Heavy Metals in Pyrolysis of Contaminated Wastes: Phase Distribution and Leaching Behaviour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Organic Waste Feedstocks
2.3. Pyrolysis Technology and Operational Conditions
2.4. Solids Sampling
2.5. Flue-Gas Sampling
2.6. Chemical and Structural Characterization
2.7. Leaching Tests
2.8. Data Analysis
3. Results and Discussion
3.1. Heavy Metals in Waste Feedstocks
3.2. Biochar Characteristics
3.3. Heavy Metals in Waste Biochars
3.4. Heavy Metals in Pyrolysis Condensate
3.5. Heavy Metal Emission Factors
3.6. Mass Balance for Heavy Metals in the Pyrolysis Process
3.7. Mobility of Heavy Metals in Biochars
3.8. Potential Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beesley, L.; Moreno-Jiménez, E.; Fellet, G.; Melo, L.; Sizmur, T. Biochar and Heavy Metals. In Biochar for Evnironmental Management: Science, Technology and Implementation; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation, 2nd ed.; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Li, L.; Zou, D.; Xiao, Z.; Zeng, X.; Zhang, L.; Jiang, L.; Wang, A.; Ge, D.; Zhang, G.; Liu, F. Biochar as a Sorbent for Emerging Contaminants Enables Improvements in Waste Management and Sustainable Resource Use. J. Clean. Prod. 2019, 210, 1324–1342. [Google Scholar] [CrossRef]
- Xiao, X.; Chen, B.; Chen, Z.; Zhu, L.; Schnoor, J.L. Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environ. Sci. Technol. 2018, 52, 5027–5047. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Timms, W.; Mahmud, M.A.P. Optimising Water Holding Capacity and Hydrophobicity of Biochar for Soil Amendment—A Review. Sci. Total Environ. 2022, 851, 158043. [Google Scholar] [CrossRef] [PubMed]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Børresen, T. In Situ Effects of Biochar on Aggregation, Water Retention and Porosity in Light-Textured Tropical Soils. Soil Tillage Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar Elemental Composition and Factors Influencing Nutrient Retention. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: New York, NY, USA, 2015. [Google Scholar]
- Hale, S.E.; Nurida, N.L.; Jubaedah; Mulder, J.; Sørmo, E.; Silvani, L.; Abiven, S.; Joseph, S.; Taherymoosavi, S.; Cornelissen, G. The Effect of Biochar, Lime and Ash on Maize Yield in a Long-Term Field Trial in a Ultisol in the Humid Tropics. Sci. Total Environ. 2020, 719, 137455. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.-P.; Anca-Couce, A.; Hagemann, N.; Werner, C.; Gerten, D.; Lucht, W.; Kammann, C. Pyrogenic Carbon Capture and Storage. GCB Bioenergy 2019, 11, 573–591. [Google Scholar] [CrossRef]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Alhashimi, H.A.; Aktas, C.B. Life Cycle Environmental and Economic Performance of Biochar Compared with Activated Carbon: A Meta-Analysis. Resour. Conserv. Recycl. 2017, 118, 13–26. [Google Scholar] [CrossRef]
- Hale, S.E.; Arp, H.P.H.; Kupryianchyk, D.; Cornelissen, G. A Synthesis of Parameters Related to the Binding of Neutral Organic Compounds to Charcoal. Chemosphere 2016, 144, 65–74. [Google Scholar] [CrossRef]
- Krahn, K.M.; Cornelissen, G.; Castro, G.; Arp, H.P.H.; Asimakopoulos, A.G.; Wolf, R.; Holmstad, R.; Zimmerman, A.R.; Sørmo, E. Sewage Sludge Biochars as Effective PFAS-Sorbents. J. Hazard. Mater. 2023, 445, 130449. [Google Scholar] [CrossRef]
- Gupta, S.; Kua, H.W. Carbonaceous Micro-Filler for Cement: Effect of Particle Size and Dosage of Biochar on Fresh and Hardened Properties of Cement Mortar. Sci. Total Environ. 2019, 662, 952–962. [Google Scholar] [CrossRef] [PubMed]
