Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs)
Abstract
:1. Introduction
Legislative Restrictions: “Legacy” and “Novel” Chemicals
2. Methods
3. Results and Discussion
3.1. Overview and Concentrations
Monitoring Techniques
- SVOCs sampling in Air
- SVOCs sampling in Dust
3.2. Monitoring Results
3.3. “Novel” Chemicals
3.4. Health Studies
3.4.1. Human Studies
Respiratory
Neurological
Endocrine
Carcinogenic
Irritant and Cardiovascular
3.4.2. Biomonitoring
3.5. Emissions
3.5.1. Candles/Incense Burning
3.5.2. Consumer Products
3.5.3. Building Materials
4. Conclusions
4.1. Summary
4.2. Recommendations
- Toxicological and mechanistic studies on short term and long-term exposures are required to set health-based indoor air quality guidelines, similar to those that were developed for VOCs, and to provide advice to the public on how to minimise their exposure.
- Large-scale epidemiological studies (population-based cohort and incident case- control studies) and human biomonitoring studies are needed, together with monitoring studies, to examine the population-level adverse effects of exposure to SVOCs on adults and children, including the effects on at-risk populations and housing conditions. These are especially important as legacy chemicals will continue to reduce, while their replacements and emerging SVOCs are likely to increase. This exposure data, together with better understanding of any adverse health effects from emerging or alternative chemicals, will inform regulators and any necessary restrictions.
- A standardised health questionnaire and repository for epidemiological data from various studies is required, as there are several cohorts that have been identified in this review which are using different questionnaires. Deen et al.’s [64] study was possible due to all residents having a unique personal identification number, as required by legislation introduced in 1968. This contains historical records on each individual’s residential addresses and relocation details. A repository of this nature would be useful for future long-term epidemiological studies but would need to be transparent and meet all necessary data storage requirements.
- Monitoring studies are needed to determine the presence of SVOCs in house dust and their resuspension. Lifestyle, behaviour, temperature, seasonality, and ventilation could impact on indoor concentrations, and these should be assessed. This information can assist in identifying strategies to reduce exposure and provide public advice (hand washing after handling dust and vacuuming).
- Assessment of emission rates and migration from different types of surface materials would allow the removal of products with high emission rates.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Search String for PRISMA Diagram
- exp volatile organic compound/ (18094)
- “volatile organic compound*”.tw. (13103)
- VOC.tw. (7711)
- VOCs.tw. (8322)
- “semi volatile organic compound*”.tw. (452)
- “semi volatile compound*”.tw. (201)
- SVOC.tw. (230)
- SVOCs.tw. (400)
- exp dust/ (32383)
- dust.tw. (51330)
- exp benzene/ (20487)
- benzene.tw. (32874)
- exp formaldehyde/ (52127)
- formaldehyde.tw. (24148)
- exp toluene/ (20526)
- toluene.tw. (23764)
- exp styrene/ (6823)
- styrene.tw. (11964)
- exp acetaldehyde/ (9604)
- acetaldehyde.tw. (10691)
- exp pinene/ (6202)
- a-pinene.tw. (178)
- exp limonene/ (7504)
- D-Limonene.tw. (989)
- exp naphthalene/ (8809)
- naphthalene.tw. (13488)
- exp tetrachloroethylene/ (3352)
- tetrachloroethylene.tw. (1342)
- exp trichloroethylene/ (10791)
- trichloroethylene.tw. (4340)
- m-xylene.tw. (930)
- p-xylene.tw. (1501)
- o-xylene.tw. (1189)
- exp ethylbenzene/ (3758)
- ethylbenzene.tw. (2865)
- exp “benzo[a]pyrene”/ (16794)
- benzopyrene.tw. (427)
- exp carbon monoxide/ (36477)
- carbon monoxide.tw. (31459)
- exp nitrogen dioxide/ (12837)
- nitrogen dioxide.tw. (6589)
- exp ozone/ (28082)
- ozone.tw. (28382)
- exp phthalic acid diethyl ester/ (1400)
- Diethyl phthalate.tw. (933)
- Diisobutyl phthalate.tw. (217)
- di-n-butyl phthalate.tw. (976)
- exp galaxolide/ (444)
- galaxolide.tw. (331)
- tonalide.tw. (239)
- exp acenaphthene/ (807)
- acenaphthene.tw. (682)
- exp acenaphthylene/ (1222)
- acenaphthylene.tw. (476)
- exp phenanthrene/ (6371)
- phenanthrene.tw. (6344)
- exp anthracene/ (4917)
- anthracene.tw. (12647)
- exp “benz[a]anthracene”/ (2927)
- exp “benzo[b]fluoranthene”/ (1638)
- exp “benzo[k]fluoranthene”/ (1665)
- exp “benzo[e]pyrene”/ (640)
- exp “benzo[ghi]perylene”/ (1502)
- benzo.tw. (27099)
- exp chrysene/ (2762)
- chrysene.tw. (1612)
- exp “dibenz[a,h]anthracene”/ (1646)
- exp “dibenzo[a,l]pyrene”/ (266)
- dibenz*.tw. (18662)
- exp fluoranthene/ (3605)
- fluoranthene.tw. (2928)
- exp fluorene/ (2780)
- fluorene.tw. (2865)
- indenol.tw. (27)
- exp pyrene/ (7711)
- pyrene.tw. (25167)
- exp phenol/ (26475)
- phenol*.tw. (113770)
- exp plasticizer/ (15969)
- plastici?er*.tw. (6491)
- or/1-80 (530745)
- exp fragrance/ (22341)
- air freshener*.tw. (186)
- exp antiinfective agent/ (3479324)
- antimicrobial.tw. (201609)
- exp antioxidant/ (220297)
- antioxidant*.tw. (257737)
- exp biocide/ (2507)
- biocide.tw. (2328)
- exp building material/ (5693)
- building material*.tw. (2776)
- cable*.tw. (9264)
- candle*.tw. (1451)
- carpet*.tw. (3328)
- exp domestic chemical/ (17080)
- cleaning agent*.tw. (933)
- coalescing agent*.tw. (7)
- combustion byproduct*.tw. (73)
- decoration*.tw. (3300)
- exp deodorant agent/ (841)
- deodorant*.tw. (680)
- deod?ri?er.tw. (87)
- diffuser*.tw. (1505)
- exp disinfectant agent/ (463296)
- disinfectant*.tw. (11349)
- exp electronics/ (67201)
- electronic component*.tw. (794)
- exp emulsifying agent/ (45452)
- emulsifying agent*.tw. (503)
- exp essential oil/ (25078)
- essential oil*.tw. (24260)
- fixture*.tw. (3001)
- exp flame retardant/ (10748)
- flame retardant*.tw. (5146)
- floor covering*.tw. (205)
- exp fungicide/ (33568)
- fungicide*.tw. (11108)
- furnish*.tw. (14287)
- exp furniture/ (28093)
- furniture.tw. (2616)
- heat transfer fluid*.tw. (99)
- exp herbicide/ (52986)
- herbicide*.tw. (21519)
- exp glue/ (2952)
- glue.tw. (14203)
- exp incense/ (290)
- incense.tw. (669)
- internal source*.tw. (470)
- exp nonionic surfactant/ (46702)
- nonionic surfactant*.tw. (3673)
- (oil adj3 repellent*).tw. (157)
- (water adj3 repellent*).tw. (443)
- exp paint/ (5498)
- paint.tw. (7036)
- exp perfume/ (1921)
- perfume*.tw. (2390)
- exp cosmetic/ (111657)
- cosmetic*.tw. (68259)
- personal care product*.tw. (3256)
- exp pesticide/ (342808)
- pesticide*.tw. (58120)
- exp plastic/ (22926)
- plastic*.tw. (220771)
- polishes.tw. (146)
- exp preservative/ (293754)
- preservative*.tw. (13739)
- renovation*.tw. (2231)
- exp sealant/ (2208)
- sealant*.tw. (7630)
- exp surfactant/ (239494)
- surfactant.tw. (59026)
- stain repellent*.tw. (22)
- termiticide*.tw. (122)
- terpene oxidation product*.tw. (13)
- vinyl floor*.tw. (100)
- wallpaper.tw. (208)
- water disinfection product*.tw. (4)
- exp wax/ (4311)
- waxes.tw. (1731)
- exp wood protecting agent/ (404)
- wood preservative*.tw. (540)
- or/82-161 (4589020)
- indoor.tw. (34435)
- exp indoor air pollution/ (13379)
- exp ambient air/ (25496)
- dwelling.tw. (39796)
- domestic.tw. (83261)
- exp home/ (8083)
- home.tw. (306935)
- homes.tw. (51676)
- exp household/ (38767)
- exp building/ (7510)
- ((new or green or sick) adj build*).tw. (2002)
- “low carbon”.tw. (1476)
- exp home environment/ (4806)
- “home environment*”.tw. (7143)
- “sick building syndrome*”.tw. (739)
- ventilation.tw. (173638)
- “energy efficien*”.tw. (6943)
- airtight*.tw. (1064)
- “air permeability”.tw. (276)
- exp air conditioning/ (22678)
- air conditioning.tw. (2510)
- carbon neutral.tw. (329)
- decay.tw. (74309)
- or/163-185 (792951)
- emission*.tw. (258318)
- emission rate*.tw. (3662)
- environmental chamber*.tw. (1369)
- exp measurement/ (1728870)
- exp monitoring/ (598505)
- exp exposure/ (613219)
- “decay rate*”.tw. (4615)
- exp concentration ratio/ (1234)
- exp health impact assessment/ (4784)
- (health adj (impact* or assessment* or effect*)).tw. (63034)
- or/187-196 (3010795)
- 81 and 162 and 186 and 197 (4988)
- limit 198 to english language (4680)
- limit 199 to conference abstract (543)
- 199 not 200 (4137)
- limit 201 to yr=“2000 -Current” (3511)
- TITLE-ABS-KEY(“volatile organic compound*” or VOC or VOCs or “semi volatile organic compound*” or “semi volatile compound*” or SVOC or SVOCs or dust or benzene or formaldehyde or toluene or styrene or acetaldehyde or a-pinene or D-Limonene or naphthalene or tetrachloroethylene or trichloroethylene or m-xylene or p-xylene or o-xylene or ethylbenzene or benzopyrene or “carbon monoxide” or “nitrogen dioxide” or ozone or “Diethyl phthalate” or “Diisobutyl phthalate” or “di-n-butyl phthalate” or galaxolide or tonalide or acenaphthene or acenaphthylene or phenanthrene or anthracene or benzo or chrysene or dibenz* or fluoranthene or fluorene or indenol or pyrene or phenol* or plasticiser* or plasticizer*) AND TITLE-ABS-KEY(fragrance or “air freshener*” or antimicrobial or antioxidant* or biocide or “building material*” or cable* or candle* or carpet* or “cleaning agent*” or “coalescing agent*” or “combustion byproduct*” or decoration* or deodorant* or deodoriser* or deodorizer* or diffuser* or disinfectant* or “electronic component*” or “emulsifying agent*” or “essential oil*” or fixture* or “flame retardant*” or “floor covering*” or fungicide* or furnish* or furniture or “heat transfer fluid*” or herbicide* or glue or incense or “internal source*” or “nonionic surfactant*” or “oil repellent*” or “water repellent*” or paint or perfume* or cosmetic* or “personal care product*” or pesticide* or plastic* or polishes or preservative* or renovation* or sealant* or surfactant or “stain repellent*” or termiticide* or “terpene oxidation product*” or “vinyl floor*” or wallpaper or “water disinfection product*” or wax or waxes or “wood protecting agent” or “wood preservative*”) AND TITLE-ABS-KEY(indoor or “indoor air pollution” or “ambient air” or dwelling or domestic or home or homes or household or building* or “low carbon” or “home environment*” or “sick building syndrome*” or ventilation or “energy efficien*” or airtight* or “air permeability” or “air conditioning” or “carbon neutral” or decay) AND TITLE-ABS-KEY(emission* or “emission rate*” or “environmental chamber*” or measurement or monitoring or exposure* or “decay rate*” or “concentration ratio” or “health impact*” or “impact assessment*” or “health assessment*” or “health effect*”) AND PUBYEAR AFT 2000.
