Long- and Mid-Term Trends in the Waterbird Community: Functional and Ecological Turnovers After Restoration of Freshwater and Brackish Habitats in a Mediterranean Coastal Wetland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Brackish Restored Wetland
2.3. Freshwater Restored Wetlands
2.4. Database and Community Dynamics Analysis
3. Results
4. Discussion
4.1. General Patterns
4.2. Communities Dynamics
4.3. Implications for Wetland Restoration in Coastal Environments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Borger, L.; Bennett, D.J.; Choimes, A.; Collen, B.; et al. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.M.; Chan, K.M.A.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef]
- Watling, J.I.; Arroyo-Rodríguez, V.; Pfeifer, M.; Baeten, L.; Banks-Leite, C.; Cisneros, L.M.; Fang, R.; Hamel-Leigue, A.C.; Lachat, T.; Leal, I.R.; et al. Support for the Habitat Amount Hypothesis from a Global Synthesis of Species Density Studies. Ecol. Lett. 2020, 23, 674–681. [Google Scholar] [CrossRef] [PubMed]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.W.; Fernandez-Manjarres, J.F.; Araujo, J.F.; Balvanera, P.; Biggs, R.; Cheung, W.W.L.; et al. Scenarios for Global Biodiversity in the 21st Century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef]
- Rands, M.R.W.; Adams, W.M.; Bennun, L.; Butchart, S.H.M.; Clements, A.; Coomes, D.; Entwistle, A.; Hodge, I.; Kapos, V.; Scharlemann, J.P.W.; et al. Biodiversity Conservation: Challenges Beyond 2010. Science 2010, 329, 1298–1303. [Google Scholar] [CrossRef]
- Ballut-Dajud, G.A.; Sandoval Herazo, L.C.; Fernández-Lambert, G.; Marín-Muñiz, J.L.; López-Méndez, M.C.; Betanzo-Torres, E.A. Factors affecting wetland loss: A review. Land 2022, 11, 434. [Google Scholar] [CrossRef]
- Fluet-Chouinard, E.; Stocker, B.D.; Zhang, Z.; Malhotra, A.; Melton, J.R.; Poulter, B.; Kaplan, J.O.; Goldewijk, K.K.; Siebert, S.; Minayeva, T.; et al. Extensive global wetland loss over the past three centuries. Nature 2023, 614, 281–286. [Google Scholar] [CrossRef]
- Mitsch, W.; Gosselink, J. Wetlands, 4th ed.; Wiley: New York, NY, USA, 2007. [Google Scholar]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Change 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Prigent, C.; Papa, F.; Aires, F.; Jimenez, C.; Rossow, W.B.; Matthews, E. Changes in Land Surface Water Dynamics since the 1990s and Relation to Population Pressure. Geophys. Res. Lett. 2012, 39, L08403. [Google Scholar] [CrossRef]
- Morris, J.T.; Sundareshwar, P.V.; Nietch, C.T.; Kjerfve, B.; Cahoon, D.R. Responses of coastal wetlands to rising sea level. Ecology 2002, 83, 2869–2877. [Google Scholar] [CrossRef]
- Davidson, N.C.; Fluet-Chouinard, E.; Finlayson, C.M. Global extent and distribution of wetlands: Trends and issues. Mar. Freshw. Res. 2018, 69, 620–627. [Google Scholar] [CrossRef]
- Dixon, M.J.R.; Loh, J.; Davidson, N.C.; Beltrame, C.; Freeman, R.; Walpole, M. Tracking global change in ecosystem area: The Wetland Extent Trends index. Biol. Conserv. 2016, 193, 27–35. [Google Scholar] [CrossRef]
- Sievers, M.; Hale, R.; Parris, K.M.; Swearer, S.E. Impacts of Human-Induced Environmental Change in Wetlands on Aquatic Animals. Biol. Rev. 2018, 93, 529–554. [Google Scholar] [CrossRef] [PubMed]
- Green, A.J.; Elmberg, J. Ecosystem services provided by waterbirds. Biol. Rev. 2014, 89, 105–122. [Google Scholar] [CrossRef]
- Henry, D.A.W.; Cumming, G.S. Spatial and environmental processes show temporal variation in the structuring of waterbird metacommunities. Ecosphere 2016, 7, e01451. [Google Scholar] [CrossRef]
- Wetlands International. Annex 1 to the 7th Edition of the AEWA Conservation Status Report. 2018. Available online: https://www.unep-aewa.org/en/document/aewa-conservation-status-report-7th-edition (accessed on 8 August 2024).