- Ritter, S.; Paniagua, P.; Hansen, C.B.; Cornelissen, G. Biochar Amendment for Improved and More Sustainable Peat Stabilisation. Proc. Inst. Civ. Eng. Ground Improv. 2022, 177, 129–140. [Google Scholar] [CrossRef]
- Ye, L.; Peng, Z.; Wang, L.; Anzulevich, A.; Bychkov, I.; Kalganov, D.; Tang, H.; Rao, M.; Li, G.; Jiang, T. Use of Biochar for Sustainable Ferrous Metallurgy. JOM 2019, 71, 3931–3940. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A Review on Pyrolysis of Plastic Wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Barry, D.; Barbiero, C.; Briens, C.; Berruti, F. Pyrolysis as an Economical and Ecological Treatment Option for Municipal Sewage Sludge. Biomass Bioenergy 2019, 122, 472–480. [Google Scholar] [CrossRef]
- Devi, P.; Saroha, A.K. Risk Analysis of Pyrolyzed Biochar Made from Paper Mill Effluent Treatment Plant Sludge for Bioavailability and Eco-Toxicity of Heavy Metals. Bioresour. Technol. 2014, 162, 308–315. [Google Scholar] [CrossRef]
- Gong, X.; Huang, D.; Liu, Y.; Zeng, G.; Wang, R.; Wei, J.; Huang, C.; Xu, P.; Wan, J.; Zhang, C. Pyrolysis and Reutilization of Plant Residues after Phytoremediation of Heavy Metals Contaminated Sediments: For Heavy Metals Stabilization and Dye Adsorption. Bioresour. Technol. 2018, 253, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Sørmo, E.; Silvani, L.; Thune, G.; Gerber, H.; Schmidt, H.P.; Smebye, A.B.; Cornelissen, G. Waste Timber Pyrolysis in a Medium-Scale Unit: Emission Budgets and Biochar Quality. Sci. Total Environ. 2020, 718, 137335. [Google Scholar] [CrossRef]
- Chanaka Udayanga, W.D.; Veksha, A.; Giannis, A.; Lisak, G.; Chang, V.W.-C.; Lim, T.-T. Fate and Distribution of Heavy Metals during Thermal Processing of Sewage Sludge. Fuel 2018, 226, 721–744. [Google Scholar] [CrossRef]
- Helsen, L.; Van den Bulck, E. Metal Behavior during the Low-Temperature Pyrolysis of Chromated Copper Arsenate-Treated Wood Waste. Environ. Sci. Technol. 2000, 34, 2931–2938. [Google Scholar] [CrossRef]
- He, M.; Xu, Z.; Sun, Y.; Chan, P.S.; Lui, I.; Tsang, D.C.W. Critical Impacts of Pyrolysis Conditions and Activation Methods on Application-Oriented Production of Wood Waste-Derived Biochar. Bioresour. Technol. 2021, 341, 125811. [Google Scholar] [CrossRef] [PubMed]
- Kan, T.; Strezov, V.; Evans, T.J. Lignocellulosic Biomass Pyrolysis: A Review of Product Properties and Effects of Pyrolysis Parameters. Renew. Sustain. Energy Rev. 2016, 57, 1126–1140. [Google Scholar] [CrossRef]
- Li, S.; Harris, S.; Anandhi, A.; Chen, G. Predicting Biochar Properties and Functions Based on Feedstock and Pyrolysis Temperature: A Review and Data Syntheses. J. Clean. Prod. 2019, 215, 890–902. [Google Scholar] [CrossRef]
- Dong, J.; Chi, Y.; Tang, Y.; Ni, M.; Nzihou, A.; Weiss-Hortala, E.; Huang, Q. Partitioning of Heavy Metals in Municipal Solid Waste Pyrolysis, Gasification, and Incineration. Energy Fuels 2015, 29, 7516–7525. [Google Scholar] [CrossRef]
- Han, H.; Hu, S.; Syed-Hassan, S.S.A.; Xiao, Y.; Wang, Y.; Xu, J.; Jiang, L.; Su, S.; Xiang, J. Effects of Reaction Conditions on the Emission Behaviors of Arsenic, Cadmium and Lead during Sewage Sludge Pyrolysis. Bioresour. Technol. 2017, 236, 138–145. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Hu, S.; Lu, C.; Wang, Y.; Jiang, L.; Xiang, J.; Su, S. Inhibitory Effects of CaO/Fe2O3 on Arsenic Emission during Sewage Sludge Pyrolysis. Bioresour. Technol. 2016, 218, 134–139. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tomita, A. A Chemistry on the Volatility of Some Trace Elements during Coal Combustion and Pyrolysis. Energy Fuels 2003, 17, 954–960. [Google Scholar] [CrossRef]