Appendix B. Glossary of SVOCs Abbreviations, Full Names, CAS Numbers and Chemical Group Identified Within in This Paper
Chemical | Name | CAS | Group |
1,2-benzanthracene | 1,2-benzanthracene | 56-55-3 | POLY AROMATIC HYDROCARBONS |
10:2 diPAP | 10:2 Fluorotelomer phosphate diester | 1895-26-7 | PER-AND POLY FLUOROALKYL SUBSTANCES |
10:2 FTAC | 10:2 Fluorotelomer acrylate | 17741-60-5 | PER-AND POLY FLUOROALKYL SUBSTANCES |
10:2 FTOH | 10:2 fluorotelomer alcohols | 865-86-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
10:2 monoPAP | 10:2 Fluorotelomer dihydrogen phosphate | 57678-05-4 | PER-AND POLY FLUOROALKYL SUBSTANCES |
2,4-DDE (o,p-DDE) | 2,2-(2-Chlorophenyl-4′-chlorophenyl)-1,1-dichloroethene | 3424-82-6 | PESTICIDE |
2,4-DDT + 4,4-DDD | 2,4′-dichlorodiphenyltrichloroethane; Dichlorodiphenyldichloroethane | 2,4-DDT: 789-02-6; 4,4-DDD: 72-54-8 | PESTICIDE |
4:2 FTOH | 4:2 fluorotelomer alcohol | 60699-51-6 | PER-AND POLY FLUOROALKYL SUBSTANCES |
4:2/6:2 diPAP | 4:2/6:2 Fluorotelomer phosphate diester | 1158182-59-2 | PER-AND POLY FLUOROALKYL SUBSTANCES |
OP | 4-tert-octylphenol | 140-66-9 | ALKYLPHENOL |
6:2 diPAP | bisperfluorooctyl phosphate | 57677-95-9 | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2 FTMAC | 6:2 Fluorotelomer methacrylate | 2144-53-8 | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2 FTOH | 6:2 fluorotelomer alcohol | 647-42-7 | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2 FTS (6:2 FTSA) | 6:2 Fluorotelomer sulfonic acid | 27619-97-2 | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2 monoPAP | 6:2 fluorotelomer phosphate monoester | 57678-01-0 | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2/10:2 diPAP | 6:2/10:2 Fluorotelomer phosphate diester | 57677-95-9 | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2/12:2 diPAP | 6:2/12:2 Fluorotelomer phosphate diester | cannot find | PER-AND POLY FLUOROALKYL SUBSTANCES |
6:2/8:2 diPAP | 6:2/8:2 Fluorotelomer phosphate diester | 943913-15-3 | PER-AND POLY FLUOROALKYL SUBSTANCES |
8:2 diPAP | 8:2 Fluorotelomer phosphate diester | 678-41-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
8:2 FTAC | 8:2 Fluorotelomer acrylate | 27905-45-9 | PER-AND POLY FLUOROALKYL SUBSTANCES |
8:2 FTOH | 8:2 fluorotelomer alcohol | 678-39-7 | PER-AND POLY FLUOROALKYL SUBSTANCES |
8:2 FTS | 8:2 Fluorotelomer stearate monoester | 99955-83-6 | PER-AND POLY FLUOROALKYL SUBSTANCES |
8:2/12:2 diPAP | (Perfluorooctyl)ethyl (perfluorododecyl)ethyl hydrogen phosphate | 1578186-42-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
9Cl-PF3ONS | Perfluoro(2-((6-chlorohexyl)oxy)ethanesulfonic acid) | 756426-58-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
acenaphthene | acenaphthene | 83-32-9 | POLY AROMATIC HYDROCARBONS |
Acenaphthylene | Acenaphthylene | 208-96-8 | POLY AROMATIC HYDROCARBONS |
AHTN | tonalide | 21145-77-7 | Musks |
Aldrin | Aldrin | 309-00-2 | PESTICIDE |
Anthracene | Anthracene | 120-12-7 | POLY AROMATIC HYDROCARBONS |
antiDDC-CO | Anti-dechlorane plus | 135821-74-8 | FIRE RETARDANT |
anti-DP | Anti-dodecachloropentacyclooctadecadiene | 135821-74-8 | FIRE RETARDANT |
ATBC | tributyl O-acetylcitrate | 77-90-7 | (PHTHALATE sub) |
Atrazine | Atrazine | 1912-24-9 | PESTICIDE |
BATE | Barium telluride | 12009-36-8 | FIRE RETARDANT |
BBP (BBzP, BzBP) | Benzylbutyl PHTHALATE | 85-68-7 | PHTHALATE |
BDE 99 | 2,2′,4,4′,5-Pentabromodiphenyl ether | 60348-60-9 | FIRE RETARDANT |
BDE 100 | 1,3,5-Tribromo-2-(2,4-dibromophenoxy)benzene | 189084-64-8 | FIRE RETARDANT |
BDE 153 | 2,2′,4,4′,5,5′-Hexabromodiphenyl ether | 68631-49-2 | FIRE RETARDANT |
BDE 154 | 2,2′,4,4′,5,6′-Hexabromodiphenyl ether | 207122-15-4 | FIRE RETARDANT |
BDE 17 | 2,2′,4-tribromodiphenyl ether | 147217-75-2 | FIRE RETARDANT |
BDE 182 | 2,2′,3,4,4′,5,6′-Heptabromodiphenyl ether | 442690-45-1 | FIRE RETARDANT |
BDE 184 | 2,2′,3,4,4′,6,6′-Heptabromodiphenyl ether | 117948-63-7 | FIRE RETARDANT |
BDE 191 | 2,3,3′,4,4′,5′,6-Heptabromodiphenyl ether | 446255-30-7 | FIRE RETARDANT |
BDE 196 | Benzene, 1,2,3,4-tetrabromo-5-(2,3,4,6-tetrabromophenoxy) | 446255-39-6 | FIRE RETARDANT |
BDE 197 | 2,2′,3,3′,4,4′,6,6′-Octabromodiphenyl ether | 117964-21-3 | FIRE RETARDANT |
BDE 201 | 2,2′,3,3′,4,5′,6,6′-Octabromodiphenyl ether | 446255-50-1 | FIRE RETARDANT |
BDE 203 | 2,2′,3,4,4′,5,5′,6-Octabromodiphenyl ether | 337513-72-1 | FIRE RETARDANT |
BDE 206 | Nonabromodiphenyl ether | 63387-28-0 | FIRE RETARDANT |
BDE 207 | 2,2′,3,3′,4,4′,5,6,6′-nonabromodiphenyl ether | 437701-79-6 | FIRE RETARDANT |
BDE 208 | 2,2′,3,3′,4,5,5′,6,6′-nonabromodiphenyl ether | 437701-78-5 | FIRE RETARDANT |
BDE 209 | Decabde—Decabromodiphenyl ether | 1163-19-5 | FIRE RETARDANT |
BDE 28/33 | 2,4,4′-tribromodiphenyl ether (BDE 28) | 41318-75-6 | FIRE RETARDANT |
BDE 35 | 3,3′,4-Tribromodiphenyl ether | 147217-80-9 | FIRE RETARDANT |
BDE 47 | 2,2′,4,4′-Tetrabromodiphenyl ether | 5436-43-1 | FIRE RETARDANT |
BDE 49 | 2,2′,4,5′-Tetrabromodiphenyl ether | 243982-82-3 | FIRE RETARDANT |
BDE 66 | 2,3′,4,4′-tetrabromodiphenyl ether | 189084-61-5 | FIRE RETARDANT |
BDE 77 | 3,3′,4,4′-Tetrabromodiphenyl ether | 93703-48-1 | FIRE RETARDANT |
BDE 85 | 2,2′,3,4,4′-Pentabromodiphenyl ether | 182346-21-0 | FIRE RETARDANT |
BDE 99 | 2,2′,4,4′,5-Pentabromodiphenyl ether | 60348-60-9 | FIRE RETARDANT |
BDE-49&71 | 71: 2,3′,4′,6-Tetrabromodiphenyl ether | 49: 243982-82-3; 71: 189084-62-6 | FIRE RETARDANT |
BDP | Fyrolflex BDP | 5945-33-5 | FIRE RETARDANT |
BEHTBP | Bis(2-ethylhexyl) tetrabromoPHTHALATE | 26040-51-7 | FIRE RETARDANT |
BEH-TEBP | 2-methylhexyl 2,3,4,5-tetrabromobenzoate | 26040-51-7 | FIRE RETARDANT |
Benz[a]anthracene | Benz[a]anthracene | 56-55-3 | POLY AROMATIC HYDROCARBONS |
Benzo[a]pyrene | Benzo[a]pyrene | 50-32-8 | POLY AROMATIC HYDROCARBONS |
Benzo[b]fluoranthene | Benzo[b]fluoranthene | 205-99-2 | POLY AROMATIC HYDROCARBONS |
Benzo[e]pyrene | Benzo[e]pyrene | 192-97-2 | POLY AROMATIC HYDROCARBONS |
Benzo[g,h,i]perylene | Benzo[g,h,i]perylene | 191-24-2 | POLY AROMATIC HYDROCARBONS |
Benzo[j]fluoranthene | Benzo[j]fluoranthene | 205-82-3 | POLY AROMATIC HYDROCARBONS |
Benzo[k]fluoranthene | Benzo[k]fluoranthene | 207-08-9 | POLY AROMATIC HYDROCARBONS |
BiBP | Butyl isobutyl PHTHALATE | 17851-53-5 | PHTHALATE |
BPA | BISPHENOL-A | 80-05-7 | BISPHENOL |
BPA-BDPP | BISPHENOL A bis (diphenylphosphate) | 5945-33-5 | FIRE RETARDANT |
BPAF | 9,9-Bis(3,4-dicarboxyphenyl) fluorine Dianhydride | 135876-30-1 | BISPHENOL |
BPF | BISPHENOL F | 620-92-8 | BISPHENOL |
BPS | BISPHENOL S | 80-09-1 | BISPHENOL |
br-EtFOSAA | Branched isomer of N-Ethyl perfluorooctane sulfonamidoacetic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
br-PFOA | Branched isomer of Perfluorooctanoic acid | 335-67-1? | PER-AND POLY FLUOROALKYL SUBSTANCES |
br-PFOS | Branched isomer of Perfluorooctane sulfonic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
BTBPE | 1,2-BIS(2,4,6-TRIBROMOPHENOXY)ETHANE | 37853-59-1 | FIRE RETARDANT |
BTHC | PHTHALATE substitue Butyryltri-n-hexylcitrate | 82469-79-2 | (PHTHALATE sub) |
Chloroparafins | Chloroparaffin | 85535-84-8 | CHLORINATED PARAFFINS |
chlorpyirifos | chlorpyirifos | 2921-88-2 | PESTICIDE |
Chrysene | Chrysene | 218-01-9 | POLY AROMATIC HYDROCARBONS |
cypermethrin | cypermethrin | 52315-07-8 | PESTICIDE |
DBDPE | Decobromodiphenyl ethane | 84852-53-9 | FIRE RETARDANT |
DBE-DBCH | 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane | 3322-93-8 | FIRE RETARDANT |
DBP | Dibutyl PHTHALATE | 84-74-2 | PHTHALATE |
DDC-CO | Dechlorane plus | 13560-89-9 | FIRE RETARDANT |
DEHA | Bis(2-ethylhexyl) adipate, di(2-ethylhexyl) adipate | 103-23-1 | (PHTHALATE sub) |
DEHP | Di(2-ethylhexyl)PHTHALATE | 117-81-7 | PHTHALATE |
DEHT/DOTP | Dioctyl terePHTHALATE | 6422-86-2 | Non PHTHALATE plasticizer |
DEP | Diethyl PHTHALATE | 84-66-2 | PHTHALATE |
Diazinon | Diazinon | 333-41-5 | PESTICIDE |
dibenz[a,h]anthracene | dibenz[a,h]anthracene | 53-70-3 | POLY AROMATIC HYDROCARBONS |
DiBP | Diisobutyl PHTHALATE | 84-69-5 | PHTHALATE |
DIDP | Bis(8-methylnonyl) PHTHALATE | 26761-40-0 | PHTHALATE |
Dieldrin | Dieldrin | 60-57-1 | PESTICIDE |
DINCH | 1,2-Cyclohexanedicarboxylic acid, 1,2-diisononyl ester | 166412-78-8 | PHTHALATE |
DINP | Diisononyl PHTHALATE | 28553-12-0 | PHTHALATE |
DMEP | Bis(2-methoxyethyl) PHTHALATE/di(2-methoxyethyl) PHTHALATE | 117-82-8 | PHTHALATE |
DMP | Dimethyl PHTHALATE | 131-11-3 | PHTHALATE |
DnBP | di-n-butyl PHTHALATE | 84-74-2 | PHTHALATE |
DnOP | Di-n-octyl PHTHALATE | 117-84-0 | PHTHALATE |
DOP | Dioctyl PHTHALATE | 117-84-0 | PHTHALATE |
DPCP | Diphenylcyclopropenone | 886-38-4 | PHTHALATE |
DPEHP | 2-Ethylhexyl diphenyl phosphate | 1241-94-7 | FIRE RETARDANT |
DPHP | Bis(2-propylheptyl) PHTHALATE/di(2-propylheptyl) PHTHALATE | 53306-54-0 | PHTHALATE |
DPHP | Bis(2-propylheptyl) PHTHALATE | 53306-54-0 | FIRE RETARDANT |
Dpsum | Dechlorane Plus | 13560-89-9 | FIRE RETARDANT |
EHDPP | 2-ethylhexyl diphenyl phosphate | 1241-94-7 | FIRE RETARDANT |
EHDP | 2-ethylhexyl diphenyl phosphate | 1241-94-7 | FIRE RETARDANT |
EHTBB | 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate | 183658-27-7 | FIRE RETARDANT |
EHTBB + BEHTBP | bis(2-ethylhexyl)-3,4,5,6-tetrabromo-PHTHALATE | 26040-51-7 | FIRE RETARDANT |
Endrin | Endrin | 72-20-8 | PESTICIDE |
EtFOSE (NEtFOSE) | N-ethyl perfluorooctane sulfonamidoethanol | 1691-99-2 | PER-AND POLY FLUOROALKYL SUBSTANCES |
Fluoranthene | Fluoranthene | 206-44-0 | POLY AROMATIC HYDROCARBONS |
Fluorene | Fluorene | 86-73-7 | POLY AROMATIC HYDROCARBONS |
FOSA | Perfluorooctanesulfonamide | 754-91-6 | PER-AND POLY FLUOROALKYL SUBSTANCES |
FOSAA | Perfluorooctane sulfonamidoacetic acid | 2806-24-8 | PER-AND POLY FLUOROALKYL SUBSTANCES |
HBB | Hexabromobiphenyl | 67774-32-7 | FIRE RETARDANT |
HBBz | Hexabromobenzene | 87-82-1 | FIRE RETARDANT |
HBCD | 1,2,5,6,9,10-Hexabromocyclodecane | 3194-55-6 | FIRE RETARDANT |
HBCD | hexabromocyclododecane | 3194-55-6 | PESTICIDE |
HCB | Hexachlorobiphenyl (mixed isomers) | 26601-64-9 | PESTICIDE |
HCDBCO | Hexachlorocyclopentadienyl-dibromocyclooctane | 51936-55-1 | FIRE RETARDANT |
iDPP | Isodecyl diphenyl phosphate | 29761-21-5 | FIRE RETARDANT |
I-EtFOSAA | linear Isomer of N-Ethyl perfluorooctane sulfonamidoacetic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
I-FOSA | linear Isomer of Perfluorooctane sulfonamide | PER-AND POLY FLUOROALKYL SUBSTANCES | |
I-MeFOSAA | Linear isomer of N-Methyl perfluorooctane sulfonamidoacetic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
Indeno [1,2,3-cd]pyrene | Indeno[1,2,3-cd]pyrene | 193-39-5 | POLY AROMATIC HYDROCARBONS |
I-PFHxS | Linear isomer of Perfluorohexane sulfonic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
I-PFOS | Linear isomer of Perfluorooctane sulfonic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
I-PFHOA | Linear isomer of Perfluorooctanoic acid | PER-AND POLY FLUOROALKYL SUBSTANCES | |
L-PFOS | 1-perfluorooctanesulfonic acid | 45298-90-6 | PER-AND POLY FLUOROALKYL SUBSTANCES |
MeFOSA (NMeFOSA) | Heptadecafluoro-N-methyloctanesulphonamide | 31506-32-8 | PER-AND POLY FLUOROALKYL SUBSTANCES |
MeFOSE | N-Methylperfluorooctanesulfonamidoethanol | 24448-09-7 | PER-AND POLY FLUOROALKYL SUBSTANCES |
MEHP | Mono-2-ethylhexyl PHTHALATE | 4376-20-9 | PHTHALATE |
Metolachlor | Metolachlor | 51218-45-2 | PESTICIDE |
MK | musk ketone | 81-14-1 | MUSK |
mmp-TMPP | Meta, meta, para-Tris(methylphenyl) phosphate | 1330-78-5 | FIRE RETARDANT |
4-NP | 4-n-nonylphenol | 104-40-5 | ALKYLPHENOL |
o,m,p—TCP | o,m,p-Tricresyl phosphate? | 78-32-0 | FIRE RETARDANT |
o,o,o—TCP | o,o,o-Tricresyl phosphate | 78-30-8 | FIRE RETARDANT |