- Ma, Z.; Cai, Y.; Li, B.; Chen, J. Managing wetland habitats for waterbirds: An international perspective. Wetlands 2010, 30, 15–27. [Google Scholar] [CrossRef]
- Kačergytė, I.; Pärt, T.; Berg, Å.; Arlt, D.; Żmihorski, M.; Knape, J. Quantifying effects of wetland restorations on bird communities in agricultural landscapes. Biol. Conserv. 2022, 273, 109676. [Google Scholar] [CrossRef]
- Sebastián-González, E.; Green, A.J. Reduction of Avian Diversity in Created Versus Natural and Restored Wetlands. Ecography 2016, 39, 1176–1184. [Google Scholar] [CrossRef]
- Dias, M.P.; Lecoq, M.; Moniz, F.; Rabaça, J.E. Can human-made saltpans represent an alternative habitat for shorebirds? Implications for a predictable loss of estuarine sediment flats. Environ. Manag. 2014, 53, 163–171. [Google Scholar] [CrossRef]
- Almeida, B.; Sebastián-González, E.; dos Anjos, L.; Green, A.J. Comparing the diversity and composition of waterbird functional traits between natural, restored, and artificial wetlands. Freshw. Biol. 2020, 65, 2196–2210. [Google Scholar] [CrossRef]
- Fasola, M.; Cardarelli, E.; Ranghetti, L.; Boncompagni, E.; Pellitteri-Rosa, D.; Delle Monache, D.; Morganti, M. Changes in rice cultivation affect population trends of herons and egrets in Italy. Glob. Ecol. Conserv. 2022, 36, e02135. [Google Scholar] [CrossRef]
- Wang, X.; Li, X.; Ren, X.; Jackson, M.V.; Fuller, R.A.; Melville, D.S.; Amano, T.; Ma, Z. Effects of Anthropogenic Landscapes on Population Maintenance of Waterbirds. Conserv. Biol. 2022, 36, e13808. [Google Scholar] [CrossRef]
- Palmer, M.A.; Ambrose, R.F.; Poff, N.L. Ecological Theory and Community Restoration Ecology. Restor. Ecol. 1997, 5, 291–300. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Comín, F.A. Integrating objectives and scales for planning and implementing wetland restoration and creation in agricultural landscapes. J. Environ. Manag. 2010, 91, 2087–2095. [Google Scholar] [CrossRef]
- Adesoji, T.; Pearce, A. Interdisciplinary Perspectives on Green Infrastructure: A Systematic Exploration of Definitions and Their Origins. Environments 2024, 11, 8. [Google Scholar] [CrossRef]
- Verhoeven, J.T. Wetlands in Europe: Perspectives for Restoration of a Lost Paradise. Ecol. Eng. 2014, 66, 6–9. [Google Scholar] [CrossRef]
- Zedler, J.B.; Kercher, S. Wetland Resources: Status, Trends, Ecosystem Services, and Restorability. Annu. Rev. Environ. Resour. 2005, 30, 39–74. [Google Scholar] [CrossRef]
- Scholz, M.; Lee, B.H. Constructed Wetlands: A Review. Int. J. Environ. Stud. 2007, 62, 421–447. [Google Scholar] [CrossRef]
- Matchett, E.L.; Fleskes, J.P. Projected Impacts of Climate, Urbanization, Water Management, and Wetland Restoration on Waterbird Habitat in California’s Central Valley. PLoS ONE 2017, 12, e0169780. [Google Scholar] [CrossRef]
- Spieles, D.J. Wetland Construction, Restoration, and Integration: A Comparative Review. Land 2022, 11, 554. [Google Scholar] [CrossRef]
- Thiere, G.; Milenkovski, S.; Lindgren, P.E.; Sahlen, G.; Berglund, O.; Weisner, S.E.B. Wetland Creation in Agricultural Landscapes: Biodiversity Benefits on Local and Regional Scales. Biol. Conserv. 2009, 142, 964–973. [Google Scholar] [CrossRef]
- Zhao, Q.; Bai, J.; Huang, L.; Gu, B.; Lu, Q.; Gao, Z. A Review of Methodologies and Success Indicators for Coastal Wetland Restoration. Ecol. Indic. 2016, 60, 442–452. [Google Scholar] [CrossRef]
- Lehikoinen, A.; Rintala, J.; Lammi, E.; Pöysä, H. Habitat-specific population trajectories in boreal waterbirds: Alarming trends and bioindicators for wetlands. Anim. Conserv. 2016, 19, 88–95. [Google Scholar] [CrossRef]
- Pavón-Jordán, D.; Santangeli, A.; Lehikoinen, A. Effects of Flyway-Wide Weather Conditions and Breeding Habitat on the Breeding Abundance of Migratory Boreal Waterbirds. J. Avian Biol. 2017, 48, 988–996. [Google Scholar] [CrossRef]
- Almeida, B.; Sebastián-González, E.; dos Anjos, L.; Green, A.J.; Botella, F. A functional perspective for breeding and wintering waterbird communities: Temporal trends in species and trait diversity. Oikos 2019, 128, 1101–1115. [Google Scholar] [CrossRef]