- EBC. European Biochar Certificate; Version 8.2E.; European Biochar Foundation: Arbaz, Switzerland, 2012. [Google Scholar]
- Huygens, D.; Saveyn, H.; Tonini, D.; Eder, P.; Delgado Sancho, L. Technical Proposals for Selected New Fertilising Materials under the Fertilising Products Regulation (Regulation (EU) 2019/1009); EUR 29841 EN.; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Sauvé, S.; Hendershot, W.; Allen, H.E. Solid-Solution Partitioning of Metals in Contaminated Soils: Dependence on pH, Total Metal Burden, and Organic Matter. Environ. Sci. Technol. 2000, 34, 1125–1131. [Google Scholar] [CrossRef]
- Su, D.C.; Wong, J.W.C. Chemical Speciation and Phytoavailability of Zn, Cu, Ni and Cd in Soil Amended with Fly Ash-Stabilized Sewage Sludge. Environ. Int. 2004, 29, 895–900. [Google Scholar] [CrossRef]
- Zhang, J.; Lü, F.; Zhang, H.; Shao, L.; Chen, D.; He, P. Multiscale Visualization of the Structural and Characteristic Changes of Sewage Sludge Biochar Oriented towards Potential Agronomic and Environmental Implication. Sci. Rep. 2015, 5, 9406. [Google Scholar] [CrossRef]
- Lu, T.; Yuan, H.; Wang, Y.; Huang, H.; Chen, Y. Characteristic of Heavy Metals in Biochar Derived from Sewage Sludge. J. Mater. Cycles Waste Manag. 2016, 18, 725–733. [Google Scholar] [CrossRef]
- Agrafioti, E.; Bouras, G.; Kalderis, D.; Diamadopoulos, E. Biochar Production by Sewage Sludge Pyrolysis. J. Anal. Appl. Pyrolysis 2013, 101, 72–78. [Google Scholar] [CrossRef]
- Chanaka Udayanga, W.D.; Veksha, A.; Giannis, A.; Liang, Y.N.; Lisak, G.; Hu, X.; Lim, T.-T. Insights into the Speciation of Heavy Metals during Pyrolysis of Industrial Sludge. Sci. Total Environ. 2019, 691, 232–242. [Google Scholar] [CrossRef] [PubMed]
- Kistler, R.C.; Widmer, F.; Brunner, P.H. Behavior of Chromium, Nickel, Copper, Zinc, Cadmium, Mercury, and Lead during the Pyrolysis of Sewage Sludge. Environ. Sci. Technol. 1987, 21, 704–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Takaya, A.; Tomita, A. Leaching of Ashes and Chars for Examining Transformations of Trace Elements during Coal Combustion and Pyrolysis. Clean Coal Technol. 2004, 83, 651–660. [Google Scholar] [CrossRef]
- Jin, J.; Li, Y.; Zhang, J.; Wu, S.; Cao, Y.; Liang, P.; Zhang, J.; Wong, M.H.; Wang, M.; Shan, S.; et al. Influence of Pyrolysis Temperature on Properties and Environmental Safety of Heavy Metals in Biochars Derived from Municipal Sewage Sludge. J. Hazard. Mater. 2016, 320, 417–426. [Google Scholar] [CrossRef]
- Berek, A.K.; Hue, N.V. Characterization of Biochars and Their Use as an Amendment to Acid Soils. Soil Sci. 2016, 181, 412–426. [Google Scholar] [CrossRef]
- Sørmo, E.; Castro, G.; Hubert, M.; Licul-Kucera, V.; Quintanilla, M.; Asimakopoulos, A.G.; Cornelissen, G.; Arp, H.P.H. The Decomposition and Emission Factors of a Wide Range of PFAS in Diverse, Contaminated Organic Waste Fractions Undergoing Dry Pyrolysis. J. Hazard. Mater. 2023, 454, 131447. [Google Scholar] [CrossRef]
- Sørmo, E.; Krahn, K.M.; Flatabø, G.Ø.; Hartnik, T.; Arp, H.P.H.; Cornelissen, G. Distribution of PAHs, PCBs, and PCDD/Fs in Products from Full-Scale Relevant Pyrolysis of Diverse Contaminated Organic Waste. J. Hazard. Mater. 2023, 461, 132546. [Google Scholar] [CrossRef]
- SSB. Norwegian Waste Accounts for 2021. 2022. Available online: https://www.ssb.no/en/natur-og-miljo/avfall/statistikk/avfallsregnskapet (accessed on 17 April 2023).