o,p’-DDT (2,4-ddt) | 2,4′-dichlorodiphenyltrichloroethane | 789-02-6 | PESTICIDE |
OBIND | 4,5,6,7-tetrabromo-1,1,3-trimethyl-3-(2,3,4,5-tetrabromophenyl)-indane | 1084889-51-9 | FIRE RETARDANT |
4-n-octylphenol | 4-n-octylphenol | 1806-26-4 | ALKYLPHENOL |
o-TMPP | o,o,o-Tricresyl phosphate | 78-30-8 | FIRE RETARDANT |
Oxadiazon | Oxadiazon | 19666-30-9 | PESTICIDE |
OxC | oxychlordane | 27304-13-8 | PESTICIDE |
p,p,p-TCP | p,p,p-tritolyl phosphate | 78-32-0 | FIRE RETARDANT |
p,p’-DDD (4,4′-DDD) | Rhothane | 72-54-8 | PESTICIDE |
PBB | Polybrominated biphenyls | 84303-47-9 | FIRE RETARDANT |
PBBz | PBBbromobenzene | 608-90-2 | FIRE RETARDANT |
PBDPP | resorcinol bis-(diphenylphosphate) | 57583-54-7 | FIRE RETARDANT |
PBO | Piperonyl butoxide | 51-03-6 | PESTICIDE |
PBT | PBT | 24968-12-5 | FIRE RETARDANT |
PCB 101 | 2,2′,4,5,5′-PENTACHLOROBIPHENYL | 37680-73-2 | POLYCHLORINATED BIPHENYL |
PCB 105 | PCB 105 | 32598-14-4 | POLYCHLORINATED BIPHENYL |
PCB 114 | PCB 114 | 74472-37-0 | POLYCHLORINATED BIPHENYL |
PCB 118 | 2,3′,4,4′,5-PENTACHLOROBIPHENYL | 31508-00-6 | POLYCHLORINATED BIPHENYL |
PCB 122 | 2,3,3′,4′,5′-Pentachlorobiphenyl | 76842-07-4 | POLYCHLORINATED BIPHENYL |
PCB 123 | 2,3′,4,4′,5′-Pentachlorobiphenyl | 65510-44-3 | POLYCHLORINATED BIPHENYL |
PCB 128 | 2,2′,3,3′,4,4′-HEXACHLOROBIPHENYL, AROCLOR 1260 | 38380-07-3 | POLYCHLORINATED BIPHENYL |
PCB 138 | 2,2′,3,4,4′,5′-HEXACHLOROBIPHENYL | 35065-28-2 | POLYCHLORINATED BIPHENYL |
PCB 141 | 2,2′,3,4,5,5′-HEXACHLOROBIPHENYL | 52712-04-6 | POLYCHLORINATED BIPHENYL |
PCB 149 | 2,2′,3,4′,5′,6-HEXACHLOROBIPHENYL | 38380-04-0 | POLYCHLORINATED BIPHENYL |
PCB 153 | 2,2′,4,4′,5,5′-Hexachlorobiphenyl | 35065-27-1 | POLYCHLORINATED BIPHENYL |
PCB 156 | PCB 156 | 38380-08-4 | POLYCHLORINATED BIPHENYL |
PCB 157 | 2,3,3′,4,4′,5′-HEXACHLOROBIPHENYL | 69782-90-7 | POLYCHLORINATED BIPHENYL |
PCB 167 | PCB 167 | 52663-72-6 | POLYCHLORINATED BIPHENYL |
PCB 170 | 2,2′,3,3′,4,4′,5-HEPTACHLOROBIPHENYL | 35065-30-6 | POLYCHLORINATED BIPHENYL |
PCB 18 | 2,2′,5-TRICHLOROBIPHENYL | 37680-65-2 | POLYCHLORINATED BIPHENYL |
PCB 180 | 2,2′,3,4,4′,5,5′-HEPTACHLOROBIPHENYL | 35065-29-3 | POLYCHLORINATED BIPHENYL |
PCB 183 | 2,2′,3,4,4′,5′,6-HEPTACHLOROBIPHENYL | 52663-69-1 | POLYCHLORINATED BIPHENYL |
PCB 187 | 2,2′,3,4′,5,5′,6-HEPTACHLOROBIPHENYL | 52663-68-0 | POLYCHLORINATED BIPHENYL |
PCB 189 | 2,3,3′,4,4′,5,5′-HEPTACHLOROBIPHENYL | 39635-31-9 | POLYCHLORINATED BIPHENYL |
PCB 194 | PCB 194 | 35694-08-7 | POLYCHLORINATED BIPHENYL |
PCB 206 | 2,2′,3,3′,4,4’,5,5’,6-NONACHLOROBIPHENYL | 40186-72-9 | POLYCHLORINATED BIPHENYL |
PCB 28 | 2,4,4’-TRICHLOROBIPHENYL | 7012-37-5 | POLYCHLORINATED BIPHENYL |
PCB 31 | 2,4’,5-TRICHLOROBIPHENYL | 16606-02-3 | POLYCHLORINATED BIPHENYL |
PCB 33 | 2’,3,4-TRICHLOROBIPHENYL | 38444-86-9 | POLYCHLORINATED BIPHENYL |
PCB 37 | 3,4,4’-TRICHLOROBIPHENYL | 38444-90-5 | POLYCHLORINATED BIPHENYL |
PCB 47 | 2,2’,4,4’-TETRACHLOROBIPHENYL | 53469-21-9 | POLYCHLORINATED BIPHENYL |
PCB 52 | 2,2’,5,5’-TETRACHLOROBIPHENYL | 35693-99-3 | POLYCHLORINATED BIPHENYL |
PCB 66 | 2,3’,4,4’-TETRACHLOROBIPHENYL | 32598-10-0 | POLYCHLORINATED BIPHENYL |
PCB 81 | 3,4,4’,5-TETRACHLOROBIPHENYL | 70362-50-4 | POLYCHLORINATED BIPHENYL |
PCP | Pentachlorophenol | 87-86-5 | PESTICIDE |
PeCB | 2,3’,4,4’,5-PENTACHLOROBIPHENYL | 31508-00-6 | PESTICIDE |
Penta-BDE | 2,2’,3,4,4’-Pentabromodiphenyl ether | 182346-21-0 | FIRE RETARDANT |
permethrin | permethrin | 52645-53-1 | PESTICIDE |
PFBS | Perfluorobutanesulfonic acid | 375-73-5 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFDA (PFDcA) | Perfluorodecanoic acid | 335-76-2 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFDoA | Perfluorododecanoic acid | 307-55-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFDS (PFDcS) | Same as PFDcS? perfluorodecane sulfonate | 335-77-3 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFHpA | Perfluoroheptanoic acid | 375-85-9 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFHxA | Perfluorohexanoic acid | 307-24-4 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFHxS | Perfluorohexanesulfonic acid | 355-46-4 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFNA | Perfluorononanoic acid | 375-95-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFOA | Perfluorooctanoic acid | 335-67-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFOS (inc L-PFOS) | Perfluorooctanesulfonic acid | 1763-23-1 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFPA | Pentafluoropropionic anhydride | 356-42-3 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFPeA | Perfluoropentanoic acid | 2706-90-3 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFPeDA | Perfluoropentadecanoic acid | 141074-63-7 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFTrDA | Perfluorotridecanoic acid | 72629-94-8 | PER-AND POLY FLUOROALKYL SUBSTANCES |
PFUnA (PFUnDA) | Perfluoroundecanoic acid | 2058-94-8 | PER-AND POLY FLUOROALKYL SUBSTANCES |
pTBX | 1,2,4,5-tetrabromo-3,6-dimethylbenzene | 23488-38-2 | FIRE RETARDANT |
P-tmpp | tris(4-methylphenyl) phosphate | 78-32-0 | FIRE RETARDANT |
RDP | Ribavirin Diphosphate | 63142-70-1 | FIRE RETARDANT |
synDDC-CO | syn-dechlorane plus | 135821-03-3 | FIRE RETARDANT |
TBB | 4,5,6,7-tetrabromobenzotriazole | 17374-26-4 | FIRE RETARDANT |
TBBPA | TetrabromoBISPHENOL A | 79-94-7 | FIRE RETARDANT |
TBBPA-BDBPE | TetrabromoBISPHENOL A-bis(2,3-dibromopropyl ether) | 21850-44-2 | FIRE RETARDANT |
TBCT | tetrabromo-o-chlorotoluene | 39569-21-6 | FIRE RETARDANT |
TBE | 1,1,2,2-Tetrabromoethane | 79-27-6 | FIRE RETARDANT |
TBECH | 1,2-Dibromo-4-(1,2-dibromoethyl)cyclohexane | 3322-93-8 | FIRE RETARDANT |
TBEP | Tris(2-butoxyethyl) phosphate | 78-51-3 | FIRE RETARDANT |
TBOEP | Tris(2-butoxyethyl) phosphate | 78-51-3 | FIRE RETARDANT |
TBP | Tributylphosphate | 126-73-8 | FIRE RETARDANT |
TBP | tri-n-butylphosphate | 126-73-8 | PLASTICIZER |
TBP-AE | Allyl 2,4,6-tribromophenyl ether | 3278-89-5 | FIRE RETARDANT |
TBP-DBPE | 1,3,5-Tribromo-2-(2,3-dibromopropoxy)benzene | 35109-60-5 | FIRE RETARDANT |
TBPH | Bis(2-ethylhexyl) tetrabromoPHTHALATE | 26040-51-7 | FIRE RETARDANT |
TBPP | Tris(2,3-dibromopropyl) phosphate | 126-72-7 | FIRE RETARDANT |
TBX | Tetrabromoxylene | 13209-15-9 | FIRE RETARDANT |
TCEP | Tris(2-carboxyethyl)phosphine | 5961-85-3 | FIRE RETARDANT |
TCIPP | Tris (1-chloro-2-propyl) phosphate TCPP/TCIP are these the same? | 13674-84-5 | FIRE RETARDANT |
TCP | Tricresyl phosphate | 96-18-4 | FIRE RETARDANT |
TCPP | tris(chloropropyl)phosphate | 13674-84-5 | FIRE RETARDANT |
TCS | triclosan | 3380-34-5 | PHENOL |
TDCPP (TDCIPP) | Tris(1,3-dichloro-2-propyl)phosphate | 13674-87-8 | FIRE RETARDANT |
TEHP | Tris(2-ethylhexyl) phosphate | 78-42-2 | FIRE RETARDANT |
TEP | Triethylphosphate | 78-40-0 | FIRE RETARDANT |
tetramethrin | tetramethrin | 7696-12-0 | PESTICIDE |
TIBP | Triisobutyl phosphate | 126-71-6 | FIRE RETARDANT |
TIPP | Triisopropyl | 513-02-0 | FIRE RETARDANT |
TMPP | tris(methylphenyl) phosphate | 78-32-0 | FIRE RETARDANT |
TN | trans-nonachlor | PESTICIDE | |
TNBP | Tributylphosphate | 126-73-8 | FIRE RETARDANT |
Tot bromobenzenes | Total Bromobenzene | 108-86-1 | FIRE RETARDANT |
TOTM | trioctyl trimellitate | 89-04-3 | PHTHALATE alternative |
TPHP | Triphenylphosphate | 115-86-6 | FIRE RETARDANT |
TPP | Triphenylphosphate | 115-86-6 | FIRE RETARDANT |
Trans-chlordane | Trans-chlordane | 5103-74-2 | PESTICIDE |
TToP | Tritolyl | 1330-78-5 | FIRE RETARDANT |
TXP | Trixylenyl phosphate | 25155-23-1 | FIRE RETARDANT |
α-DBE-DBCH | rac-(1R,2R)-1,2-dibromo-(4S)-4-((1S)-1,2-dibromoethyl)cyclohexane | 3322-93-8 | FIRE RETARDANT |
α-endosulfan | endosulfan | 115-29-7 | PESTICIDE |
α-HCH | lindane | 319-84-6 | PESTICIDE |
α-TBECH | rac-(1R,2R)-1,2-dibromo-(4S)-4-((1S)-1,2-dibromoethyl)cyclohexane | 3322-93-8 | FIRE RETARDANT |
β-DBE-DBCH | rac-(1R,2R)-1,2-dibromo-(4S)-4-((1R)-1,2-dibromoethyl)cyclohexane | 3322-93-8 | FIRE RETARDANT |
β-HBCD | beta-Hexabromocyclododecane | 678970-16-6 134237-51-7 | FIRE RETARDANT |
β-HCH | lindane | 319-84-6 | PESTICIDE |
β-TBECH | rac-(1R,2R)-1,2-dibromo-(4S)-4-((1R)-1,2-dibromoethyl)cyclohexane | 3322-93-8 | FIRE RETARDANT |
γ-HBCD | gamma-Hexabromocyclododecane | 134237-52-8 | FIRE RETARDANT |
γ-HCH | Lindane | 319-84-6 | PESTICIDE |
PTBP | 4-tert-butylphenol | 98-54-4 | PHENOL |
4,4, DDT | 4,4′-Dichlorodiphenyltrichloroethane | 50-29-3 | PESTICIDE |
References
- Halios, C.H.; Landeg-Cox, C.; Lowther, S.D.; Middleton, A.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European residences–Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total Environ. 2022, 839, 156201. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Methods for Sampling and Analysis of Chemical Pollutants in Indoor Air: Supplementary Publication to the Screening Tool for Assessment of Health Risks from Combined Exposure to Multiple Chemicals in Indoor Air in Public Settings for Children; WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Weschler, C.J.; Nazaroff, W.W. Semivolatile organic compounds in indoor environments. Atmos. Environ. 2008, 42, 9018–9040. [Google Scholar] [CrossRef]
- ISO 16000-6:2021; Indoor Air—Part 6: Determination of Organic Compounds (VVOC, VOC, SVOC) in Indoor and Test Chamber Air by Active Sampling on Sorbent Tubes, Thermal Desorption and Gas Chromatography Using MS or MS FID. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Shrubsole, C.; Taylor, J.; Das, P.; Hamilton, I.; Oikonomou, E.; Davies, M. Impacts of energy efficiency retrofitting measures on indoor PM2.5 concentrations across different income groups in England: A modelling study. Adv. Build. Energy Res. 2016, 10, 69–83. [Google Scholar] [CrossRef]
- Song, K.; Guo, S.; Gong, Y.; Lv, D.; Zhang, Y.; Wan, Z.; Li, T.; Zhu, W.; Wang, H.; Yu, Y.; et al. Impact of cooking style and oil on semi-volatile and intermediate volatility organic compound emissions from Chinese domestic cooking. Atmos. Chem. Phys. 2022, 15, 9827–9841. [Google Scholar] [CrossRef]
- Besis, A.; Samara, C. Polybrominated diphenyl ethers (PBDEs) in the indoor and outdoor environments—A review on occurrence and human exposure. Environ. Pollut. 2012, 169, 217–229. [Google Scholar] [CrossRef]
- Frederiksen, M.; Meyer, H.W.; Ebbehøj, N.E.; Gunnarsen, L. Polychlorinated biphenyls (PCBs) in indoor air originating from sealants in contaminated and uncontaminated apartments within the same housing estate. Chemosphere 2012, 89, 473–479. [Google Scholar] [CrossRef]
- Simonetti, G.; Di Filippo, P.; Riccardi, C.; Pomata, D.; Sonego, E.; Buiarelli, F. Occurrence of Halogenated Pollutants in Domestic and Occupational Indoor Dust. Int. J. Environ. Res. Public Health 2020, 17, 3813. [Google Scholar] [CrossRef]
- Kwiatkowski, C.F.; Andrews, D.Q.; Birnbaum, L.S.; Bruton, T.A.; DeWitt, J.C.; Knappe, D.R.; Maffini, M.V.; Miller, M.F.; Pelch, K.E.; Reade, A. Scientific basis for managing PFAS as a chemical class. Environ. Sci. Technol. Lett. 2020, 7, 532–543. [Google Scholar] [CrossRef]
- Cao, J. Semi-volatile organic compounds (SVOCs). In Handbook of Indoor Air Quality; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–29. [Google Scholar]
- Wang, W.; Abualnaja, K.O.; Asimakopoulos, A.G.; Covaci, A.; Gevao, B.; Johnson-Restrepo, B.; Kumosani, T.A.; Malarvannan, G.; Minh, T.B.; Moon, H.B.; et al. A comparative assessment of human exposure to tetrabromobisphenol A and eight bisphenols including bisphenol A via indoor dust ingestion in twelve countries. Environ. Int. 2015, 83, 183–191. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Bisphenols. Available online: https://echa.europa.eu/hot-topics/bisphenols (accessed on 9 January 2025).