- Francis, R.; Bino, G.; Inman, V.; Brandis, K.; Kingsford, R.T. The Okavango Delta’s waterbirds—Trends and threatening processes. Glob. Ecol. Conserv. 2021, 30, e01763. [Google Scholar] [CrossRef]
- van Roomen, M.; Laursen, K.; van Turnhout, C.; van Winden, E.; Blew, J.; Eskildsen, K.; Günther, K.; Hälterlein, B.; Kleefstra, R.; Potel, P.; et al. Signals from the Wadden Sea: Population Declines Dominate among Waterbirds Depending on Intertidal Mudflats. Ocean Coast. Manag. 2012, 68, 79–88. [Google Scholar] [CrossRef]
- Klein, D.; Cherkaoui, I.; Goedjart, P.W.; van der Hout, J.; Lammertsma, D. Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected wetlands. J. Appl. Ecol. 2014, 51, 289–298. [Google Scholar] [CrossRef]
- Gaget, E.; Le Viol, I.; Pavón-Jordán, D.; Cazalis, V.; Kerbiriou, C.; Jiguet, F.; Popoff, N.; Dami, L.; Mondain-Monval, Y.-Y.; Defos du Rau, P.; et al. Assessing the effectiveness of the Ramsar Convention in preserving wintering waterbirds in the Mediterranean. Biol. Conserv. 2020, 243, 108485. [Google Scholar] [CrossRef]
- Atkinson, P.W.; Austin, G.E.; Rehfisch, M.M.; Baker, H.; Cranswick, P.; Kershaw, M.; Robinson, J.; Langston, R.H.W.; Stroud, D.A.; van Turnhout, C.; et al. Identifying declines in waterbirds: The effects of missing data, population variability and count period on the interpretation of long-term survey data. Biol. Conserv. 2006, 130, 549–559. [Google Scholar] [CrossRef]
- Chevalier, M.; Russell, J.C.; Knape, J. New measures for evaluation of environmental perturbations using before-after-control-impact analyses. Ecol. Appl. 2019, 29, e01838. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.D.; Jørgensen, H.E.; Jeppesen, E.; Lauridsen, T.L.; Søndergaard, M.; Fugl, K.; Myssen, P.; Balsby, T.J.S.; Clausen, P. Relationships between breeding waterbird abundance, diversity, and clear water status after the restoration of two shallow nutrient-rich Danish lakes. Aquat. Conserv. Mar. Freshw. Ecosyst. 2020, 30, 237–245. [Google Scholar] [CrossRef]
- Oro, D. Living in a Ghetto within a Local Population: An Empirical Example of an Ideal Despotic Distribution. Ecology 2008, 89, 838–846. [Google Scholar] [CrossRef] [PubMed]
- Oro, D.; Pérez-Rodríguez, A.; Martínez-Vilalta, A.; Bertolero, A.; Vidal, F.; Genovart, M. Interference Competition in a Threatened Seabird Community: A Paradox for a Successful Conservation. Biol. Conserv. 2009, 142, 1830–1835. [Google Scholar] [CrossRef]
- Brambilla, M.; Rizzolli, F.; Franzoi, A.; Caldonazzi, M.; Zanghellini, S.; Pedrini, P. A network of small protected areas favoured generalist but not specialized wetland birds in a 30-year-period. Biol. Conserv. 2020, 248, 108699. [Google Scholar] [CrossRef]
- Lotze, H.K.; Lenihan, H.S.; Bourque, B.J.; Bradbury, R.H.; Cooke, R.G.; Kay, M.C.; Kidwell, S.M.; Kirby, M.X.; Peterson, C.H.; Jackson, J.B.C. Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 2006, 312, 1806–1809. [Google Scholar] [CrossRef]
- Bradshaw, C.J.A.; Brook, B.W. Human population reduction is not a quick fix for environmental problems. Proc. Natl. Acad. Sci. USA 2014, 111, 1661015. [Google Scholar] [CrossRef]
- MWO (Mediterranean Wetlands Observatory). Mediterranean Wetlands Outlook 2: Solutions for Sustainable Mediterranean Wetlands; Tour du Valat/MedWet: Arles, France, 2018. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef]
- Soria, J.M. Past, Present and Future of La Albufera of Valencia Natural Park. Limnetica 2006, 25, 135–142. [Google Scholar] [CrossRef]
- Romo, S.; Villena, M.J.; Sahuquillo, M.; Soria, J.M.; Giménez, M.; Alfonso, T.; Vicente, E.; Miracle, M.R. Response of a Shallow Mediterranean Lake to Nutrient Diversion: Does It Follow Similar Patterns as in Northern Shallow Lakes? Freshw. Biol. 2005, 50, 1706–1717. [Google Scholar] [CrossRef]
- Rodrigo, M.A.; Rojo, C.; Alonso-Guillén, J.L.; Vera, P. Restoration of Two Small Mediterranean Lagoons: The Dynamics of Submerged Macrophytes and Factors That Affect the Success of Revegetation. Ecol. Eng. 2013, 45, 1–15. [Google Scholar] [CrossRef]
