Assessment of Water and Soil Contamination and Land Cover Changes in the Spring Creek Bayou Watershed in Houston, Texas
Abstract
:1. Introduction
2. Methodology
2.1. Description of Study Areas
2.2. Data Collection and Analysis
3. Results
3.1. Land Cover Change Analysis
3.2. Socio-Economic Dynamics
4. Discussion
4.1. Heavy Metal Pollution of Water and Soil
4.2. Land Cover Change Analysis and Socio-Economic Dynamics
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statista. Degree of Urbanization in the United States from 1790 to 2020, and with Projections Until 2050. Available online: https://www.statista.com/statistics/269967/urbanization-in-the-united-states/#:~:text=Urbanization%20in%20the%20United%20States%201790%20to%202050&text=In%202020%2C%20about%2082.66%20percent,over%20the%20past%20two%20centuries (accessed on 21 June 2022).
- HRSA. Overview of the State Texas 2022. 2020. Available online: https://mchb.tvisdata.hrsa.gov/Narratives/Overview/afb91e01-7606-434b-9107-4d6cef2e3295 (accessed on 1 June 2023).
- Schaper, D. 3 Reasons Houston Was a ‘Sitting Duck’ for Harvey Flooding. 2017. Available online: https://www.npr.org/2017/08/31/547575113/three-reasons-houston-was-a-sitting-duck-for-harvey-flooding (accessed on 27 October 2024).
- Maruthi Sridhar, B.B.; Johnson, J.; Mosuro, A. Impact of land cover changes on the soil and water quality of Greens Bayou watershed. Water Air Soil Pollut. 2020, 231, 510. [Google Scholar] [CrossRef]
- Bukunmi-Omidiran, T.; Sridhar, B.B.M. Evaluation of spatial and temporal water and soil quality in the Buffalo and Brays Bayou watersheds of Houston, Texas. Remote Sens. Appl. Soc. Environ. 2021, 21, 100455. [Google Scholar] [CrossRef]
- Understanding Houston. Natural Disaster Risks in Houston. 2022. Available online: https://www.understandinghouston.org/topic/disasters/disaster-risks#history_of_disasters (accessed on 1 May 2023).
- Barakat, A.; Ouargaf, Z.; Khellouk, R.; El Jazouli, A.; Touhami, F. Land use/land cover change and environmental impact assessment in Beni-Mellal Districy (Morocco) using remote sensing and GIS. Earth Syst. Environ. 2019, 3, 113–125. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Ohara, T. Focus on land use cover changes and environmental impacts in South/Southeast Asia. Environ. Res. Lett. 2020, 15, 100201. [Google Scholar] [CrossRef]
- Wuana, R.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecol. 2011, 402647. [Google Scholar] [CrossRef]
- Chambers, L.G.; Chin, Y.P.; Filippelli, G.M.; Gardner, C.B.; Herndon, E.M.; Long, D.T.; Lyons, W.B.; Macpherson, G.L.; McElmurry, S.P.; McLean, C.E.; et al. Developing the scientific framework for urban geochemistry. Appl. Geochem. 2016, 67, 1–20. [Google Scholar] [CrossRef]
- Popov, M.; Michaelides, S.; Stankevich, S.; Kozlova, A.; Piestova, I.; Lubskiy, M.; Titarenko, O.; Svideniuk, M.; Andreiev, A.; Ivanov, S. Assessing long-term land cover changes in watershed by spatiotemporal fusion of classifications based on probability propagation: The case of Dniester river basin. Remote Sens. Appl. Soc. Environ 2021, 22, 100477. [Google Scholar] [CrossRef]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef]
- Winkler, K.; Fuchs, R.; Rounsevell, M.; Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 2021, 12, 2501. [Google Scholar] [CrossRef] [PubMed]
- Locke, K.A. Impacts of land use/land cover on water quality: A contemporary review for researchers and policymakers. Water Qual. Res. J. 2024, 59, 89–106. [Google Scholar] [CrossRef]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Change Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Richardson, K.; Steffen, W.; Lucht, W.; Bendtsen, J.; Cornell, S.E.; Donges, J.F.; Drüke, M.; Fetzer, I.; Bala, G.; von Bloh, W.; et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 2023, 9, eadh2458. [Google Scholar] [CrossRef]
- Carey, R.O.; Hochmuth, G.J.; Martinez, C.J.; Boyer, T.H.; Dukes, M.D.; Toor, G.S.; Cisar, J.L. Evaluating nutrient impacts in urban watersheds: Challenges and research Opportunities. Environ. Pollut. 2013, 173, 138–149. [Google Scholar] [CrossRef]
- Paul, M.J.; Meyer, J.L. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 2001, 32, 333–365. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Jiang, P.; Zhang, L. Linking land use with riverine water quality: A multi-spatial scale analysis relating to various riparian strips. Front. Environ. Sci. 2022, 10, 1013318. [Google Scholar] [CrossRef]
- Deng, L.; Li, W.; Liu, X.; Wang, Y.; Wang, L. Landscape patterns and topographic features affect seasonal river water quality at catchment and buffer scales. Remote Sens. 2023, 15, 1438. [Google Scholar] [CrossRef]
- Roldán-Arias, A.; García-Ávila, F.; Pesántez-Quintuña, K.; Cabello-Torres, R.; Valdiviezo-Gonzales, L. Spatiotemporal dynamics of a peri-urban stream water quality and its relationship with land use. Case Stud. Chem. Environ. Eng. 2023, 8, 100420. [Google Scholar] [CrossRef]
- DOEE. Why Is Stormwater a Problem? 2021. Available online: https://doee.dc.gov/service/why-stormwater-problem (accessed on 17 May 2023).
