J. Water Resour. Prot. 2010, 2, 792–798. [Google Scholar]
- Tambekar, D.; Waghode, S.; Ingole, S.; Gulhane, S. Water quality index (WQI), analysis of the salinity-affected villages from Purna River basin of Vidarbha region. Nat. Environ. Pollut. Technol. 2008, 7, 707–711. [Google Scholar]
- Abate, B.; Woldesenbet, A.; Fitamo, D. Water quality assessment of Lake Hawassa for multiple designated water uses. Water Utility J. 2015, 9, 47–60. [Google Scholar]
- Puri, P.J.; Yenkie, M.K.N.; Battalwar, D.G.; Gandhare, N.V.; Dhanorkar, D.B. Study and interpretation of physico-chemical characteristics of lake water quality in Nagpur city (India). Rasayan J. Chem. 2010, 3, 800–810. [Google Scholar]
- Chapman, D.; Kimstach, V. Selection of water quality variables. In Water Quality Assessment: A Guide to the Use of Biota, Sediments, and Water in Environmental Monitoring, 2nd ed.; Chapman, D., Ed.; Taylor and Francis: London, UK; New York, NY, USA, 1996; p. 609. [Google Scholar]
- Worako, A.W. Physicochemical and biological water quality assessment of Lake Hawassa for multiple designated water uses. J. Urban Environ. Eng. 2015, 9, 146–157. [Google Scholar] [CrossRef]
- Mamdouh, S.M.; Abdel Samie, A.E.E.; Alaa, E.A.; Essam, A.M. Metal distribution in water and sediments of Lake Edku, Egypt. Egypt. Sci. Mag. 2004, 1, 13–22. [Google Scholar]
- Wu, J.; Xue, C.; Tian, R.; Wang, S. Lake water quality assessment: A case study of Shahu Lake in the semiarid loess area of northwest China. Environ. Earth Sci. 2017, 76, 1–15. [Google Scholar] [CrossRef]
- Edition, F. Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Pontius, F.W. Update on USEPA’s drinking water regulations. J. Am. Water Works Assoc. 2003, 95, 57–68. [Google Scholar] [CrossRef]
Parameter | Model | ND1 | ND2 | ND3 | ND4 | ND5 | D1 | D2 | D3 | D4 |
---|---|---|---|---|---|---|---|---|---|---|
COD | Forest-based | 9.16 | 6.58 | 7.87 | 5.16 | 8.39 | 10.47 | 9.69 | 7.87 | 8.64 |
LSTM1 | 7.06 | 8.44 | 6.39 | 3.22 | 4.83 | 10.83 | 7.90 | 7.18 | 14.48 | |
LSTM2 | 8.53 | 14.04 | 19.54 | 3.00 | 6.57 | 16.31 | 15.09 | 17.58 | 15.99 | |
LSTM3 | 7.62 | 8.29 | 5.23 | 3.32 | 5.00 | 10.93 | 8.21 | 7.53 | 13.46 | |
TN | Forest-based | 0.35 | 0.75 | 0.26 | 0.31 | 0.30 | 0.26 | 0.33 | 0.29 | 0.40 |
LSTM1 | 0.46 | 1.28 | 0.33 | 0.42 | 0.47 | 0.55 | 0.44 | 0.45 | 0.57 | |
LSTM2 | 0.52 | 1.48 | 0.47 | 0.63 | 0.57 | 0.55 | 0.46 | 0.61 | 0.68 | |
LSTM3 | 0.48 | 1.30 | 0.33 | 0.49 | 0.48 | 0.57 | 0.52 | 0.49 | 0.57 | |
TP | Forest-based | 0.11 | 0.11 | 0.10 | 0.09 | 0.08 | 0.10 | 0.08 | 0.07 | 0.08 |
LSTM1 | 0.12 | 0.44 | 0.17 | 0.15 | 0.07 | 0.11 | 0.08 | 0.12 | 0.15 | |
LSTM2 | 0.16 | 0.55 | 0.15 | 0.17 | 0.11 | 0.10 | 0.08 | 0.12 | 0.17 | |
LSTM3 | 0.13 | 0.44 | 0.18 | 0.15 | 0.09 | 0.11 | 0.08 | 0.12 | 0.16 | |
As | Forest-based | 0.11 | 0.11 | 0.09 | 0.07 | 0.11 | 0.12 | 0.08 | 0.09 | 0.08 |