- Martín, M.; Oliver, N.; Hernández-Crespo, C.; Gargallo, S.; Regidor, M.C. The use of free water surface constructed wetland to treat the eutrophicated waters of lake L’Albufera de Valencia (Spain). Ecol. Eng. 2013, 50, 52–61. [Google Scholar] [CrossRef]
- Carabal, N.; Cardoso, L.S.; Padisák, J.; Selmeczy, G.B.; Puche, E.; Rodrigo, M.A. How a constructed wetland within a natural park enhances plankton communities after more than 10 years of operation: Changes over space and time. Environ. Res. 2024, 263, 120114. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, M.A.; Segura, M. Plankton Participation in the Performance of Three Constructed Wetlands within a Mediterranean Natural Park. Sci. Total Environ. 2020, 721, 137766. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Crespo, C.; Gargallo, S.; Benedito-Durá, V.; Nácher-Rodríguez, B.; Rodrigo-Alacreu, M.A.; Martín, M. Performance of surface and subsurface flow constructed wetlands treating eutrophic waters. Sci. Total Environ. 2017, 595, 584–593. [Google Scholar] [CrossRef] [PubMed]
- Billerman, S.M.; Keeney, B.K.; Rodewald, P.G.; Schulenberg, T.S. (Eds.) Birds of the World; Cornell Laboratory of Ornithology: Ithaca, NY, USA, 2022. [Google Scholar]
- Brzeziński, M.; Żmihorski, M.; Nieoczym, M.; Wilniewczyc, P.; Zalewski, A. The expansion wave of an invasive predator leaves declining waterbird populations behind. Divers. Distrib. 2020, 26, 138–150. [Google Scholar] [CrossRef]
- Cormont, A.; Vos, C.C.; van Turnhout, C.A.M.; Foppen, R.P.B.; ter Braak, C.J.F. Using life-history traits to explain bird population responses to changing weather variability. Clim. Res. 2011, 49, 59–71. [Google Scholar] [CrossRef]
- Julliard, R.; Clavel, J.; Devictor, V.; Jiguet, F.; Couvet, D. Spatial segregation of specialists and generalists in bird communities. Ecol. Lett. 2006, 9, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Wood, S.N. Fast Stable Restricted Maximum Likelihood and Marginal Likelihood Estimation of Semiparametric Generalized Linear Models. J. R. Stat. Soc. B 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Holopainen, S.; Čehovská, M.; Jaatinen, K.; Laaksonen, T.; Lindén, A.; Nummi, P.; Piha, M.; Pöysä, H.; Toivanen, T.; Väänänen, V.-M.; et al. A rapid increase of large-sized waterfowl does not explain the population declines of small-sized waterbirds at their breeding sites. Glob. Ecol. Conserv. 2022, 36, e02144. [Google Scholar] [CrossRef]
- Ramírez, F.; Rodríguez, C.; Seoane, J.; Figuerola, J.; Bustamante, J. How Will Climate Change Affect Endangered Mediterranean Waterbirds? PLoS ONE 2018, 13, e0192702. [Google Scholar] [CrossRef]
- Bogaart, P. rtrim: Trends and Indices for Monitoring Data. R Package Version 2.3.0. 2016. Available online: https://cran.r-project.org/web/packages/rtrim/index.html (accessed on 8 August 2024). [CrossRef]
- Pannekoek, J.; van Strien, A. TRIM: TRends & Indices for Monitoring Data; Statistics Netherlands: Voorburg, The Netherlands, 1996. [Google Scholar]
- Martínez-Abraín, A.; Jiménez, J.; Gómez, J.A.; Oro, D. Differential waterbirds population dynamics after long-term protection: The influence of diet and habitat type. Ardeola 2016, 63, 79–101. [Google Scholar] [CrossRef]
- Sibly, R.M.; Hone, J. Population Growth Rate and Its Determinants: An Overview. Philos. Trans. R. Soc. Lond. B 2002, 357, 1153–1170. [Google Scholar] [CrossRef]
- van Buuren, S.; Groothuis-Oudshoorn, K. MICE: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Grassi, K.; Poisson-Caillault, É.; Bigand, A.; Lefebvre, A. Comparative Study of Clustering Approaches Applied to Spatial or Temporal Pattern Discovery. J. Mar. Sci. Eng. 2020, 8, 713. [Google Scholar] [CrossRef]
- Maechler, M.; Rousseeuw, P.; Struyf, A.; Hubert, M.; Hornik, K. cluster: Cluster Analysis Basics and Extensions; R Package Version 2.1.6. 2023. Available online: https://cran.r-project.org/web/packages/cluster/citation.html (accessed on 8 August 2024).