- Davis, F.R.; Bhaskar, M.S.B. Assessment of water, soil contamination and land cover changes in Sims and Vince Bayou urban watersheds of Houston, Texas. Watershed Ecol. Environ. 2022, 4, 73–85. [Google Scholar] [CrossRef]
- Fernandes, A.C.P.; de Oliveira Martins, L.M.; Pacheco, F.A.L.; Fernandes, L.F.S. The consequences for stream water quality of long-term changes in landscape patterns: Implications for land use management and policies. Land Use Policy 2021, 109, 105679. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, Y.; Zhang, H.; Cao, J.; Chen, J.; Su, C.; Chen, Y. The impact of land-use composition and landscape pattern on water quality at different spatial scales in the Dan River Basin, Qin Ling Mountains. Water 2023, 15, 3276. [Google Scholar] [CrossRef]
- OECD. Monitoring Land Cover Change. 2021. Available online: https://www.oecd.org/env/indicators-modelling-outlooks/brochure-land-cover-change.pdf (accessed on 12 July 2021).
- HCFCD. Find Your Watershed. 2020. Available online: https://www.hcfcd.org/Find-Your-Watershed/Spring-Creek (accessed on 5 May 2020).
- Spring Creek Watershed Partnership. Project Documents. Retrieved from Watershed Protection Plan. 2022. Available online: https://springcreekpartnership.weebly.com/uploads/1/3/0/7/130710643/scwpp_draft1_section2.pdf (accessed on 10 May 2023).
- EPA. The SW-846 Compendium. 2020. Available online: https://www.epa.gov/hw-sw846/sw-846-compendium (accessed on 21 July 2023).
- TCEQ. Texas Surface Water Quality Standards. 2018. Available online: https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/22txir/2022-guidance.pdf (accessed on 6 March 2023).
- EPA. Nutrient Pollution. 2021. Available online: https://www.epa.gov/nutrientpollution (accessed on 12 December 2023).
- Manson, S.; Schroeder, J.; Van Riper, D.; Kugler, T.; Ruggles, S. IPUMS National Historical Geographic Information System: Version 16.0. Minnesota Population Center, Minneapolis, Minnesota. 2021. Available online: https://www.ipums.org/projects/ipums-nhgis/d050.v16.0 (accessed on 1 June 2023).
- USGS. GLoVis. 2020. Available online: https://glovis.usgs.gov/app (accessed on 7 May 2023).
- Statista Research Department. Median Household Income in Texas from 1990 to 2020. 2024. Available online: https://www.statista.com/statistics/206013/median-household-income-in-texas/#:~:text=In%202020%2C%20the%20median%20household,amounted%20to%2067%2C444%20U.S.%20dollars (accessed on 7 October 2024).
- Medupin, C.; Bark, R.; Owusu, K. Land cover and water quality patterns in an urban river: A case study of river Medlock, Greater Manchester, UK. Water 2020, 12, 848. [Google Scholar] [CrossRef]
- Song, Y.; Song, X.; Shao, G.; Hu, T. Effects of land use on stream water quality in the rapidly urbanized areas: A multiscale analysis. Water 2020, 12, 1123. [Google Scholar] [CrossRef]
- Crooks, E.C.; Harris, I.M.; Patil, S.D. Influence of land use land cover on river water quality in Rural North Wales, UK. J. Am. Water Resour. Assoc. 2021, 57, 357–373. [Google Scholar] [CrossRef]
- Baltodano, A.; Agramont, A.; Reusen, I.; van Griensven, A. Land cover change and water quality: How remote sensing can help understand driver–impact relatins in the Lake Titicaca Basin. Water 2022, 14, 1021. [Google Scholar] [CrossRef]
- Abbas, A.W.; Minallh, N.; Ahmad, N.; Abid, S.A.R.; Khan, M.A.A. K-Means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh Univ. Res. J.-SURJ (Sci. Ser.) 2016, 48, 315–318. [Google Scholar]
Sensor | File Name | Acquisition Date | Path/Row |
---|---|---|---|
TM | LT50250391984342XXX02 | 7 December 1984 | 25/39 |
TM | LT50260391984333XXX08 | 28 November1984 | 26/39 |
TM | LT50250391994353XXX02 | 19 December1994 | 25/39 |