LSTM1 | 0.21 | 0.17 | 0.13 | 0.11 | 0.15 | 0.17 | 0.08 | 0.07 | 0.14 | |
LSTM2 | 0.23 | 0.22 | 0.16 | 0.13 | 0.22 | 0.26 | 0.11 | 0.10 | 0.17 | |
LSTM3 | 0.22 | 0.20 | 0.16 | 0.13 | 0.18 | 0.18 | 0.10 | 0.09 | 0.16 | |
Pb | Forest-based | 0.10 | 0.09 | 0.08 | 0.07 | 0.08 | 0.07 | 0.07 | 0.06 | 0.08 |
LSTM1 | 0.15 | 0.14 | 0.28 | 0.11 | 0.13 | 0.11 | 0.11 | 0.10 | 0.12 | |
LSTM2 | 0.13 | 0.14 | 0.32 | 0.12 | 0.13 | 0.12 | 0.14 | 0.14 | 0.11 | |
LSTM3 | 0.15 | 0.14 | 0.28 | 0.12 | 0.12 | 0.10 | 0.12 | 0.10 | 0.12 |
Parameter | Model | F and p-Values | ND1 | ND2 | ND3 | ND4 | ND5 | D1 | D2 | D3 | D4 |
---|---|---|---|---|---|---|---|---|---|---|---|
COD | Forest- based | F value | 0.2005 | 2.8752 | 61.8143 | 0.4363 | 0.2932 | 1.4208 | 0.3859 | 0.4923 | 16.7613 |
Pr (>F) | 0.6775 | 0.1886 | 0.0043 | 0.5450 | 0.6169 | 0.2992 | 0.5681 | 0.5213 | 0.0264 | ||
LSTM 1 | F value | 0.6393 | 0.4677 | 0.3155 | 3.9862 | 2.6958 | 0.3473 | 0.3920 | 1.5783 | 0.9475 | |
Pr (>F) | 0.4301 | 0.4991 | 0.5783 | 0.0547 | 0.1107 | 0.5599 | 0.5358 | 0.2184 | 0.3379 | ||
LSTM 2 | F value | 0.5434 | 0.5831 | 0.0489 | 0.0127 | 0.0646 | 2.3692 | 2.8606 | 1.5204 | 0.0099 | |
Pr (>F) | 0.4671 | 0.4515 | 0.8266 | 0.9110 | 0.8013 | 0.1349 | 0.1019 | 0.2278 | 0.9213 | ||
LSTM 3 | F value | 1.2683 | 0.6405 | 0.0001 | 5.6714 | 0.5113 | 0.0047 | 0.2345 | 4.3179 | 2.3387 | |
Pr (>F) | 0.2685 | 0.4294 | 0.9932 | 0.0234 | 0.4798 | 0.9456 | 0.6315 | 0.0458 | 0.1360 | ||
TN | Forest- based | F value | 0.1011 | 0.1282 | 0.5759 | 8.4744 | 0.1895 | 0.0047 | 5.8859 | 0.7097 | 23.3348 |
Pr (>F) | 0.7714 | 0.7440 | 0.5031 | 0.1005 | 0.6928 | 0.9514 | 0.0937 | 0.4614 | 0.0403 | ||
LSTM 1 | F value | 0.3706 | 0.5218 | 0.0191 | 1.4282 | 0.2613 | 2.1600 | 0.9700 | 0.2058 | 2.2248 | |
Pr (>F) | 0.5471 | 0.4755 | 0.8909 | 0.2411 | 0.6128 | 0.1517 | 0.3323 | 0.6532 | 0.1459 | ||
LSTM 2 | F value | 0.4764 | 3.6569 | 0.3429 | 0.1239 | 0.21661 | 0.0228 | 1.1150 | 0.7148 | 0.0163 | |
Pr (>F) | 0.4958 | 0.0661 | 0.5628 | 0.7275 | 0.6452 | 0.7103 | 0.3000 | 0.4050 | 0.8994 | ||
LSTM 3 | F value | 0.0023 | 0.7467 | 1.0664 | 4.7402 | 3.3711 | 1.0762 | 0.5759 | 0.0007 | 0.1553 | |
Pr (>F) | 0.9622 | 0.3939 | 0.3095 | 0.0369 | 0.0757 | 0.3073 | 0.4535 | 0.9793 | 0.6962 | ||
TP | Forest- based | F value | 0.0000 | 0.2569 | 0.4794 | 0.4472 | 0.2624 | 0.2287 | 0.7738 | 0.8618 | 0.4584 |
Pr (>F) | 0.9977 | 0.6471 | 0.5385 | 0.5515 | 0.6438 | 0.6652 | 0.1473 | 0.4217 | 0.5682 | ||
LSTM 1 | F value | 0.3075 | 0.1713 | 0.0699 | 0.7581 | 0.4134 | 0.4632 | 1.0043 | 0.0255 | 0.5442 | |
Pr (>F) | 0.5832 | 0.6818 | 0.7933 | 0.3906 | 0.5249 | 0.5012 | 0.3240 | 0.8741 | 0.4663 | ||
LSTM 2 | F value | 2.0172 | 1.7078 | 0.8051 | 0.2195 | 0.4961 | 0.0300 | 0.9498 | 0.0108 | 0.3430 | |
Pr (>F) | 0.1666 | 0.2019 | 0.3772 | 0.6430 | 0.4870 | 0.8637 | 0.3381 | 0.9178 | 0.5628 | ||