- Oro, D.; Ruxton, G.D. The Formation and Growth of Seabird Colonies: Audouin’s Gull as a Case Study. J. Anim. Ecol. 2001, 70, 527–535. [Google Scholar] [CrossRef]
- Rey Benayas, J.M.; Newton, A.C.; Díaz, A.; Bullock, J.M. Enhancement of Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-Analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef] [PubMed]
- Meli, P.; Rey Benayas, J.M.; Balvanera, P.; Martínez Ramos, M. Restoration Enhances Wetland Biodiversity and Ecosystem Service Supply, but Results Are Context-Dependent: A Meta-Analysis. PLoS ONE 2014, 9, e93507. [Google Scholar] [CrossRef]
- Li, D.; Chen, S.; Lloyd, H.; Zhu, S.; Shan, K.; Zhang, Z. The importance of artificial habitats to migratory waterbirds within a natural/artificial wetland mosaic, Yellow River Delta, China. Bird Conserv. Int. 2013, 23, 184–198. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Wu, W.; Chen, W.; Ma, Q.; Ma, Z. Function of restored wetlands for waterbird conservation in the Yellow Sea coast. Sci. Total Environ. 2021, 756, 144061. [Google Scholar] [CrossRef] [PubMed]
- Sadoul, N. The Importance of Spatial Scales in Long-Term Monitoring of Colonial Charadriformes in Southern France. Colon. Waterbirds 1997, 20, 330–338. [Google Scholar] [CrossRef]
- Sadoul, N.; Johnson, A.R.; Walmsley, J.; Levéque, R. Changes in the Numbers and the Distribution of Colonial Charadriiformes Breeding in the Camargue, Southern France. Colon. Waterbirds 1996, 19, 46–58. [Google Scholar] [CrossRef]
- Fasola, M.; Canova, L. Nest habitat selection by eight syntopic species of Mediterranean Gulls and Terns. Colon. Waterbirds 1992, 15, 169–291. [Google Scholar] [CrossRef]
- Oro, D. Interspecific Kleptoparasitism in Audouin’s Gull Larus audouinii at the Ebro Delta, Northeast Spain: A Behavioural Response to Low Food Availability. Ibis 1996, 138, 218–221. [Google Scholar] [CrossRef]
- Martínez-Abraín, A.; González-Solis, J.; Pedrocchi, V.; Genovart, M.; Abella, J.C.; Ruiz, X.; Jiménez, J.; Oro, D. Kleptoparasitism, disturbance and predation of yellow-legged gulls on Audouin’s gulls in three colonies of the western Mediterranean. Sci. Mar. 2003, 67, 89–94. [Google Scholar] [CrossRef]
- Tavecchia, G.; Pradel, R.; Genovart, M.; Oro, D. Density-Dependent Parameters and Demographic Equilibrium in Open Populations. Oikos 2007, 116, 1481–1492. [Google Scholar] [CrossRef]
- Almaraz, P.; Oro, D. Size-mediated non-trophic interactions and stochastic predation drive assembly and dynamics in a seabird community. Ecology 2010, 92, 1948–1958. [Google Scholar] [CrossRef]
- Brown, W.P. Body mass, habitat generality, and avian community composition in forest remnants. J. Biogeogr. 2007, 34, 2168–2181. [Google Scholar] [CrossRef]
- Cassazza, M.L.; McDuie, F.; Jones, S.; Lorenz, A.A.; Overton, C.T.; Yee, J.; Feldheim, C.L.; Ackerman, J.T.; Thorne, K.M. Waterfowl use of wetland habitats informs wetland restoration designs for multi-species benefits. J. Appl. Ecol. 2021, 58, 1910–1920. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, S.; Zou, Y.; Wu, T.; Li, F.; Deng, Z.; Zhang, H.; Song, Y.; Xie, Y. Integrating Suitable Habitat Dynamics under Typical Hydrological Regimes as Guides for the Conservation and Restoration of Different Waterbird Groups. J. Environ. Manag. 2023, 345, 118451. [Google Scholar] [CrossRef]