- Buss, W. Pyrolysis Solves the Issue of Organic Contaminants in Sewage Sludge While Retaining Carbon—Making the Case for Sewage Sludge Treatment via Pyrolysis. ACS Sustain. Chem. Eng. 2021, 9, 10048–10053. [Google Scholar] [CrossRef]
- Castro, G.; Sørmo, E.; Yu, G.; Sait, S.T.L.; González, S.V.; Arp, H.P.H.; Asimakopoulos, A.G. Analysis, Occurrence and Removal Efficiencies of Organophosphate Flame Retardants (OPFRs) in Sludge Undergoing Anaerobic Digestion Followed by Diverse Thermal Treatments. Sci. Total Environ. 2023, 870, 161856. [Google Scholar] [CrossRef] [PubMed]
- Moško, J.; Pohořelý, M.; Cajthaml, T.; Jeremiáš, M.; Robles-Aguilar, A.A.; Skoblia, S.; Beňo, Z.; Innemanová, P.; Linhartová, L.; Michalíková, K.; et al. Effect of Pyrolysis Temperature on Removal of Organic Pollutants Present in Anaerobically Stabilized Sewage Sludge. Chemosphere 2021, 265, 129082. [Google Scholar] [CrossRef] [PubMed]
- Flatabø, G.Ø.; Cornelissen, G.; Carlsson, P.; Nilsen, P.J.; Tapasvi, D.; Bergland, W.H.; Sørmo, E. Industrially Relevant Pyrolysis of Diverse Contaminated Organic Wastes: Gas Compositions and Emissions to Air. J. Clean. Prod. 2023, 423, 138777. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon and Organic Matter. In Methods of Soil Analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Bremmer, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of soil analysis Part 2 Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Kwon, S.; Pignatello, J.J. Effect of Natural Organic Substances on the Surface and Adsorptive Properties of Environmental Black Carbon (Char): Pseudo Pore Blockage by Model Lipid Components and Its Implications for N2-Probed Surface Properties of Natural Sorbents. Environ. Sci. Technol. 2005, 39, 7932–7939. [Google Scholar] [CrossRef] [PubMed]
- Johnston, A.E. Soil Acidity—Resilience and Thresholds. In Managing Soil Quality—Challenges in Modern Agriculture; CABI Publishing: Wallingford, UK, 2004; Chapter 3; pp. 35–45. [Google Scholar]
- Bailis, R.; Ezzati, M.; Kammen, D.M. Greenhouse Gas Implications of Household Energy Technology in Kenya. Environ. Sci. Technol. 2003, 37, 2051–2059. [Google Scholar] [CrossRef] [PubMed]
- Sparrevik, M.; Adam, C.; Martinsen, V.; Jubaedah; Cornelissen, G. Emissions of Gases and Particles from Charcoal/Biochar Production in Rural Areas Using Medium-Sized Traditional and Improved “Retort” Kilns. Biomass Bioenergy 2015, 72, 65–73. [Google Scholar] [CrossRef]
- Bożym, M.; Gendek, A.; Siemiątkowski, G.; Aniszewska, M.; Malaťák, J. Assessment of the Composition of Forest Waste in Terms of Its Further Use. Materials 2021, 14, 973. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Lee, L.; Dayan, S.; Grinshtein, M.; Shaw, R. Speciation of Heavy Metals in Garden Soils: Evidences from Selective and Sequential Chemical Leaching. J. Soils Sediments 2011, 11, 628–638. [Google Scholar] [CrossRef]
- Wong, J.W.C. Heavy Metal Contents in Vegetables and Market Garden Soils in Hong Kong. Environ. Technol. 1996, 17, 407–414. [Google Scholar] [CrossRef]
- Kirk, P.W.W.; Lester, J.N. Significance and Behaviour of Heavy Metals in Wastewater Treatment Processes IV. Water Quality Standards and Criteria. Sci. Total Environ. 1984, 40, 1–44. [Google Scholar] [CrossRef]