- National Agency of Food Safety, Environment and Work (ANSES). Assessment of the Health Risks of Bisphenol A. 2013. Available online: https://www.anses.fr/en/system/files/PRES2013CPA09EN.pdf (accessed on 12 January 2025).
- Song, Z.; Cao, J.; Xu, Y. Sampling and Analysis of Semi-volatile Organic Compounds (SVOCs) in Indoor Environments. In Handbook of Indoor Air Quality; Springer: Berlin/Heidelberg, Germany, 2022; pp. 441–465. [Google Scholar]
- Mo, J.; Liu, Y. Sampling and Analysis of VVOCs and VOCs in Indoor Air. In Handbook of Indoor Air Quality; Springer: Berlin/Heidelberg, Germany, 2022; pp. 429–440. [Google Scholar]
- Hens, B.; Hens, L. Persistent threats by persistent pollutants: Chemical nature, concerns and future policy regarding PCBs—What are we heading for? Toxics 2017, 6, 1. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. Annual Report 2005. Available online: https://www.efsa.europa.eu/en/corporate/pub/ar05 (accessed on 15 August 2023).
- Zeng, Z.; Song, B.; Xiao, R.; Zeng, G.; Gong, J.; Chen, M.; Xu, P.; Zhang, P.; Shen, M.; Yi, H. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ. Int. 2019, 126, 598–610. [Google Scholar] [CrossRef] [PubMed]
- UN Environment Programme. Stockholm Convention on Persistent Organic Pollutants. Available online: http://chm.pops.int/TheConvention/ThePOPs/tabid/673/Default.aspx (accessed on 18 April 2023).
- Christia, C.; Poma, G.; Harrad, S.; de Wit, C.A.; Sjostrom, Y.; Leonards, P.; Lamoree, M.; Covaci, A. Occurrence of legacy and alternative plasticizers in indoor dust from various EU countries and implications for human exposure via dust ingestion and dermal absorption. Environ. Res. 2019, 171, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Committee on Toxicity (COT). COT/COM/COC Annual Report 2015. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20200803134628/https:/cot.food.gov.uk/cotreports/cotcomcocannreps/cot/com/coc-annual-report-2015 (accessed on 12 January 2025).
- Committee on Toxicity (COT). COT/COM/COC Annual Report 2003. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20130802141938/http:/cot.food.gov.uk/cotreports/cotcomcocannreps/cotcomcocrep2003 (accessed on 12 January 2025).
- Dueñas-Mas, M.J.; Ballesteros-Gómez, A.; Rubio, S. Supramolecular solvent-based microextraction of aryl-phosphate flame retardants in indoor dust from houses and education buildings in Spain. Sci. Total Environ. 2020, 733, 139291. [Google Scholar] [CrossRef]
- Newton, S.; Sellström, U.; de Wit, C.A. Emerging flame retardants, PBDEs, and HBCDDs in indoor and outdoor media in Stockholm, Sweden. Environ. Sci. Technol. 2015, 49, 2912–2920. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef]
- Lu, C.; Fenske, R.A. Dermal transfer of chlorpyrifos residues from residential surfaces: Comparison of hand press, hand drag, wipe, and polyurethane foam roller measurements after broadcast and aerosol pesticide applications. Environ. Health Perspect. 1999, 107, 463–467. [Google Scholar] [CrossRef]
- Hubal, E.A.C.; Egeghy, P.P.; Leovic, K.W.; Akland, G.G. Measuring potential dermal transfer of a pesticide to children in a child care center. Environ. Health Perspect. 2006, 114, 264–269. [Google Scholar] [CrossRef]
- Rusina, T.P.; Jílková, S.R.; Melymuk, L.; Vrana, B.; Smedes, F. Accessibility investigation of semi-volatile organic compounds in indoor dust estimated by multi-ratio equilibrium passive sampling. Environ. Res. 2023, 219, 115105. [Google Scholar] [CrossRef]
- De Castro, M.L.; Priego-Capote, F. Soxhlet extraction: Past and present panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Richter, B.E.; Jones, B.A.; Ezzell, J.L.; Porter, N.L.; Avdalovic, N.; Pohl, C. Accelerated solvent extraction: A technique for sample preparation. Anal. Chem. 1996, 68, 1033–1039. [Google Scholar] [CrossRef]
- Bi, C.; Maestre, J.P.; Li, H.; Zhang, G.; Givehchi, R.; Mahdavi, A.; Kinney, K.A.; Siegel, J.; Horner, S.D.; Xu, Y. Phthalates and organophosphates in settled dust and HVAC filter dust of U.S. low-income homes: Association with season, building characteristics, and childhood asthma. Environ Int. 2018, 121, 916–930. [Google Scholar] [PubMed]
- Bouras, M.; Chadni, M.; Barba, F.J.; Grimi, N.; Bals, O.; Vorobiev, E. Optimization of microwave-assisted extraction of polyphenols from Quercus bark. Ind. Crops Prod. 2015, 77, 590–601. [Google Scholar] [CrossRef]
- Air Quality Expert Group (AQEG). Indoor Air Group 2022. Available online: https://uk-air.defra.gov.uk/assets/documents/reports/cat09/2211011000_15062022_Indoor_Air_Quality_Report_Final.pdf (accessed on 16 August 2023).
- Malliari, E.; Kalantzi, O.-I. Children’s exposure to brominated flame retardants in indoor environments—A review. Environ. Int. 2017, 108, 146–169. [Google Scholar] [CrossRef]
- Andersson, M.; Ottesen, R.; Volden, T. Building materials as a source of PCB pollution in Bergen, Norway. Sci. Total Environ. 2004, 325, 139–144. [Google Scholar] [CrossRef]
- Cequier, E.; Ionas, A.C.; Covaci, A.; Marcé, R.M.; Becher, G.; Thomsen, C. Occurrence of a Broad Range of Legacy and Emerging Flame Retardants in Indoor Environments in Norway. Environ. Sci. Technol. 2014, 48, 6827–6835. [Google Scholar] [CrossRef]
- European Chemicals Agency (ECHA). Tris (2-chloroethyl) Phosphate, TCEP Summary Risk Assessment Report 2008. Available online: https://echa.europa.eu/documents/10162/f42be21b-33a3-4063-ad4d-2b0f937e41b4 (accessed on 16 August 2023).
- European Chemicals Agency (ECHA). Tris [2-chloro-1-(methylethyl] Phosphate (TCPP) European Union Risk Assessment Report 2008. Available online: https://echa.europa.eu/documents/10162/17228/trd_rar_ireland_tccp_en.pdf (accessed on 12 January 2025).
- Zhou, L.; Hiltscher, M.; Püttmann, W. Occurrence and human exposure assessment of organophosphate flame retardants in indoor dust from various microenvironments of the Rhine/Main region, Germany. Indoor Air 2017, 27, 1113–1127. [Google Scholar] [CrossRef]
- Tao, F.; Abdallah, M.A.-E.; Harrad, S. Emerging and Legacy Flame Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by Emerging Flame Retardants? Environ. Sci. Technol. 2016, 50, 13052–13061. [Google Scholar] [CrossRef]
- Demirtepe, H.; Melymuk, L.; Diamond, M.L.; Bajard, L.; Vojta, Š.; Prokeš, R.; Sáňka, O.; Klánová, J.; Palkovičová Murínová, Ľ.; Richterová, D.; et al. Linking past uses of legacy SVOCs with today’s indoor levels and human exposure. Environ. Int. 2019, 127, 653–663. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Literature Review on Chemical Pollutants in Indoor Air in Public Settings for Children and Overview of Their Health Effects with a Focus on Schools, Kindergartens and Day-Care Centres: Supplementary Publication to the Screening Tool for Assessment of Health Risks from Combined Exposure to Multiple Chemicals in Indoor Air in Public Settings for Children; WHO Regional Office for Europe: Copenhagen, Denmark, 2021. [Google Scholar]
- International Agency for Research on Cancer (IARC). Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and some related exposures. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; World Health Organization: Lyon, France, 2010; Available online: https://publications.iarc.fr/110 (accessed on 14 March 2023).