- Gutiérrez, J.S. Living in environments with contrasting salinities: A review of physiological and behavioural responses in waterbirds. Ardeola 2014, 61, 233–256. [Google Scholar] [CrossRef]
- Bidwell, M.T.; Green, A.J.; Clark, R.G. Random placement models predict species-area relationships in duck communities despite species aggregation. Oikos 2014, 123, 1499–1508. [Google Scholar] [CrossRef]
- Sebastián-González, E.; Green, A.J. Phylogenetic Relatedness of Co-Occurring Waterbird Communities: A Test of Darwin’s Competition-Relatedness Hypothesis. J. Avian Biol. 2017, 48, 1372–1382. [Google Scholar] [CrossRef]
- Gippoliti, S.; Battisti, C. More cool than tool: Equivoques, conceptual traps and weaknesses of ecological networks in environmental planning and conservation. Land Use Policy 2017, 68, 686–691. [Google Scholar] [CrossRef]
- Whited, D.; Galatowitsch, S.; Tester, J.R.; Schik, K.; Lehtinen, R.; Husveth, J. The Importance of Local and Regional Factors in Predicting Effective Conservation: Planning Strategies for Wetland Bird Communities in Agricultural and Urban Landscapes. Landsc. Urban Plan. 2000, 49, 49–65. [Google Scholar] [CrossRef]
- Cantú-Salazar, L.; Gaston, K.J. Very Large Protected Areas and Their Contribution to Terrestrial Biological Conservation. BioScience 2010, 60, 808–818. [Google Scholar] [CrossRef]
- Thomas, C.D. Dispersal and Extinction in Fragmented Landscapes. Proc. R. Soc. Lond. B Biol. Sci. 2000, 267, 139–154. [Google Scholar] [CrossRef]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 275–303. [Google Scholar] [CrossRef]
- Cerda-Peña, C.; Rau, J.R. The importance of wetland habitat area for waterbird species-richness. Ibis 2023, 165, 739–752. [Google Scholar] [CrossRef]
- De Wit, R.; Boutin, N. European LIFE Projects Dedicated to Ecological Restoration in Mediterranean and Black Sea Coastal Lagoons. Environments 2023, 10, 101. [Google Scholar] [CrossRef]
- Hansson, L.-A.; Brönmark, C.; Nilsson, P.A.; Abjörsson, K. Conflicting demands on wetland ecosystem services: Nutrient retention, biodiversity or both? Freshw. Biol. 2005, 50, 705–714. [Google Scholar] [CrossRef]
- Moreno-Mateos, D.; Power, M.E.; Comín, F.A.; Yockteng, R. Structural and functional loss in restored wetland ecosystems. PLoS ONE 2012, 10, e1001247. [Google Scholar] [CrossRef] [PubMed]
- Wiegleb, G.; Dahms, H.; Byeon, W.I.; Choi, G. To What Extent Can Constructed Wetlands Enhance Biodiversity? Int. J. Environ. Sci. Dev. 2017, 8, 561–569. [Google Scholar] [CrossRef]
- Qiu, J.; Zhang, Y.; Ma, J. Wetland Habitats Supporting Waterbird Diversity: Conservation Perspective on Biodiversity-Ecosystem Functioning Relationship. J. Environ. Manag. 2024, 357, 120663. [Google Scholar] [CrossRef] [PubMed]
- Crouchamp, F.; Woodroffe, R.; Roemer, G.W. Removing protected populations to save endangered species. Science 2003, 302, 1352. [Google Scholar] [CrossRef] [PubMed]