- Lee, C.S.; Robinson, J.; Chong, M.F. A Review on Application of Flocculants in Wastewater Treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Zhurinsh, A.; Zandersons, J.; Dobele, G. Slow Pyrolysis Studies for Utilization of Impregnated Waste Timber Materials. J. Anal. Appl. Pyrolysis 2005, 74, 439–444. [Google Scholar] [CrossRef]
- Gao, N.; Quan, C.; Liu, B.; Li, Z.; Wu, C.; Li, A. Continuous Pyrolysis of Sewage Sludge in a Screw-Feeding Reactor: Products Characterization and Ecological Risk Assessment of Heavy Metals. Energy Fuels 2017, 31, 5063–5072. [Google Scholar] [CrossRef]
- Stals, M.; Carleer, R.; Reggers, G.; Schreurs, S.; Yperman, J. Flash Pyrolysis of Heavy Metal Contaminated Hardwoods from Phytoremediation: Characterisation of Biomass, Pyrolysis Oil and Char/Ash Fraction. J. Anal. Appl. Pyrolysis 2010, 89, 22–29. [Google Scholar] [CrossRef]
- Trinh, T.N.; Jensen, P.A.; Dam-Johansen, K.; Knudsen, N.O.; Sørensen, H.R. Influence of the Pyrolysis Temperature on Sewage Sludge Product Distribution, Bio-Oil, and Char Properties. Energy Fuels 2013, 27, 1419–1427. [Google Scholar] [CrossRef]
- EU. Directive 2000/76/EC of the European Parliament and of the Council of 4 December 2000 on the Incineration of Waste; European Parliament: Strasbourg, France, 2000. [Google Scholar]
- Wiinikka, H.; Grönberg, C.; Boman, C. Emissions of Heavy Metals during Fixed-Bed Combustion of Six Biomass Fuels. Energy Fuels 2013, 27, 1073–1080. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical Conversion of Sewage Sludge: A Critical Review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Guo, J.; Xu, Z. Distribution of Heavy Metals and Release Mechanism for Respirable Fine Particles Incineration Ashes from Lignite. Resour. Conserv. Recycl. 2021, 166, 105282. [Google Scholar] [CrossRef]
- Stumm, W.; Morgan, J.J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1995. [Google Scholar]
- Xu, Z.; Wan, Z.; Sun, Y.; Cao, X.; Hou, D.; Alessi, D.S.; Ok, Y.S.; Tsang, D.C.W. Unraveling Iron Speciation on Fe-Biochar with Distinct Arsenic Removal Mechanisms and Depth Distributions of As and Fe. Chem. Eng. J. 2021, 425, 131489. [Google Scholar] [CrossRef]
- van de Voorde, T.F.J.; Bezemer, T.M.; Van Groenigen, J.W.; Jeffery, S.; Mommer, L. Soil Biochar Amendment in a Nature Restoration Area: Effects on Plant Productivity and Community Composition. Ecol. Appl. 2014, 24, 1167–1177. [Google Scholar] [CrossRef]
- Singh, R.; Shukla, A. A Review on Methods of Flue Gas Cleaning from Combustion of Biomass. Renew. Sustain. Energy Rev. 2014, 29, 854–864. [Google Scholar] [CrossRef]
- Morales, M.; Arp, H.P.H.; Castro, G.; Asimakopoulos, A.G.; Sørmo, E.; Peters, G.; Cherubini, F. Eco-Toxicological and Climate Change Effects of Sludge Thermal Treatments: Pathways towards Zero Pollution and Negative Emissions. J. Hazard. Mater. 2024, 470, 134242. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, V.; Alling, V.; Nurida, N.; Mulder, J.; Hale, S.; Ritz, C.; Rutherford, D.; Heikens, A.; Breedveld, G.; Cornelissen, G. PH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci. Plant Nutrit. 2015, 61, 821–834. [Google Scholar] [CrossRef]