- Shu, H.; Jönsson, B.A.; Larsson, M.; Nånberg, E.; Bornehag, C.-G. PVC flooring at home and development of asthma among young children in Sweden, a 10-year follow-up. Indoor Air 2014, 24, 227–235. [Google Scholar] [CrossRef]
- Bornehag, C.G.; Sundell, J.; Weschler, C.J.; Sigsgaard, T.; Lundgren, B.; Hasselgren, M.; Hägerhed-Engman, L. The association between asthma and allergic symptoms in children and phthalates in house dust: A nested case-control study. Environ. Health Perspect. 2004, 112, 1393–1397. [Google Scholar] [CrossRef] [PubMed]
- Kolarik, B.; Naydenov, K.; Larsson, M.; Bornehag, C.G.; Sundell, J. The association between phthalates in dust and allergic diseases among Bulgarian children. Environ. Health Perspect. 2008, 116, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.; Verkasalo, P.K.; Jaakkola, N. Plastic wall materials in the home and respiratory health in young children. Am. J. Public Health 2000, 90, 797–799. [Google Scholar] [PubMed]
- Jaakkola, J.J.; Ieromnimon, A.; Jaakkola, M.S. Interior surface materials and asthma in adults: A population-based incident case-control study. Am. J. Epidemiol. 2006, 164, 742–749. [Google Scholar] [CrossRef] [PubMed]
- Larsson, M.; Hägerhed-Engman, L.; Kolarik, B.; James, P.; Lundin, F.; Janson, S.; Sundell, J.; Bornehag, C.G. PVC–as flooring material–and its association with incident asthma in a Swedish child cohort study. Indoor Air 2010, 20, 494–501. [Google Scholar] [CrossRef]
- Bornehag, C.G.; Nanberg, E. Phthalate exposure and asthma in children. Int. J. Androl. 2010, 33, 333–345. [Google Scholar] [CrossRef]
- Canbaz, D.; van Velzen, M.J.M.; Hallner, E.; Zwinderman, A.H.; Wickman, M.; Leonards, P.E.G.; van Ree, R.; van Rijt, L.S. Exposure to organophosphate and polybrominated diphenyl ether flame retardants via indoor dust and childhood asthma. Indoor Air 2016, 26, 403–413. [Google Scholar] [CrossRef]
- Chevrier, C.; Warembourg, C.; Le Maner-Idrissi, G.; Lacroix, A.; Dardier, V.; Le Sourn-Bissaoui, S.; Rouget, F.; Monfort, C.; Gaudreau, E.; Mercier, F. Childhood exposure to polybrominated diphenyl ethers and neurodevelopment at six years of age. NeuroToxicology 2016, 54, 81–88. [Google Scholar] [CrossRef]
- Roze, E.; Meijer, L.; Bakker, A.; Braeckel, K.N.J.A.V.; Sauer, P.J.J.; Bos, A.F. Prenatal Exposure to Organohalogens, Including Brominated Flame Retardants, Influences Motor, Cognitive, and Behavioral Performance at School Age. Environ. Health Perspect. 2009, 117, 1953–1958. [Google Scholar] [CrossRef]
- Herbstman, J.B.; Sjödin, A.; Kurzon, M.; Lederman, S.A.; Jones, R.S.; Rauh, V.; Needham, L.L.; Tang, D.; Niedzwiecki, M.; Wang, R.Y.; et al. Prenatal Exposure to PBDEs and Neurodevelopment. Environ. Health Perspect. 2010, 118, 712–719. [Google Scholar] [CrossRef]
- Johnson, P.I.; Stapleton, H.M.; Mukherjee, B.; Hauser, R.; Meeker, J.D. Associations between brominated flame retardants in house dust and hormone levels in men. Sci. Total Environ. 2013, 445–446, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.I.; Stapleton, H.M.; Sjodin, A.; Meeker, J.D. Relationships between polybrominated diphenyl ether concentrations in house dust and serum. Environ. Sci. Technol. 2010, 44, 5627–5632. [Google Scholar] [CrossRef] [PubMed]
- Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, H.M.; Eagle, S.; Anthopolos, R.; Wolkin, A.; Miranda, M.L. Associations between Polybrominated Diphenyl Ether (PBDE) Flame Retardants, Phenolic Metabolites, and Thyroid Hormones during Pregnancy. Environ. Health Perspect. 2011, 119, 1454–1459. [Google Scholar] [CrossRef]
- Meeker, J.D.; Johnson, P.I.; Camann, D.; Hauser, R. Polybrominated diphenyl ether (PBDE) concentrations in house dust are related to hormone levels in men. Sci. Total Environ. 2009, 407, 3425–3429. [Google Scholar] [CrossRef]
- Bergh, C.; Magnus Åberg, K.; Svartengren, M.; Emenius, G.; Östman, C. Organophosphate and phthalate esters in indoor air: A comparison between multi-storey buildings with high and low prevalence of sick building symptoms. J. Environ. Monit. 2011, 13, 2001–2009. [Google Scholar] [CrossRef]
- Heudorf, U.; Schümann, M.; Angerer, J.; Exner, M. Dermal and bronchial symptoms in children: Are they caused by PAH containing parquet glue or by passive smoking? Int. Arch. Occup. Environ. Health 2005, 78, 655–662. [Google Scholar] [CrossRef]
- Deen, L.; Hougaard, K.S.; Clark, A.; Meyer, H.W.; Frederiksen, M.; Gunnarsen, L.; Andersen, H.V.; Hougaard, T.; Petersen, K.K.U.; Ebbehøj, N.E.; et al. Cancer Risk following Residential Exposure to Airborne Polychlorinated Biphenyls: A Danish Register-Based Cohort Study. Environ. Health Perspect. 2022, 130, 107003. [Google Scholar] [CrossRef]
- Jaakkola, J.; Oie, L.; Nafstad, P.; Botten, G.; Samuelsen, S.; Magnus, P. Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway. Am. J. Public Health 1999, 89, 188–192. [Google Scholar] [CrossRef]
- Nafstad, P.; Botten, G.; Magnus, P.; Jaakkola, J.J. Ventilation in homes and bronchial obstruction in young children. Epidemiology 1999, 10, 294–299. [Google Scholar] [CrossRef]
- Jaakkola, J.J.; Parise, H.; Kislitsin, V.; Lebedeva, N.I.; Spengler, J.D. Asthma, wheezing, and allergies in Russian schoolchildren in relation to new surface materials in the home. Am. J. Public Health 2004, 94, 560–562. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.G.; Sundell, J.; Hagerhed-Engman, L.; Sigsggard, T.; Janson, S.; Aberg, N. ‘Dampness’ at home and its association with airway, nose, and skin symptoms among 10,851 preschool children in Sweden: A cross-sectional study. Indoor Air 2005, 15, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Jaakkola, J.J.; Knight, T.L. The role of exposure to phthalates from polyvinyl chloride products in the development of asthma and allergies: A systematic review and meta-analysis. Environ. Health Perspect. 2008, 116, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Public Health England. Polycyclic Aromatic Hydrocarbons (Benzo[a]pyrene)-Toxicological Overview; PHE: London, UK, 2018.
- International Agency for Research on Cancer (IARC). Polynuclear Aromatic Compounds, Part 1: Chemical, Environmental and Experimental Data. In IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans; WHO: Geneva, Switzerland, 1983; Available online: https://publications.iarc.fr/Book-And-Report-Series/Iarc-Monographs-On-The-Identification-Of-Carcinogenic-Hazards-To-Humans/Polynuclear-Aromatic-Compounds-Part-1-Chemical-Environmental-And-Experimental-Data-1983 (accessed on 16 August 2023).
- Hermant, M.; Blanchard, O.; Perouel, G.; Boulanger, G.; Merlo, M.; Desvignes, V. Environmental Exposure of the Adult French Population to Permethrin. Risk Anal. 2018, 38, 853–865. [Google Scholar] [CrossRef]
- Meyer, H.W.; Frederiksen, M.; Göen, T.; Ebbehøj, N.E.; Gunnarsen, L.; Brauer, C.; Kolarik, B.; Müller, J.; Jacobsen, P. Plasma polychlorinated biphenyls in residents of 91 PCB-contaminated and 108 non-contaminated dwellings-an exposure study. Int. J. Hyg. Environ. Health 2013, 216, 755–762. [Google Scholar] [CrossRef]
- Vorkamp, K.; Thomsen, M.; Frederiksen, M.; Pedersen, M.; Knudsen, L.E. Polybrominated diphenyl ethers (PBDEs) in the indoor environment and associations with prenatal exposure. Environ. Int. 2011, 37, 1–10. [Google Scholar] [CrossRef]
- Kucharska, A.; Cequier, E.; Thomsen, C.; Becher, G.; Covaci, A.; Voorspoels, S. Assessment of human hair as an indicator of exposure to organophosphate flame retardants. Case study on a Norwegian mother–child cohort. Environ. Int. 2015, 83, 50–57. [Google Scholar]
- Shu, H.; Jönsson, B.A.G.; Gennings, C.; Lindh, C.H.; Nånberg, E.; Bornehag, C.-G. PVC flooring at home and uptake of phthalates in pregnant women. Indoor Air 2019, 29, 43–54. [Google Scholar] [CrossRef]
- Carlstedt, F.; Jönsson, B.A.G.; Bornehag, C.-G. PVC flooring is related to human uptake of phthalates in infants. Indoor Air 2013, 23, 32–39. [Google Scholar] [CrossRef]
- Sahlström, L.M.O.; Sellström, U.; de Wit, C.A.; Lignell, S.; Darnerud, P.O. Estimated intakes of brominated flame retardants via diet and dust compared to internal concentrations in a Swedish mother–toddler cohort. Int. J. Hyg. Environ. Health 2015, 218, 422–432. [Google Scholar] [CrossRef]
- Tay, J.H.; Sellström, U.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Haug, L.S.; de Wit, C.A. Serum concentrations of legacy and emerging halogenated flame retardants in a Norwegian cohort: Relationship to external exposure. Environ. Res. 2019, 178, 108731. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.G.; Sundell, J.; Sigsgaard, T. Dampness in buildings and health (DBH): Report from an ongoing epidemiological investigation on the association between indoor environmental factors and health effects among children in Sweden. Indoor Air 2004, 14, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Bertelsen, R.J.; Carlsen, K.C.; Calafat, A.M.; Hoppin, J.A.; Håland, G.; Mowinckel, P.; Carlsen, K.H.; Løvik, M. Urinary biomarkers for phthalates associated with asthma in Norwegian children. Environ. Health Perspect. 2013, 121, 251–256. [Google Scholar] [CrossRef] [PubMed]
- Heudorf, U.; Angerer, J. Internal exposure to PAHs of children and adults living in homes with parquet flooring containing high levels of PAHs in the parquet glue. Int. Arch. Occup. Environ. Health 2001, 74, 91–101. [Google Scholar] [CrossRef]
- Gilles, L.; Govarts, E.; Rambaud, L.; Vogel, N.; Castaño, A.; Esteban López, M.; Rodriguez Martin, L.; Koppen, G.; Remy, S.; Vrijheid, M.; et al. HBM4EU combines and harmonises human biomonitoring data across the EU, building on existing capacity–The HBM4EU survey. Int. J. Hyg. Environ. Health 2021, 237, 113809. [Google Scholar] [CrossRef]
- Fromme, H.; Becher, G.; Hilger, B.; Völkel, W. Brominated flame retardants–Exposure and risk assessment for the general population. Int. J. Hyg. Environ. Health 2016, 219, 1–23. [Google Scholar] [CrossRef]
- Bramwell, L.; Glinianaia, S.V.; Rankin, J.; Rose, M.; Fernandes, A.; Harrad, S.; Pless-Mulolli, T. Associations between human exposure to polybrominated diphenyl ether flame retardants via diet and indoor dust, and internal dose: A systematic review. Environ. Int. 2016, 92–93, 680–694. [Google Scholar] [CrossRef]
- Saillenfait, A.-M.; Ndaw, S.; Robert, A.; Sabaté, J.-P. Recent biomonitoring reports on phosphate ester flame retardants: A short review. Arch. Toxicol. 2018, 92, 2749–2778. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (EPA). Basic Information of Air Emissions Factors and Quantification. Available online: https://www.epa.gov/air-emissions-factors-and-quantification/basic-information-air-emissions-factors-and-quantification (accessed on 18 August 2022).
- Manoukian, A.; Buiron, D.; Temime-Roussel, B.; Wortham, H.; Quivet, E. Measurements of VOC/SVOC emission factors from burning incenses in an environmental test chamber: Influence of temperature, relative humidity, and air exchange rate. Environ. Sci. Pollut. Res. Int. 2016, 23, 6300–6311. [Google Scholar] [CrossRef]
- Petry, T.; Vitale, D.; Joachim, F.J.; Smith, B.; Cruse, L.; Mascarenhas, R.; Schneider, S.; Singal, M. Human health risk evaluation of selected VOC, SVOC and particulate emissions from scented candles. Regul. Toxicol. Pharmacol. 2014, 69, 55–70. [Google Scholar] [CrossRef]
- Derudi, M.; Gelosa, S.; Sliepcevich, A.; Cattaneo, A.; Rota, R.; Cavallo, D.; Nano, G. Emissions of air pollutants from scented candles burning in a test chamber. Atmos. Environ. 2012, 55, 257–262. [Google Scholar] [CrossRef]
- Derudi, M.; Gelosa, S.; Sliepcevich, A.; Cattaneo, A.; Cavallo, D.; Rota, R.; Nano, G. Emission of air pollutants from burning candles with different composition in indoor environments. Environ. Sci. Pollut. Res. 2014, 21, 4320–4330. [Google Scholar] [CrossRef] [PubMed]
- Kemmlein, S.; Hahn, O.; Jann, O. Emissions of organophosphate and brominated flame retardants from selected consumer products and building materials. Atmos. Environ. 2003, 37, 5485–5493. [Google Scholar] [CrossRef]
- Schripp, T.; Salthammer, T.; Fauck, C.; Bekö, G.; Weschler, C.J. Latex paint as a delivery vehicle for diethylphthalate and di-n-butylphthalate: Predictable boundary layer concentrations and emission rates. Sci. Total Environ. 2014, 494–495, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Crump, D.; Brown, V. Exposure Risk Assessment of the Emissions of Wood Preservative Chemicals in Indoor Environments. CLEAN Soil Air Water 2009, 37, 466–474. [Google Scholar] [CrossRef]
- Horn, W.; Jann, O.; Wilke, O. Suitability of small environmental chambers to test the emission of biocides from treated materials into the air. Atmos. Environ. 2003, 37, 5477–5483. [Google Scholar] [CrossRef]
- Marć, M.; Zabiegała, B.; Namieśnik, J. Testing and sampling devices for monitoring volatile and semi-volatile organic compounds in indoor air. TrAC Trends Anal. Chem. 2012, 32, 76–86. [Google Scholar] [CrossRef]
- Rauert, C.; Lazarov, B.; Harrad, S.; Covaci, A.; Stranger, M. A review of chamber experiments for determining specific emission rates and investigating migration pathways of flame retardants. Atmos. Environ. 2014, 82, 44–55. [Google Scholar] [CrossRef]
- Wensing, M.; Uhde, E.; Salthammer, T. Plastics additives in the indoor environment—Flame retardants and plasticizers. Sci. Total Environ. 2005, 339, 19–40. [Google Scholar] [CrossRef]
- Naldzhiev, D.; Mumovic, D.; Strlic, M. Polyurethane insulation and household products–A systematic review of their impact on indoor environmental quality. Build. Environ. 2020, 169, 106559. [Google Scholar] [CrossRef]
- Manoukian, A.; Quivet, E.; Temime-Roussel, B.; Nicolas, M.; Maupetit, F.; Wortham, H. Emission characteristics of air pollutants from incense and candle burning in indoor atmospheres. Environ. Sci. Pollut. Res. 2013, 20, 4659–4670. [Google Scholar] [CrossRef] [PubMed]
- Ribéron, J.; O’Kelly, P. MARIA: An Experimental Tool at the Service of Indoor Air Quality in Housing Sector. 2002. Available online: https://www.irbnet.de/daten/iconda/CIB7078.pdf (accessed on 16 August 2023).