TM | LT50260391994008XXX01 | 8 January 1994 | 26/39 |
TM | LT50250392004349EDC00 | 14 December 2004 | 25/39 |
TM | LT50260392004052LGS01 | 21 February 2004 | 26/39 |
OLI | LC80250392014328LGN01 | 24 November 2014 | 25/39 |
OLI | LC80260392014287LGN01 | 14 October 2014 | 26/39 |
OLI | LC80250392020361LGN00 | 26 December 2020 | 25/39 |
OLI | LC80260392020336LGN00 | 1 December 2020 | 26/39 |
Class Name | NDVI Value | Description |
---|---|---|
Water | −1 to −0.1 | Water body |
Built-up area | −0.1 to 0.099 | No vegetation |
Low vegetation | 0.1 to 0.199 | Sparse vegetation |
Tree Stand | 0.2 to >1 | Dense vegetation |
Element | Media | SC3.4 | SC45.2 | SC88.6 | ALP | HHP | EPA | Plant | BG |
---|---|---|---|---|---|---|---|---|---|
Cd | water | BDL | 0.12 | 0.08 | 1.10 | 5 | − | − | − |
soil | 0.20 | 0.28 | 0.31 | − | − | − | 32 | 1 | |
Cr | water | BDL | BDL | 0.57 | 10.6 | 62 | − | − | − |
soil | 8.2 | 13.4 | 12.6 | − | − | − | 1 | 30 | |
Cu | water | BDL | 1.35 | 1.23 | 0.96 | − | − | − | − |
soil | 16.5 | 3.33 | 7.48 | − | − | − | 70 | 15 | |
Ni | water | BDL | BDL | 1.60 | 1.00 | 332 | − | − | − |
soil | 4.41 | 3.95 | 3.35 | − | − | − | 38 | 10 | |
Pb | water | BDL | BDL | 0.77 | 1.46 | 1.15 | − | − | − |
soil | 3.56 | 4.11 | 6.34 | − | − | − | 120 | 15 | |
Zn | water | 5.87 | 11.1 | 14.8 | 0.99 | − | − | − | − |
soil | 24.7 | 2.63 | 12.9 | − | − | − | 160 | 30 | |
P | water | 121 | 29.1 | 32.0 | − | − | 36.6 | − | − |
soil | 131 | 48.9 | 171 | − | − | − | − | − | |
TN | water | 539 | 816 | 2767 | − | − | 690 | − | − |
soil | 1092 | 323 | 1383 | − | − | − | − | − |
Land Cover Class | Land Cover Map 1984 | Land Cover Map 1994 | Land Cover Map 2004 | Land Cover Map 2014 | Land Cover Map 2020 | |||||
---|---|---|---|---|---|---|---|---|---|---|
PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | PA% | UA% | |
1 | 100% | 65% | 93% | 70% | 95% | 90% | 95% | 100% | 100% | 100% |
2 | 78% | 86% | 77% | 87% | 80% | 80% | 95% | 91% | 96% | 93% |
3 | 71% | 93% | 93% | 100% | 72% | 90% | 94% | 94% | 83% | 92% |
4 | 99% | 98% | 99% | 98% | 98% | 92% | 99% | 99% | 97% | 93% |
Overall Accuracy | 94% | 95% | 91% | 98% | 93% | |||||
Kappa Coefficient | 0.86 | 0.92 | 0.85 | 0.96 | 0.88 |
Land Cover Classes | 1984 Map | Total Area in 2020 | ||||
---|---|---|---|---|---|---|
Water | No Veg. | Low Veg. | High Veg. | |||
2020 Map | Water | 0.70 | 1.01 | 0.33 | 4.48 | 6.53 |
No veg. | 0.48 | 3.88 | 5.61 | 40.9 | 51.1 | |
Low veg. | 0.34 | 3.11 | 17.1 | 226.4 | 247.5 | |
High veg. | 0.22 | 2.26 | 19.5 | 669.1 | 691.9 | |
Total Area in 1984 | 1.77 | 10.3 | 42.8 | 943.1 | 997.0 | |
Area Change | 4.76 | 40.78 | 204.7 | −251.1 | ||
Area Change % | 269% | 397% | 479% | −27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, F.R.; Balaji Bhaskar, M.S. Assessment of Water and Soil Contamination and Land Cover Changes in the Spring Creek Bayou Watershed in Houston, Texas. Environments 2024, 11, 291. https://doi.org/10.3390/environments11120291
Davis FR, Balaji Bhaskar MS. Assessment of Water and Soil Contamination and Land Cover Changes in the Spring Creek Bayou Watershed in Houston, Texas. Environments. 2024; 11(12):291. https://doi.org/10.3390/environments11120291
Chicago/Turabian StyleDavis, Felica R., and Maruthi Sridhar Balaji Bhaskar. 2024. "Assessment of Water and Soil Contamination and Land Cover Changes in the Spring Creek Bayou Watershed in Houston, Texas" Environments 11, no. 12: 291. https://doi.org/10.3390/environments11120291
APA StyleDavis, F. R., & Balaji Bhaskar, M. S. (2024). Assessment of Water and Soil Contamination and Land Cover Changes in the Spring Creek Bayou Watershed in Houston, Texas. Environments, 11(12), 291. https://doi.org/10.3390/environments11120291