Category | Feedstock | Abbrev. | Description | Treatment Temp. (°C) | Retention Time (min) | Biochar Samples | Pyrolysis Oil Samples | Emission Samples | Leaching Data |
---|---|---|---|---|---|---|---|---|---|
Wood-based | Wood chips | CWC | Pellets produced from wood chips from forestry/logging. | 530, 600, 700 and 750 | 20 | Yes, for all treatments | Yes, for 600 °C treatment | Yes, for all treatments | Yes, for all treatments |
Waste timber | WT | Discarded wood products and objects from private households, businesses, and construction/demolition (no chemically impregnated wood) | 500, 600, 700 and 800 | 20 | Yes, for all treatments | Yes, for 600, 700 and 800 °C treatments | Yes, for all treatments | Yes, for all treatments | |
Garden waste | GW | Gardening waste from private households and businesses. Fraction includes twigs, leaves, roots, and some sand/gravel. | 500, 600 and 800 | 20 | Yes, for all treatments | Yes, for all treatments | Yes, for 500 and 800 °C treatments | No | |
Food waste | Reject from food waste biogas production | FWR | Fraction of food-waste rejected from biogas production. Consists of material that does not pass an initial sieving process to reject plastics and other too-large or non-digestible items. | 600 and 800 | 20 | Yes, for all treatments | Yes, for 800 °C treatment | Yes, for all treatments | No |
Sewage sludge and food waste | Digested sewage sludge | DSS-1 | Sewage sludge and food waste that has gone through thermal hydrolysis (155 °C, 20 min) before anaerobic digestion for biogas production | 500, 600, 700 and 770 | 20 | Yes, for all treatments | Yes, for 500, 600 and 700 °C treatments | Yes, for 500, 600 and 700 °C treatments | Yes, for all treatments |
Sewage sludge | Digested sewage sludge | DSS-2 | Sewage sludge that has gone through anaerobic digestion for biogas production | 500, 600, 700 and 800 | 20 | Yes, for all treatments | Yes, for all treatments | Yes, for all treatments | Yes, for all treatments |
Limed sewage sludge | LSS | Sewage sludge that has gone through anaerobic digestion for biogas production, with added lime (39% d.w.) for stabilization/hygenization | 600 and 760 | 20 | Yes, for all treatments | Yes, for all treatments | Yes, for all treatments | No | |
Dewatered sewage sludge | DWSS | Raw sewage sludge, thermally hydrolyzed (165 °C, 40 min) and then dewatered hot (90 °C) using a centrifuge. | 600, 700, 800 and 830 | 40 | Yes, for all treatments | No | No | No |
Category | Feedstock | Pyr. Temp. (C) | As | Cd | Cr | Cu | Ni | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
Wood-based | CWC | 530 | 100 | 0 | 100 | 100 | 100 | 22 | 21 |
600 | 91 | 0 | 100 | 100 | 100 | 11 | 11 | ||
700 | 70 | 0 | 100 | 100 | 100 | 13 | 3 | ||
750 | 76 | 0 | 100 | 97 | 100 | 41 | 2 | ||
WT | 500 | 96 | 21 | 100 | 100 | 100 | 100 | 76 | |
600 | 100 | 3 | 100 | 100 | 94 | 86 | 87 | ||
700 | 77 | 2 | 100 | 89 | 83 | 33 | 12 | ||
800 | 63 | 1 | 80 | 92 | 70 | 13 | 4 | ||
GW | 500 | 100 | 6 | 97 | 100 | 95 | 100 | 100 | |
600 | 100 | 2 | 100 | 100 | 100 | 95 | 100 | ||
800 | 70 | 3 | 64 | 97 | 79 | 100 | 22 | ||
Food-waste | FWR | 600 | 59 | 9 | 96 | 21 | 100 | 100 | 46 |
800 | 63 | 2 | 100 | 21 | 100 | 65 | 6 | ||
Sewage sludge & food-waste | DSS-1 | 500 | 33 | 65 | 95 | 97 | 97 | 87 | 95 |