- Brzeziński, M.; Natorff, M.; Zalewski, A.; Żmihorski, M. Numerical and behavioral responses of waterfowl to the invasive American mink: A conservation paradox. Biol. Conserv. 2012, 147, 68–78. [Google Scholar] [CrossRef]
- Stocco, A.; Pravoni, F. The Paradoxical Need for Human Intervention in the Conservation of Natural Environments in Venice Lagoon. Sci. Rep. 2023, 13, 6798. [Google Scholar] [CrossRef] [PubMed]
Scientific Name | English Name | Site | Period | Slope | S.E. | p |
---|---|---|---|---|---|---|
Podiceps cristatus | Great crested grebe | FW | MT | 1.277 | 0.107 | 0.011 |
Tachybaptus ruficollis | Little grebe | FW | MT | 1.201 | 0.086 | 0.022 |
RA | MT | 0.920 | 0.022 | 0.003 | ||
RA | LT | 0.941 | 0.012 | <0.001 | ||
Ardea purpurea * | Purple heron | FW | ST | 1.887 | 0.467 | 0.033 |
FW | MT | 1.480 | 0.173 | 0.005 | ||
Ixobrychus minutus * | Little bittern | FW | ST | 1.507 | 0.265 | 0.048 |
FW | MT | 1.200 | 0.086 | 0.023 | ||
Anas platyrhynchos | Mallard | RA | ST | 1.064 | 0.028 | 0.047 |
RA | LT | 1.068 | 0.004 | <0.001 | ||
RA | MT | 1.146 | 0.009 | <0.001 | ||
Aythya ferina | Common pochard | RA | ST | 1.903 | 0.456 | 0.028 |
RA | MT | 1.232 | 0.092 | 0.002 | ||
RA | LT | 1.102 | 0.035 | 0.005 | ||
Netta rufina | Red-crested pochard | RA | ST | 0.896 | 0.029 | 0.010 |
RA | MT | 0.933 | 0.012 | <0.001 | ||
RA | LT | 0.921 | 0.009 | <0.001 | ||
Tadorna tadorna | Common shelduck | RA | MT | 1.264 | 0.113 | 0.017 |
RA | LT | 1.225 | 0.054 | <0.001 | ||
Fulica atra | Common coot | FW | MT | 1.202 | 0.085 | 0.021 |
RA | MT | 0.933 | 0.018 | 0.002 | ||
RA | LT | 0.937 | 0.120 | <0.001 | ||
Porphyrio porphyrio * | Purple swamphen | FW | MT | 1.236 | 0.088 | 0.010 |
Charadrius alexandrinus * | Kentish plover | RA | ST | 0.856 | 0.030 | 0.002 |
RA | LT | 0.801 | 0.034 | <0.001 | ||
RA | MT | 0.698 | 0.059 | <0.001 | ||
Charadrius dubius | Ringed plover | RA | LT | 0.885 | 0.041 | 0.014 |
RA | MT | 0.794 | 0.065 | 0.011 | ||
Chroicocephalus genei * | Slender-billed gull | RA | ST | 1.892 | 0.340 | 0.007 |
RA | MT | 1.345 | 0.065 | <0.001 | ||
RA | LT | 1.072 | 0.023 | 0.003 | ||
Chroicocephalus ridibundus | Black-headed gull | RA | ST | 1.418 | 0.021 | <0.001 |
RA | MT | 1.228 | 0.006 | <0.001 | ||
RA | LT | 1.091 | 0.002 | <0.001 | ||
Gelochelidon nilotica * | Gull-billed tern | RA | ST | 1.899 | 0.328 | 0.006 |
RA | MT | 1.266 | 0.057 | <0.001 | ||
RA | LT | 1.106 | 0.021 | <0.001 | ||
Glareola pratincola * | Collared pratincole | RA | ST | 0.911 | 0.036 | 0.046 |
RA | LT | 0.823 | 0.035 | <0.001 | ||
RA | MT | 0.792 | 0.060 | 0.006 | ||
Himantopus himantopus * | Black-winged stilt | RA | ST | 0.819 | 0.012 | <0.001 |
RA | MT | 0.919 | 0.005 | <0.001 | ||
RA | LT | 0.962 | 0.003 | <0.001 | ||
Ichthyaetus melanocephalus * | Mediterranean gull | RA | MT | 1.654 | 0.413 | <0.001 |
RA | LT | 1.428 | 0.061 | <0.001 | ||
Recurvirostra avosetta * | Pied avocet | RA | ST | 1.379 | 0.040 | <0.001 |
RA | MT | 1.089 | 0.010 | <0.001 | ||
RA | LT | 1.034 | 0.004 | <0.001 | ||
Sternula albifrons * | Little tern | FW | MT | 0.724 | 0.101 | 0.036 |
RA | ST | 0.773 | 0.016 | <0.001 | ||
RA | LT | 0.801 | 0.031 | <0.001 | ||