LSTM 3 | F value | 4.2512 | 1.1093 | 0.1575 | 0.0372 | 0.5497 | 1.9807 | 0.5299 | 0.0085 | 0.3723 | |
Pr (>F) | 0.0474 | 0.3001 | 0.6941 | 0.8483 | 0.4638 | 0.1689 | 0.4719 | 0.9271 | 0.8188 | ||
As | Forest- based | F value | 0.7582 | 0.2916 | 0.8074 | 0.0829 | 0.1939 | 0.1632 | 2.7679 | 2.5531 | 0.5196 |
Pr (>F) | 0.4479 | 0.6433 | 0.4637 | 0.8005 | 0.6824 | 0.7254 | 0.1715 | 0.1853 | 0.5459 | ||
LSTM 1 | F value | 0.7546 | 0.8382 | 0.2249 | 1.0399 | 0.0270 | 0.4962 | 0.0134 | 0.0961 | 0.6305 | |
Pr (>F) | 0.3917 | 0.3669 | 0.6386 | 0.3157 | 0.8705 | 0.4864 | 0.9085 | 0.7587 | 0.4332 | ||
LSTM 2 | F value | 3.8779 | 0.0253 | 0.0946 | 0.0922 | 0.0401 | 0.1346 | 1.7021 | 0.3992 | 0.2219 | |
Pr (>F) | 0.0589 | 0.8747 | 0.7607 | 0.7637 | 0.8428 | 0.7165 | 0.2026 | 0.5326 | 0.6413 | ||
LSTM 3 | F value | 1.0432 | 1.4559 | 1.1519 | 0.6461 | 3.2017 | 1.1805 | 3.4113 | 0.0747 | 0.2046 | |
Pr (>F) | 0.3147 | 0.2364 | 0.2912 | 0.4274 | 0.0830 | 0.2854 | 0.0740 | 0.7863 | 0.6541 | ||
Pb | Forest- based | F value | 0.0000 | 0.0112 | 0.2753 | 0.5888 | 0.0013 | 0.3611 | 3.7738 | 0.7878 | 1.3885 |
Pr (>F) | 0.9992 | 0.9254 | 0.6361 | 0.2966 | 0.9733 | 0.6089 | 0.1473 | 0.4401 | 0.3236 | ||
LSTM 1 | F value | 4.4307 | 0.8902 | 0.5130 | 1.3805 | 0.5709 | 1.7543 | 0.5004 | 2.1109 | 2.8127 | |
Pr (>F) | 0.0435 | 0.3527 | 0.4792 | 0.2489 | 0.4556 | 0.1950 | 0.4846 | 0.1563 | 0.1036 | ||
LSTM 2 | F value | 0.7331 | 0.0758 | 1.3789 | 1.9274 | 6.8861 | 0.0842 | 0.2787 | 0.9618 | 0.8095 | |
Pr (>F) | 0.3991 | 0.7851 | 0.2502 | 0.1759 | 0.0139 | 0.7738 | 0.6017 | 0.3351 | 0.3759 | ||
LSTM 3 | F value | 3.2917 | 2.6514 | 1.5849 | 3.3234 | 1.6302 | 1.4932 | 0.6018 | 3.3923 | 1.1976 | |
Pr (>F) | 0.0790 | 0.1133 | 0.2172 | 0.0777 | 0.2109 | 0.2306 | 0.4436 | 0.0748 | 0.2819 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunawardhana, T.; Rahman, M.A.; LaCour, Z.; Erwin, E.; Emami, F. Spatial Pattern Assessment and Prediction of Water and Sedimentary Mud Quality Changes in Lake Maurepas. Environments 2024, 11, 268. https://doi.org/10.3390/environments11120268
Gunawardhana T, Rahman MA, LaCour Z, Erwin E, Emami F. Spatial Pattern Assessment and Prediction of Water and Sedimentary Mud Quality Changes in Lake Maurepas. Environments. 2024; 11(12):268. https://doi.org/10.3390/environments11120268
Chicago/Turabian StyleGunawardhana, Thilini, Md. Alinur Rahman, Zachary LaCour, Erin Erwin, and Fereshteh Emami. 2024. "Spatial Pattern Assessment and Prediction of Water and Sedimentary Mud Quality Changes in Lake Maurepas" Environments 11, no. 12: 268. https://doi.org/10.3390/environments11120268
APA StyleGunawardhana, T., Rahman, M. A., LaCour, Z., Erwin, E., & Emami, F. (2024). Spatial Pattern Assessment and Prediction of Water and Sedimentary Mud Quality Changes in Lake Maurepas. Environments, 11(12), 268. https://doi.org/10.3390/environments11120268