600 | 28 | 25 | 98 | 95 | 99 | 81 | 92 | ||
700 | 33 | 4 | 100 | 100 | 100 | 100 | 100 | ||
770 | 41 | 3 | 100 | 100 | 100 | 100 | 100 | ||
Sewage sludge | DSS-2 | 500 | 95 | 86 | 100 | 100 | 100 | 100 | 100 |
600 | 83 | 8 | 99 | 86 | 100 | 90 | 92 | ||
700 | 90 | 1 | 100 | 93 | 100 | 92 | 100 | ||
800 | 82 | 1 | 83 | 84 | 100 | 67 | 88 | ||
LSS | 600 | 86 | 10 | 100 | 48 | 97 | 86 | 54 | |
750 | 98 | 1 | 62 | 62 | 97 | 79 | 61 | ||
DWSS | 600 | 66 | 2 | 77 | 88 | 78 | 82 | 89 | |
700 | 71 | 1 | 72 | 85 | 79 | 57 | 68 | ||
800 | 40 | 1 | 83 | 73 | 89 | 18 | 35 | ||
830 | 8 | 0 | 71 | 68 | 72 | 3 | 4 |
Category | Feedstock | Pyr. Temp. (°C) | Emission Factors EF (mg tonne−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
As | Cd | Cr | Cu | Ni | Pb | Zn | |||
Wood-based | CWC | 530 | 0.21 | n.d. | 37 | n.d. | 0.01 | 0.01 | 28 |
600 | 0.08 | n.d. | 17 | 2.6 | 22 | n.d. | 15 | ||
700 | 0.10 | n.d. | n.d. | 0.04 | 0.40 | 0.02 | 29 | ||
750 | 0.09 | n.d. | 1.5 | 11 | 0.09 | 0.51 | 41 | ||
WT | 500 | 1.8 | 0.03 | 11 | 9.6 | 3.9 | 6.1 | 8.3 | |
600 | 0.44 | 0.05 | 10 | 12 | 42 | 19 | 13 | ||
700 | 0.79 | 0.21 | 111 | 16 | 102 | 34 | 28 | ||
800 | 1.1 | 2.2 | 41 | 17 | 98 | 138 | 342 | ||
GW | 500 | 0.23 | 0.02 | 254 | 8.9 | 133 | 4.9 | 37 | |
800 | 3.3 | 0.13 | 111 | 3.6 | 35 | 129 | 85 | ||
Food waste | FWR | 600 | 7.7 | 0.41 | 291 | 24 | 45 | 208 | 98 |
800 | 8.9 | 0.19 | 251 | 15 | 143 | 184 | 110 | ||
Sewage sludge & food waste | DSS-1 | 500 | 0.16 | 0.0002 | 1.5 | 0.02 | 0.15 | 0.02 | 0.42 |
600 | 0.92 | 0.001 | 13 | 0.13 | 1.5 | 0.44 | 1.0 | ||
700 | 0.92 | 0.004 | 33 | 0.52 | 7.9 | 0.95 | 3.4 | ||
Sewage sludge | DSS-2 | 500 | 2.6 | 0.01 | 28 | 0.53 | 2.0 | 1.3 | 1.2 |
600 | 3.9 | 0.12 | 78 | 4.0 | 5.6 | 17 | 7.5 | ||
700 | 3.2 | 0.06 | 252 | 0.81 | 92 | 2.7 | 12 | ||
800 | 3.9 | 0.05 | 48 | 2.2 | 9.5 | 3.7 | 14 | ||
LSS | 600 | 0.04 | 0.002 | 1.3 | 0.02 | 0.09 | 0.06 | 0.09 | |
760 | 8.1 | 0.55 | 208 | 2.4 | 46 | 43 | 69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sørmo, E.; Dublet-Adli, G.; Menlah, G.; Flatabø, G.Ø.; Zivanovic, V.; Carlsson, P.; Almås, Å.; Cornelissen, G. Heavy Metals in Pyrolysis of Contaminated Wastes: Phase Distribution and Leaching Behaviour. Environments 2024, 11, 130. https://doi.org/10.3390/environments11060130
Sørmo E, Dublet-Adli G, Menlah G, Flatabø GØ, Zivanovic V, Carlsson P, Almås Å, Cornelissen G. Heavy Metals in Pyrolysis of Contaminated Wastes: Phase Distribution and Leaching Behaviour. Environments. 2024; 11(6):130. https://doi.org/10.3390/environments11060130
Chicago/Turabian StyleSørmo, Erlend, Gabrielle Dublet-Adli, Gladys Menlah, Gudny Øyre Flatabø, Valentina Zivanovic, Per Carlsson, Åsgeir Almås, and Gerard Cornelissen. 2024. "Heavy Metals in Pyrolysis of Contaminated Wastes: Phase Distribution and Leaching Behaviour" Environments 11, no. 6: 130. https://doi.org/10.3390/environments11060130
APA StyleSørmo, E., Dublet-Adli, G., Menlah, G., Flatabø, G. Ø., Zivanovic, V., Carlsson, P., Almås, Å., & Cornelissen, G. (2024). Heavy Metals in Pyrolysis of Contaminated Wastes: Phase Distribution and Leaching Behaviour. Environments, 11(6), 130. https://doi.org/10.3390/environments11060130