- Afshari, A.; Gunnarsen, L.; Clausen, P.A.; Hansen, V. Emission of phthalates from PVC and other materials. Indoor Air 2004, 14, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Harrad, S.; Goosey, E.; Neels, H.; Covaci, A. “Novel” brominated flame retardants in Belgian and UK indoor dust: Implications for human exposure. Chemosphere 2011, 83, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Al-Omran, L.S.; Harrad, S. Within-room and within-home spatial and temporal variability in concentrations of legacy and “novel” brominated flame retardants in indoor dust. Chemosphere 2018, 193, 1105–1112. [Google Scholar] [CrossRef]
- de la Torre, A.; Navarro, I.; Sanz, P.; de Los Ángeles Martínez, M. Organophosphate compounds, polybrominated diphenyl ethers and novel brominated flame retardants in European indoor house dust: Use, evidence for replacements and assessment of human exposure. J. Hazard. Mater. 2020, 382, 121009. [Google Scholar] [CrossRef]
- Fromme, H.; Hilger, B.; Kopp, E.; Miserok, M.; Völkel, W. Polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD) and “novel” brominated flame retardants in house dust in Germany. Environ. Int. 2014, 64, 61–68. [Google Scholar] [CrossRef]
- Kademoglou, K.; Xu, F.; Padilla-Sanchez, J.A.; Haug, L.S.; Covaci, A.; Collins, C.D. Legacy and alternative flame retardants in Norwegian and UK indoor environment: Implications of human exposure via dust ingestion. Environ. Int. 2017, 102, 48–56. [Google Scholar] [CrossRef]
- Melymuk, L.; Bohlin-Nizzetto, P.; Kukučka, P.; Vojta, Š.; Kalina, J.; Čupr, P.; Klánová, J. Seasonality and indoor/outdoor relationships of flame retardants and PCBs in residential air. Environ. Pollut. 2016, 218, 392–401. [Google Scholar] [CrossRef]
- Melymuk, L.; Bohlin-Nizzetto, P.; Vojta, Š.; Krátká, M.; Kukučka, P.; Audy, O.; Přibylová, P.; Klánová, J. Distribution of legacy and emerging semivolatile organic compounds in five indoor matrices in a residential environment. Chemosphere 2016, 153, 179–186. [Google Scholar] [CrossRef]
- Abb, M.; Heinrich, T.; Sorkau, E.; Lorenz, W. Phthalates in house dust. Environ. Int. 2009, 35, 965–970. [Google Scholar] [CrossRef]
- Audy, O.; Melymuk, L.; Venier, M.; Vojta, S.; Becanova, J.; Romanak, K.; Vykoukalova, M.; Prokes, R.; Kukucka, P.; Diamond, M.L.; et al. PCBs and organochlorine pesticides in indoor environments—A comparison of indoor contamination in Canada and Czech Republic. Chemosphere 2018, 206, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Seiwert, M.; Angerer, J.; Heger, W.; Koch, H.M.; Nagorka, R.; Rosskamp, E.; Schlüter, C.; Seifert, B.; Ullrich, D. DEHP metabolites in urine of children and DEHP in house dust. Int. J. Hyg. Environ. Health 2004, 207, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Berger-Preiss, E.; Levsen, K.; Leng, G.; Idel, H.; Sugiri, D.; Ranft, U. Indoor pyrethroid exposure in homes with woollen textile floor coverings. Int. J. Hyg. Environ. Health 2002, 205, 459–472. [Google Scholar] [CrossRef]
- Bergh, C.; Torgrip, R.; Emenius, G.; Ostman, C. Organophosphate and phthalate esters in air and settled dust—A multi-location indoor study. Indoor Air 2011, 21, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Björklund, J.A.; Sellström, U.; de Wit, C.A.; Aune, M.; Lignell, S.; Darnerud, P.O. Comparisons of polybrominated diphenyl ether and hexabromocyclododecane concentrations in dust collected with two sampling methods and matched breast milk samples. Indoor Air 2012, 22, 279–288. [Google Scholar] [CrossRef]
- Björklund, J.A.; Thuresson, K.; Cousins, A.P.; Sellström, U.; Emenius, G.; de Wit, C.A. Indoor Air Is a Significant Source of Tri-decabrominated Diphenyl Ethers to Outdoor Air via Ventilation Systems. Environ. Sci. Technol. 2012, 46, 5876–5884. [Google Scholar] [CrossRef]
- Björnsdotter, M.K.; Romera-García, E.; Borrull, J.; de Boer, J.; Rubio, S.; Ballesteros-Gómez, A. Presence of diphenyl phosphate and aryl-phosphate flame retardants in indoor dust from different microenvironments in Spain and the Netherlands and estimation of human exposure. Environ. Int. 2018, 112, 59–67. [Google Scholar] [CrossRef]
- Blanchard, O.; Glorennec, P.; Mercier, F.; Bonvallot, N.; Chevrier, C.; Ramalho, O.; Mandin, C.; Bot, B.L. Semivolatile Organic Compounds in Indoor Air and Settled Dust in 30 French Dwellings. Environ. Sci. Technol. 2014, 48, 3959–3969. [Google Scholar] [CrossRef]
- Bornehag, C.-G.; Lundgren, B.; Weschler, C.J.; Sigsgaard, T.; Hagerhed-Engman, L.; Sundell, J. Phthalates in indoor dust and their association with building characteristics. Environ. Health Perspect. 2005, 113, 1399–1404. [Google Scholar] [CrossRef]
- Bramwell, L.; Harrad, S.; Abou-Elwafa Abdallah, M.; Rauert, C.; Rose, M.; Fernandes, A.; Pless-Mulloli, T. Predictors of human PBDE body burdens for a UK cohort. Chemosphere 2017, 189, 186–197. [Google Scholar] [CrossRef]
- Cristale, J.; Hurtado, A.; Gómez-Canela, C.; Lacorte, S. Occurrence and sources of brominated and organophosphorus flame retardants in dust from different indoor environments in Barcelona, Spain. Environ. Res. 2016, 149, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Dallongeville, A.; Costet, N.; Zmirou-Navier, D.; Le Bot, B.; Chevrier, C.; Deguen, S.; Annesi-Maesano, I.; Blanchard, O. Volatile and semi-volatile organic compounds of respiratory health relevance in French dwellings. Indoor Air 2016, 26, 426–438. [Google Scholar] [CrossRef] [PubMed]
- D’Hollander, W.; Roosens, L.; Covaci, A.; Cornelis, C.; Reynders, H.; Campenhout, K.V.; Voogt, P.; Bervoets, L. Brominated flame retardants and perfluorinated compounds in indoor dust from homes and offices in Flanders, Belgium. Chemosphere 2010, 81, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Dirtu, A.C.; Covaci, A. Estimation of daily intake of organohalogenated contaminants from food consumption and indoor dust ingestion in Romania. Environ. Sci Technol. 2010, 44, 6297–6304. [Google Scholar] [CrossRef]
- Fromme, H.; Körner, W.; Shahin, N.; Wanner, A.; Albrecht, M.; Boehmer, S.; Parlar, H.; Mayer, R.; Liebl, B.; Bolte, G. Human exposure to polybrominated diphenyl ethers (PBDE), as evidenced by data from a duplicate diet study, indoor air, house dust, and biomonitoring in Germany. Environ. Int. 2009, 35, 1125–1135. [Google Scholar] [CrossRef]
- Fromme, H.; Dreyer, A.; Dietrich, S.; Fembacher, L.; Lahrz, T.; Völkel, W. Neutral polyfluorinated compounds in indoor air in Germany—The LUPE 4 study. Chemosphere 2015, 139, 572–578. [Google Scholar] [CrossRef]
- Fromme, H.; Lahrz, T.; Piloty, M.; Gebhart, H.; Oddoy, A.; Rüden, H. Occurrence of phthalates and musk fragrances in indoor air and dust from apartments and kindergartens in Berlin (Germany). Indoor Air 2004, 14, 188–195. [Google Scholar] [CrossRef]
- Fromme, H.; Schwarzbauer, J.; Lahrz, T.; Kraft, M.; Fembacher, L. Alkylsulfonic acid phenylesters (ASEs, Mesamoll®) in dust samples of German residences and daycare centers (LUPE 3). Int. J. Hyg. Environ. 2017, 220, 440–444. [Google Scholar] [CrossRef]
- Geens, T.; Roosens, L.; Neels, H.; Covaci, A. Assessment of human exposure to Bisphenol-A, Triclosan and Tetrabromobisphenol-A through indoor dust intake in Belgium. Chemosphere 2009, 76, 755–760. [Google Scholar] [CrossRef]
- Glorennec, P.; Serrano, T.; Fravallo, M.; Warembourg, C.; Monfort, C.; Cordier, S.; Viel, J.F.; Le Gléau, F.; Le Bot, B.; Chevrier, C. Determinants of children’s exposure to pyrethroid insecticides in western France. Environ. Int. 2017, 104, 76–82. [Google Scholar] [CrossRef]
- Goosey, E.; Harrad, S. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ. Int. 2011, 37, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Harrad, S.; Hazrati, S.; Ibarra, C. Concentrations of polychlorinated biphenyls in indoor air and polybrominated diphenyl ethers in indoor air and dust in Birmingham, United Kingdom: Implications for human exposure. Environ. Sci. Technol. 2006, 40, 4633–4638. [Google Scholar] [CrossRef] [PubMed]
- Harrad, S.; Ibarra, C.; Diamond, M.; Melymuk, L.; Robson, M.; Douwes, J.; Roosens, L.; Dirtu, A.C.; Covaci, A. Polybrominated diphenyl ethers in domestic indoor dust from Canada, New Zealand, United Kingdom and United States. Environ. Int. 2008, 34, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Huber, S.; Haug, L.S.; Schlabach, M. Per- and polyfluorinated compounds in house dust and indoor air from northern Norway—A pilot study. Chemosphere 2011, 84, 1686–1693. [Google Scholar] [CrossRef]
- Jílková, S.; Melymuk, L.; Vojta, Š.; Vykoukalová, M.; Bohlin-Nizzetto, P.; Klánová, J. Small-scale spatial variability of flame retardants in indoor dust and implications for dust sampling. Chemosphere 2018, 206, 132–141. [Google Scholar] [CrossRef]
- Kalachova, K.; Hradkova, P.; Lankova, D.; Hajslova, J.; Pulkrabova, J. Occurrence of brominated flame retardants in household and car dust from the Czech Republic. Sci. Total. Environ. 2012, 441, 182–193. [Google Scholar] [CrossRef]
- Korcz, W.; Struciński, P.; Góralczyk, K.; Hernik, A.; Łyczewska, M.; Matuszak, M.; Czaja, K.; Minorczyk, M.; Ludwicki, J.K. Levels of polybrominated diphenyl ethers in house dust in Central Poland. Indoor Air 2017, 27, 128–135. [Google Scholar] [CrossRef]
- Król, S.; Namieśnik, J.; Zabiegała, B. Occurrence and levels of polybrominated diphenyl ethers (PBDEs) in house dust and hair samples from Northern Poland; an assessment of human exposure. Chemosphere 2014, 110, 91–96. [Google Scholar] [CrossRef]
- Langer, S.; Weschler, C.; Fischer, A.; Bekö, G.; Toftum, J.; Clausen, G. Phthalate and PAH concentrations in dust collected from Danish homes and daycare centers. Atmos. Environ. 2010, 44, 2294–2301. [Google Scholar] [CrossRef]
- Langer, S.; Fredricsson, M.; Weschler, C.J.; Bekö, G.; Strandberg, B.; Remberger, M.; Toftum, J.; Clausen, G. Organophosphate esters in dust samples collected from Danish homes and daycare centers. Chemosphere 2016, 154, 559–566. [Google Scholar] [CrossRef]
- Lankova, D.; Svarcova, A.; Kalachova, K.; Lacina, O.; Pulkrabova, J.; Hajslova, J. Multi-analyte method for the analysis of various organohalogen compounds in house dust. Anal. Chim. Acta. 2015, 854, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Luongo, G.; Östman, C. Organophosphate and phthalate esters in settled dust from apartment buildings in Stockholm. Indoor Air 2016, 26, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Mandin, C.; Mercier, F.; Ramalho, O.; Lucas, J.-P.; Gilles, E.; Blanchard, O.; Bonvallot, N.; Glorennec, P.; Le Bot, B. Semi-volatile organic compounds in the particulate phase in dwellings: A nationwide survey in France. Atmos. Environ. 2016, 136, 82–94. [Google Scholar] [CrossRef]
- Muenhor, D.; Harrad, S. Within-room and within-building temporal and spatial variations in concentrations of polybrominated diphenyl ethers (PBDEs) in indoor dust. Environ. Int. 2012, 47, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Nagorka, R.; Conrad, A.; Scheller, C.; Süssenbach, B.; Moriske, H.J. Diisononyl 1,2-cyclohexanedicarboxylic acid (DINCH) and Di(2-ethylhexyl) terephthalate (DEHT) in indoor dust samples: Concentration and analytical problems. Int. J. Hyg. Environ. 2011, 214, 26–35. [Google Scholar] [CrossRef]
- Rantakokko, P.; Kumar, E.; Braber, J.; Huang, T.; Kiviranta, H.; Cequier, E.; Thomsen, C. Concentrations of brominated and phosphorous flame retardants in Finnish house dust and insights into children’s exposure. Chemosphere 2019, 223, 99–107. [Google Scholar] [CrossRef]
- Romagnoli, P.; Balducci, C.; Perilli, M.; Vichi, F.; Imperiali, A.; Cecinato, A. Indoor air quality at life and work environments in Rome, Italy. Environ. Sci. Pollut. Res. Int. 2016, 23, 3503–3516. [Google Scholar] [CrossRef]
- Roosens, L.; Cornelis, C.; D’Hollander, W.; Bervoets, L.; Reynders, H.; Van Campenhout, K.; Van Den Heuvel, R.; Neels, H.; Covaci, A. Exposure of the Flemish population to brominated flame retardants: Model and risk assessment. Environ. Int. 2010, 36, 368–376. [Google Scholar] [CrossRef]
- Sakhi, A.K.; Cequier, E.; Becher, R.; Bølling, A.K.; Borgen, A.R.; Schlabach, M.; Schmidbauer, N.; Becher, G.; Schwarze, P.; Thomsen, C. Concentrations of selected chemicals in indoor air from Norwegian homes and schools. Sci. Total Environ. 2019, 674, 1–8. [Google Scholar] [CrossRef]
- Sanyal, S.; Amrani, F.; Dallongeville, A.; Banerjee, S.; Blanchard, O.; Deguen, S.; Costet, N.; Zmirou-Navier, D.; Annesi-Maesano, I. Estimating indoor galaxolide concentrations using predictive models based on objective assessments and data about dwelling characteristics. Inhal. Toxicol. 2017, 29, 611–619. [Google Scholar] [CrossRef]
- Schnelle-Kreis, J.; Scherb, H.; Gebefügi, I.; Kettrup, A.; Weigelt, E. Pentachlorophenol in indoor environments. Correlation of PCP concentrations in air and settled dust from floors. Sci. Total Environ. 2000, 256, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Seifert, B.; Becker, K.; Helm, D.; Krause, C.; Schulz, C.; Seiwert, M. The German Environmental Survey 1990/1992 (GerES II): Reference concentrations of selected environmental pollutants in blood, urine, hair, house dust, drinking water and indoor air. J. Expo. Anal. Environ. Epidemiol. 2000, 10, 552–565. [Google Scholar] [CrossRef] [PubMed]
- Sha, B.; Dahlberg, A.-K.; Wiberg, K.; Ahrens, L. Fluorotelomer alcohols (FTOHs), brominated flame retardants (BFRs), organophosphorus flame retardants (OPFRs) and cyclic volatile methylsiloxanes (cVMSs) in indoor air from occupational and home environments. Environ. Pollut. 2018, 241, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Sjödin, A.; Päpke, O.; McGahee, E.; Focant, J.-F.; Jones, R.S.; Pless-Mulloli, T.; Toms, L.-M.L.; Herrmann, T.; Müller, J.; Needham, L.L.; et al. Concentration of polybrominated diphenyl ethers (PBDEs) in household dust from various countries. Chemosphere 2008, 73, S131–S136. [Google Scholar] [CrossRef]
- Sugeng, E.J.; de Cock, M.; Leonards, P.E.G.; van de Bor, M. Electronics, interior decoration and cleaning patterns affect flame retardant levels in the dust from Dutch residences. Sci. Total Environ. 2018, 645, 1144–1152. [Google Scholar] [CrossRef]