Sterna hirundo * | Common tern | RA | ST | 1.136 | 0.004 | <0.001 |
RA | MT | 1.023 | 0.001 | <0.001 | ||
RA | LT | 0.945 | 0.001 | <0.001 | ||
Thalasseus sandvicensis * | Sandwich tern | RA | ST | 1.725 | 0.049 | <0.001 |
RA | MT | 1.210 | 0.009 | <0.001 | ||
RA | LT | 1.046 | 0.003 | <0.001 |
Group | Site | Period | Slope | S.E. | p |
---|---|---|---|---|---|
Species not listed in Annex I Bird Directive | FW | ST | 1.124 | 0.019 | <0.001 |
FW | MT | 1.068 | 0.008 | <0.001 | |
RA | ST | 1.248 | 0.011 | <0.001 | |
RA | MT | 1.180 | 0.003 | <0.001 | |
RA | LT | 1.098 | 0.001 | <0.001 | |
RA | MT | 1.180 | 0.003 | <0.001 | |
Species listed in Annex I Bird Directive | RA | ST | 1.169 | 0.003 | <0.001 |
RA | LT | 0.994 | 0.001 | <0.001 | |
FW | MT | 1.037 | 0.009 | <0.001 | |
RA | MT | 1.061 | 0.001 | <0.001 | |
Ground nesters | RA | ST | 1.179 | 0.003 | <0.001 |
RA | LT | 1.015 | 0.001 | <0.001 | |
FW | MT | 0.783 | 0.063 | 0.009 | |
RA | MT | 1.077 | 0.001 | <0.001 | |
Reedbed nesters | FW | ST | 1.201 | 0.010 | <0.001 |
RA | LT | 1.024 | 0.002 | <0.001 | |
FW | MT | 1.109 | 0.009 | <0.001 | |
RA | MT | 1.066 | 0.005 | <0.001 | |
Dabbling ducks | RA | ST | 1.078 | 0.022 | 0.005 |
RA | LT | 1.066 | 0.004 | <0.001 | |
Diving ducks | RA | LT | 0.984 | 0.005 | 0.003 |
Diving fishers | RA | ST | 1.161 | 0.002 | <0.001 |
RA | LT | 0.978 | 0.001 | <0.001 | |
Surface fishers | RA | ST | 1.493 | 0.040 | <0.001 |
RA | LT | 1.081 | 0.004 | <0.001 | |
Large wader birds | FW | ST | 1.600 | 0.280 | 0.028 |
Small wader birds | RA | ST | 0.937 | 0.007 | <0.001 |
RA | LT | 0.974 | 0.002 | <0.001 | |
Opportunistic gulls | RA | ST | 1.409 | 0.018 | <0.001 |
RA | LT | 1.124 | 0.002 | <0.001 | |
Vegetation gleaners | FW | ST | 1.516 | 0.263 | 0.043 |
RA | MT | 0.948 | 0.015 | 0.004 | |
RA | LT | 0.947 | 0.010 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vera, P.; Dies, J.I.; Ferrís, D.; Valentín, A. Long- and Mid-Term Trends in the Waterbird Community: Functional and Ecological Turnovers After Restoration of Freshwater and Brackish Habitats in a Mediterranean Coastal Wetland. Environments 2024, 11, 298. https://doi.org/10.3390/environments11120298
Vera P, Dies JI, Ferrís D, Valentín A. Long- and Mid-Term Trends in the Waterbird Community: Functional and Ecological Turnovers After Restoration of Freshwater and Brackish Habitats in a Mediterranean Coastal Wetland. Environments. 2024; 11(12):298. https://doi.org/10.3390/environments11120298
Chicago/Turabian StyleVera, Pablo, José Ignacio Dies, Diana Ferrís, and Anna Valentín. 2024. "Long- and Mid-Term Trends in the Waterbird Community: Functional and Ecological Turnovers After Restoration of Freshwater and Brackish Habitats in a Mediterranean Coastal Wetland" Environments 11, no. 12: 298. https://doi.org/10.3390/environments11120298
APA StyleVera, P., Dies, J. I., Ferrís, D., & Valentín, A. (2024). Long- and Mid-Term Trends in the Waterbird Community: Functional and Ecological Turnovers After Restoration of Freshwater and Brackish Habitats in a Mediterranean Coastal Wetland. Environments, 11(12), 298. https://doi.org/10.3390/environments11120298