- Sugeng, E.J.; Leonards, P.E.G.; van de Bor, M. Brominated and organophosphorus flame retardants in body wipes and house dust, and an estimation of house dust hand-loadings in Dutch toddlers. Environ. Res. 2017, 158, 789–797. [Google Scholar] [CrossRef]
- Tay, J.H.; Sellström, U.; Papadopoulou, E.; Padilla-Sánchez, J.A.; Haug, L.S.; de Wit, C.A. Human Exposure to Legacy and Emerging Halogenated Flame Retardants via Inhalation and Dust Ingestion in a Norwegian Cohort. Environ. Sci. Technol. 2017, 51, 8176–8184. [Google Scholar] [CrossRef]
- Thuresson, K.; Björklund, J.A.; de Wit, C.A. Tri-decabrominated diphenyl ethers and hexabromocyclododecane in indoor air and dust from Stockholm microenvironments 1: Levels and profiles. Sci. Total Environ. 2012, 414, 713–721. [Google Scholar] [CrossRef]
- Van den Eede, N.; Dirtu, A.C.; Neels, H.; Covaci, A. Analytical developments and preliminary assessment of human exposure to organophosphate flame retardants from indoor dust. Environ. Int. 2011, 37, 454–461. [Google Scholar] [CrossRef]
- Velázquez-Gómez, M.; Hurtado-Fernández, E.; Lacorte, S. Differential occurrence, profiles and uptake of dust contaminants in the Barcelona urban area. Sci. Total Environ. 2019, 648, 1354–1370. [Google Scholar] [CrossRef]
- Venier, M.; Audy, O.; Vojta, Š.; Bečanová, J.; Romanak, K.; Melymuk, L.; Krátká, M.; Kukučka, P.; Okeme, J.; Saini, A.; et al. Brominated flame retardants in the indoor environment—Comparative study of indoor contamination from three countries. Environ. Int. 2016, 94, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Vykoukalová, M.; Venier, M.; Vojta, Š.; Melymuk, L.; Bečanová, J.; Romanak, K.; Prokeš, R.; Okeme, J.O.; Saini, A.; Diamond, M.L.; et al. Organophosphate esters flame retardants in the indoor environment. Environ. Int. 2017, 106, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Weiss, J.M.; Gustafsson, Å.; Gerde, P.; Bergman, Å.; Lindh, C.H.; Krais, A.M. Daily intake of phthalates, MEHP, and DINCH by ingestion and inhalation. Chemosphere 2018, 208, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Wemken, N.; Drage, D.; Abou-Elwafa Abdallah, M.; Harrad, S.; Coggins, M. Concentrations of Brominated Flame Retardants in Indoor Air and Dust from Ireland Reveal Elevated Exposure to Decabromodiphenyl Ethane. Environ. Sci. Technol. 2019, 53, 9826–9836. [Google Scholar] [CrossRef]
- Winkens, K.; Koponen, J.; Schuster, J.; Shoeib, M.; Vestergren, R.; Berger, U.; Karvonen, A.M.; Pekkanen, J.; Kiviranta, H.; Cousins, I.T. Perfluoroalkyl acids and their precursors in indoor air sampled in children’s bedrooms. Environ. Pollut. 2017, 222, 423–432. [Google Scholar] [CrossRef]
- Winkens, K.; Giovanoulis, G.; Koponen, J.; Vestergren, R.; Berger, U.; Karvonen, A.M.; Pekkanen, J.; Kiviranta, H.; Cousins, I.T. Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms—Implications for indoor exposure. Environ. Int. 2018, 119, 493–502. [Google Scholar] [CrossRef]
- Xu, F.; Giovanoulis, G.; van Waes, S.; Padilla-Sanchez, J.A.; Papadopoulou, E.; Magnér, J.; Haug, L.S.; Neels, H.; Covaci, A. Comprehensive Study of Human External Exposure to Organophosphate Flame Retardants via Air, Dust, and Hand Wipes: The Importance of Sampling and Assessment Strategy. Environ. Sci. Technol. 2016, 50, 7752–7760. [Google Scholar] [CrossRef]
- Zhou, L.; Hiltscher, M.; Gruber, D.; Püttmann, W. Organophosphate flame retardants (OPFRs) in indoor and outdoor air in the Rhine/Main area, Germany: Comparison of concentrations and distribution profiles in different microenvironments. Environ. Sci. Pollut. Res. 2017, 24, 10992–11005. [Google Scholar] [CrossRef]
- Chevrier, J.; Harley, K.G.; Bradman, A.; Gharbi, M.; Sjödin, A.; Eskenazi, B. Polybrominated Diphenyl Ether (PBDE) Flame Retardants and Thyroid Hormone during Pregnancy. Environ. Health Perspect. 2010, 118, 1444–1449. [Google Scholar] [CrossRef]
- European Chemicals Agency. Substance Infocard Diethyl Phthalate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.001.409 (accessed on 12 January 2025).
- European Chemicals Agency. Substance Infocard Bis(2-propylheptyl) Phthalate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.053.137 (accessed on 12 January 2025).
- European Chemicals Agency. Profile Tris (2-ethylhexyl) Benzene-1,2,4-tricarboxylate. Available online: https://echa.europa.eu/brief-profile/-/briefprofile/100.020.019 (accessed on 12 January 2025).
- European Chemicals Agency. Substance Infocard Tetramethrin. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.028.829 (accessed on 12 January 2025).
- Clair, H.B.; Pinkston, C.M.; Rai, S.N.; Pavuk, M.; Dutton, N.D.; Brock, G.N.; Prough, R.A.; Falkner, K.C.; McClain, C.J.; Cave, M.C. Liver Disease in a Residential Cohort With Elevated Polychlorinated Biphenyl Exposures. Toxicol Sci. 2018, 164, 39–49. [Google Scholar] [CrossRef]
- European Chemical Agency. Substance Infocard 1-(5,6,7,8-tetrahydro-3,5,5,6,8,8-hexamethyl-2-naphthyl)ethan-1-one. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.040.203 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard 1,3,4,6,7,8-hexahydro-4,6,6,7,8,8-hexamethylindeno[5,6-c]pyran. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.013.588 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard 4,4-sulphonyldiphenol. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.001.137 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Triclosan. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.020.167 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Benzyl Butyl Phthalate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.001.475 (accessed on 12 January 2025).
- PubChem. Benzyl Butyl Phthalate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Benzyl-butyl-phthalate (accessed on 12 January 2025).
- PubChem. Dibutyl Phthalate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dibutyl-Phthalate (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Dibutyl Phthalate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.001.416 (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Di-n-butyl phthalate. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp135-p.pdf (accessed on 12 January 2025).
- Pubchem. Bis(2-ethylhexyl) Phthalate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Bis_2-ethylhexyl_-phthalate (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Bis(2-ethylhexyl) Phthalate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.003.829 (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Di(2-Ethylhexyl)Phthalate (DEHP). Available online: https://www.atsdr.cdc.gov/toxprofiles/tp9.pdf (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Diisobutyl Phthalate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.001.412 (accessed on 12 January 2025).
- Pubchem. Diisobutyl Phthalate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Diisobutyl-phthalate (accessed on 12 January 2025).
- Pubchem. Dimethyl Phthalate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dimethyl-Phthalate (accessed on 12 January 2025).
- Pubchem. 2,2′4-Tribromodiphenyl Ether. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_2_4-Tribromodiphenyl-ether (accessed on 12 January 2025).
- Ward, M.H.; Colt, J.S.; Deziel, N.C.; Whitehead, T.P.; Reynolds, P.; Gunier, R.B.; Nishioka, M.; Dahl, G.V.; Rappaport, S.M.; Buffler, P.A.; et al. Residential Levels of Polybrominated Diphenyl Ethers and Risk of Childhood Acute Lymphoblastic Leukemia in California. Environ. Health Perspect. 2014, 122, 1110–1116. [Google Scholar] [CrossRef]
- Pubchem. 2,2′3,3′,4,4′,6,6′-octabromodiphenyl Ether. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/11967214 (accessed on 12 January 2025).
- Pubchem. 2,2′3,4,4′,5,5′6-octabromodiphenyl Ether. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/36160 (accessed on 12 January 2025).
- Pubchem. Nonabromodiphenyl Ether. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Nonabromodiphenyl-ether (accessed on 12 January 2025).
- Pubchem. Decabromodiphenyl Oxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Decabromodiphenyl-oxide (accessed on 12 January 2025).
- Hoffman, K.; Lorenzo, A.; Butt, C.M.; Hammel, S.C.; Henderson, B.B.; Roman, S.A.; Scheri, R.P.; Stapleton, H.M.; Sosa, J.A. Exposure to flame retardant chemicals and occurrence and severity of papillary thyroid cancer: A case-control study. Environ Int. 2017, 107, 235–242. [Google Scholar] [CrossRef]
- Pubchem. 2,4-Dibromo-1(4-bromophenoxy)benzene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_4-Dibromo-1-_4-bromophenoxy_benzene (accessed on 12 January 2025).
- Pubchem. 2,2′4,4′,5-Pentabromodiphenyl ether. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_2_4-tribromo-5-_2_4-dibromophenoxy_benzene (accessed on 12 January 2025).
- Pubchem. Hexabromobenzene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hexabromobenzene (accessed on 12 January 2025).
- Pubchem. Trimethylolpropane Phosphate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Trimethylolpropane-phosphate (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polybrominated Buphenyls. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp68.pdf (accessed on 12 January 2025).
- Pubchem. 2,3,5,6-Tetrabromo-p-xylene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2_3_5_6-Tetrabromo-p-xylene (accessed on 12 January 2025).
- Pubchem. 1,1,2,2-Tetrabromoethane. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1_1_2_2-Tetrabromoethane (accessed on 12 January 2025).
- Pubchem. Tributyl Phosphate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Tributyl-Phosphate (accessed on 12 January 2025).
- Pubchem. Tris(2,4-xylenyl)phosphate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/19736 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Tributyl Phosphate. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.004.365 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard Hexabromocyclodecane. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.239.157 (accessed on 12 January 2025).
- Pubchem. Beta-hexabromocyclododecane. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/beta-Hexabromocyclododecane (accessed on 12 January 2025).
- Pubchem. Benz[a]anthracene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Benz_a_anthracene (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Polycyclic Aromatic Hydrocarbons. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp69.pdf (accessed on 12 January 2025).
- Pubchem. Benz[a]pyrene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Benzo_a_pyrene (accessed on 12 January 2025).
- United States Environmental Protection Agency. IRIS Benzo[a]pyrene. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=136 (accessed on 12 January 2025).
- Pubchem. Chrysene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Chrysene (accessed on 12 January 2025).
- Pubchem. Dibenz[a.h]anthracene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dibenz_a_h_anthracene (accessed on 12 January 2025).
- Pubchem. Aldrin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Aldrin (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Aldrin and Dieldrin. Available online: https://wwwn.cdc.gov/TSP/ToxProfiles/ToxProfiles.aspx?id=317&tid=56 (accessed on 12 January 2025).
- Pubchem. Atrazine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Atrazine (accessed on 12 January 2025).
- Pubchem. Cypermethrin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Cypermethrin (accessed on 12 January 2025).
- Pubchem. Diazinon. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Diazinon (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Diazinon. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp86.pdf (accessed on 12 January 2025).
- Pubchem. Dieldrin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Dieldrin (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Endrin. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp89.pdf (accessed on 12 January 2025).
- Pubchem. Metolachlor. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Metolachlor (accessed on 12 January 2025).
- Pubchem. 4,4′-Dichlorodiphenyltrichloroethane. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Dichlorodiphenyltrichloroethane-d8 (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for DDT, DDE and DDD. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp35.pdf (accessed on 12 January 2025).
- Pubchem. Piperonyl Butoxide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Piperonyl-Butoxide (accessed on 12 January 2025).
- Pubchem. Pentachlorophenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Pentachlorophenol (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Pentachlorophenol. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp51.pdf (accessed on 12 January 2025).
- Pubchem. Permethrin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Permethrin (accessed on 12 January 2025).
- United States Environmental Protection Agency. IRIS Permethrin. Available online: https://iris.epa.gov/ChemicalLanding/&substance_nmbr=185 (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Endosulfan. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp41.pdf (accessed on 12 January 2025).
- Pubchem. Endosulfan. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Endosulfan (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Hexachlorocyclohexane. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp43.pdf (accessed on 12 January 2025).
- Pubchem. Hexachlorocyclohexane. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Hexachlorocyclohexane (accessed on 12 January 2025).
- Pubchem. Polychlorinated Biphenyls. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Polychlorinated-Biphenyls (accessed on 12 January 2025).
- Pubchem. 10:2 Fluorotelomer Sulfonamide Betaine. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/90471653 (accessed on 12 January 2025).
- Pubchem. Tridecafluorohexylethyl Methacrylate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/75066 (accessed on 12 January 2025).
- Pubchem. 6:2 Fluorotelomer Alcohol Glucuronide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/6_2-Fluorotelomer-alcohol-glucuronide (accessed on 12 January 2025).
- Pubchem. 3,3,4,4,5,5,6,6,7,7,8,8,8,-Tridecafluorooctyl Acrylate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/1h_1h_2h_2h-perfluorooctyl-acrylate (accessed on 12 January 2025).
- Pubchem. Perfluorooctanesulfonamide. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorooctanesulfonamide (accessed on 12 January 2025).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Perfluoroalkyls. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf (accessed on 12 January 2025).
- Pubchem. N-Methylperfluorooctanesulfonamidoethanol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/N-Methylperfluorooctanesulfonamidoethanol (accessed on 12 January 2025).
- Pubchem. Perfluorodecanoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorodecanoic-Acid-_PFDA (accessed on 12 January 2025).
- Pubchem. Perfluorohexanesulfonic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorohexanesulfonic-Acid (accessed on 12 January 2025).
- Pubchem. Perfluorononanoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorononanoic-acid (accessed on 12 January 2025).
- Pubchem. Perfluoorooctanoic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Perfluorooctanoic-acid (accessed on 12 January 2025).
- Pubchem. Pentafluoropropionic Acid. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Pentafluoropropionic-acid (accessed on 12 January 2025).
- Pubchem. Bisphenol A. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Bisphenol-A (accessed on 12 January 2025).
- Pubchem. 4,4′-Methylenediphenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4_4_-Methylenediphenol (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard 4,4′-iospropylidenebis [2-allyphenol]. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.015.565 (accessed on 12 January 2025).
- European Chemical Agency. Substance Infocard p-octylphenol. Available online: https://echa.europa.eu/substance-information/-/substanceinfo/100.015.729 (accessed on 12 January 2025).
- Pubchem. Phenol, 2-octyl-. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Phenol_-2-octyl (accessed on 12 January 2025).
- Pubchem. 4-Octylphenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4-Octylphenol (accessed on 12 January 2025).
- Pubchem. 4-tert-butylphenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4-tert-Butylphenol (accessed on 12 January 2025).
SVOC | Uses |
---|---|
Phthalates | Used mainly as plasticizers which, when added to plastic, make it stronger and more flexible; they are also used as film-forming agents, solvents and denaturants in body care products, soft polyvinylchloride (PVC) products and food grade products. |
Brominated Flame Retardants (BFRs) | Since the 1930s, flame retardants (FRs) have been used in various products (e.g., plastics, textiles, electrical equipment) to make them less flammable. One of the most widely used FR classes since the 1970s are BFRs that are consistently present in large quantities in consumer products such as plastics, textiles, furniture, television sets, synthetic building materials, cars, and computers to prevent formation of flames. They are described as either reactive or additive dependent on whether they form chemical bonds with the materials they are incorporated into or not. Additive FRs, including polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), are added to foams in furniture. Besis and Samara [8] report that PBDEs have been massively produced and extensively used in numerous household products, providing longer escape times in case of fire, as well as reducing damage to property. Additive FRs are much more likely to leach out of goods and products than reactive FRs. |
Polyaromatic Hydrocarbons (PAHs) | PAHs emanate from combustible products including vehicles, smoking, heating, and consumer products. PAHs can be present in the gas and airborne particulate phase [3]. |
Polychlorinated biphenyls (PCBs) | PCBs have been used mainly as dielectric fluids in electronic applications, and in building materials (e.g., elastic sealants, glue for double-glazed windows and paints to enhance elasticity and durability) since the late 1920s [9]. |
Per-and Polyfluorinated Alkyl Substances (PFAS) | PFAS are synthetic chemicals that contain strong thermally and chemically stable C–F bonds which are highly hydrophobic, lipophobic, and resistant to oxidation; they are used in commercial products and industrial applications for their water-resistant, stain-resistant, flame-resistant, and anti-stick properties [9]. According to Simonetti et al. [10], they are pollutants of increasing interest. They have been produced since the 1920s, with perfluoro-octanoic acid (PFOA) and perfluoro-octane sulfonic acid (PFOS) being the most extensively used and studied [11]. |
Biocides | Biocides are inherently toxic chemicals used to kill or control pests, including fungi, weed plants, insects and rodents, and include both banned “legacy” (e.g., DDT and hexachlorocyclohexanes) and currently used pesticides (e.g., chlorpyrifos and permethrin, Cao [12]). |
Bisphenols | Bisphenols including bisphenol A (BPA) are a class of chemicals that are used as additives and/or reactive raw materials in polycarbonate plastics, plastic linings for food containers, dental sealants and thermo-sensitive coatings for paper products [13]. Human exposure to BPA is of concern, and prohibition has been implemented in the European Union for BPA-based bottles and packaging since 2011 [14]. This prohibition has led to replacement, including by related bisphenols, e.g., bisphenols S, F, M, B, AP, AF and Bisphenol A diglycidyl ether (BADGE) [15]. |
Musks | Originally, natural musk fragrances were mostly extracted from exocrine gland secretions of the musk ox (Ovibos moschatus) and musk deer (Moschus moschiferus). These days, synthetic substances, aromatic nitro-musks (e.g., musk ketone and musk xylene) and polycyclic musks, are industrially and commercially produced in large quantities. Due to their musk-like odour and their binding ability, they are widely employed for cosmetics and perfumes, cleaning products, polishing and washing agents, household products, and aromatic oils. |
WAGM | Health Endpoints | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Chemical | Uses | Dust (µg g−1) | Air (ng m−3) | Aerosol (ng m−3) | Irritant | Carcinogen | Cardiovascular | Endocrine | Respiratory | Neurological |
Phthalates | ||||||||||
Benzyl-Butyl Phthalate (BBP/BBzP/BzBP) | Plasticizer mainly used in PVC for vinyl floor tiles, vinyl foams, and carpet backing, sealants, foams, adhesives, coating and inks, and cosmetics | 26.79 | 5.95 | 1.95 | x | |||||
Dibutyl phthalate (DBP) | Materials for floor coverings (PVC, linoleum, rubber, poly-olefine, vinyl), carpet, wallpaper, vinyl wallcoverings | 95.9 | 179.5 | 1.439 | x | x | x | |||
Di(2-ethylhexyl) phthalate (DEHP) | Stick incense, vinyl flooring, low density polyethylene, wallpapers, refrigerator strip, electrical wire, wax, vinyl wallcoverings | 426.44 | 106.21 | 52.18 | x | x | x | x | x | |
Di-isobutyl phthalate (DiBP) | Artists’ acrylic paint, stick incense, low density polyethylene, wallpapers, and vinyl wallcoverings | 25.64 | 284.07 | 1.55 | x | |||||
Dimethyl phthalate (DMP) | Plasticizer | 15.53 | 27.79 | 0.015 | x | x | ||||
Flame retardants | ||||||||||
Benzene, 1,2,3,4-tetrabromo-5-(2,3,4,6-tetrabromophenoxy) (BDE 196) | Housings of electrical and electronic equipment | 0.0016 | x | |||||||
DecaBDE(BDE 209) | Electronic devices (game console, TV, radio, DVD/CD player, laptop) | 0.45 | 0.017 | x | x | x | x | |||
2,4-Dibromo-1-(4-bromophenoxy)benzene (BDE 28) | TV set (old) | 0.00038 | 0.0023 | 0.0000002 | x | |||||
Hexabromobenzene (HBBz) | Polymers, additives in textiles, electronics, and plastics | 0.0089 | x | x | x | |||||
beta-Hexabromocyclododecane (β-HBCD/β-HBCDD) | TV, thermal insulation and electronic equipment | 0.063 | 0.0003 | x | x | |||||
Meta, meta, para-tricresyl phosphate (mmp-TMPP) | Electronic devices (game console, TV, radio, DVD/CD player, laptop) | 0.23 | x | x | x | |||||
Nonabromodiphenyl ether (BDE 206) | Plastics used in consumer products | 0.023 | 0.0086 | x | x | |||||
2,2′,3,3′,4,4′,5,6,6′-nonabromodiphenyl ether (BDE 207) | Plastics used in consumer products | 0.017 | 0.0021 | x | ||||||
2,2′,3,4,4′,5,5′,6-Octabromodiphenyl ether (BDE 203) | Housings of electrical and electronic equipment | 0.0016 | x | x | ||||||
2,2′,3,3′,4,4′,6,6′-Octabromodiphenyl ether (BDE 197) | Housings of electrical and electronic equipment | 0.0018 | 0.0006 | x | ||||||
2,2′,4,4′,5-Pentabromodiphenyl ether (BDE 99) | TV set (old) | 0.028 | 0.0040 | 0.0057 | x | x | ||||
Polybrominated biphenyls (PBB) | Plastics in computer monitors, televisions, textiles, and plastic foams | 0.00019 | 0.0056 | x | x | x | ||||
2,2′,4,4′-Tetrabromodiphenyl ether (BDE 47) | TV set (old) | 0.015 | 0.012 | 0.0076 | x | |||||
1,2,4,5-tetrabromo-3,6-dimethylbenzene (pTBX) | Flame retardant | 0.00029 | x | |||||||
1,2-Bis(2,4,6-tribromophenoxy)ethane (TBE) | Solvents, flame retardant in synthetic fibres, polystyrene, polyurethanes, and polyolefins | 0.0053 | x | x | ||||||
2,2′,4-tribromodiphenyl ether (BDE 17) | Plastics in consumer products | 0.000086 | 0.012 | x | ||||||
tri-n-butylphosphate (TBP) | Paints, colorants, and pigments, multi-component crafting kits, pottery making, ink, medical and dental supplies and equipment (e.g., wheelchairs, colostomy bag) | 0.014 | x | x | x | |||||
Trixylenyl phosphate (TXP) | Flame retardant | 0.015 | x | x | ||||||
Polyaromatic hydrocarbons | ||||||||||
Benz[a]anthracene | Primer, wallpaper paste, latex and dispersion paint, plaster, vinyl and ingrained wallpaper, candles, incense sticks | 0.017 | 0.030 | x | x | x | ||||
Benzo[a]pyrene | Primer, wallpaper paste, latex and dispersion paint, plaster, vinyl and ingrain wallpaper, candles, incense sticks, coal tar-based glue in parquet flooring | 0.0092 | 0.069 | x | x | x | x | x | ||
Benzo[b]fluoranthene | Candles | 0.014 | 0.18 | x | x | x | ||||
Chrysene | Candles | 0.039 | 0.053 | x | x | x | ||||
dibenz[a,h]anthracene | Primer, wallpaper paste, latex and dispersion paint, plaster, vinyl and ingrained wallpaper, candles | 0.012 | x | x | x | |||||
Biocides | ||||||||||
Aldrin | Used as an insecticide; banned under annex A of the Stockholm convention | 0.0010 | x | x | x | x | x | x | ||
Atrazine | Biocide, pesticide, herbicide | 0.0021 | x | x | x | x | ||||
Clofenotane (p,p′-DDT (4,4′-DDT)) | Insecticide, pesticide | 0.11 | 0.042 | x | x | x | x | x | ||
cypermethrin | Pesticide, insecticide, used mainly in households | 0.18 | x | x | x | x | x | |||
Diazinon | Biocide, insecticide | 0.022 | x | x | x | x | ||||
Dieldrin | Biocide, insecticide | 0.0029 | x | x | x | x | x | x | ||
α-endosulfan | Insecticide | 0.0066 | x | x | ||||||
Endrin | Biocide, insecticide | 0.0053 | x | x | ||||||
Alpha-hexachlorocyclohexane (α-HCH) | Insecticide, herbicide and used in personal care products | 0.002 | 0.067 | 0.0011 | x | |||||
beta-hexachlorocyclohexane (β-HCH) | Insecticide, herbicide and used in personal care products | 0.0037 | 0.013 | x | x | x | x | |||
γ-HCH/lindane | Moisturisers and shampoos, biocide, insecticide | 0.30 | 0.90 | 0.0029 | x | x | x | x | ||
Metolachlor | Biocide, insecticide | 0.00053 | x | x | x | x | ||||
Pentachlorophenol (PCP) | Biocide, insecticide | 0.41 | 2.4 | x | x | x | x | x | ||
permethrin | Construction materials—flooring, tiles, sinks, bathtubs, mirrors, wall materials/drywall, wall-to-wall carpets, insulation, shampoos, make-up and cosmetic products, general pesticide products, insect repellents, biocide | 0.21 | 0.059 | x | x | x | ||||
Permethrin (fine dust) | 9.65 | x | x | x | ||||||
Permethrin (coarse dust) | 7.85 | x | x | x | ||||||
Piperonyl butoxide (PBO) | Beauty products and insecticide | 0.22 | x | |||||||
Polychlorinated biphenyl | ||||||||||
2,2′,3,3′,4,4′-Hexachlorobiphenyl, aroclor 1260 (PCB 128) | Coolants and lubricants in transformers, capacitors, and other electrical devices (such as fluorescent lights and refrigerators) produced before 1977 | 0.0008 | x | x | x | x | x | |||
2,2′,4,4′,5,5′-Hexachlorobiphenyl (PCB 153) | Coolants and lubricants in transformers, capacitors, and other electrical devices (such as fluorescent lights and refrigerators) produced before 1977 | 0.00025 | 0.021 | 0.0024 | x | x | x | x | x | |
2,2′,4,5,5′-Pentachlorobiphenyl (PCB 101) | Coolants and lubricants in transformers, capacitors, and other electrical devices (such as fluorescent lights and refrigerators) produced before 1977 | 0.000088 | 1.22 | 0.0018 | x | x | x | |||
2,3′,4,4′,5-Pentachlorobiphenyl (PCB 118) | Coolants and lubricants in transformers, capacitors, and other electrical devices (such as fluorescent lights and refrigerators) produced before 1977 | 0.000046 | 0.26 | 0.0018 | x | x | x | |||
Perfluoroalkyl and polyfluoroalkyl substances | ||||||||||
10:2 Fluorotelomer acrylate (10:2 FTAC) | Surfactants, lubricants, repellents, consumer products | 0.12 | x | |||||||
6:2 Fluorotelomer methacrylate (6:2 FTMAC) | Construction materials—flooring, tiles, sinks, bathtubs, mirrors, wall materials/drywall, wall-to-wall carpets, insulation, taps and light fixtures | 0.020 | 0.020 | x | ||||||
6:2 Fluorotelomer alcohol (6:2 FTOH) | Surfactants, lubricants, repellents, consumer products | 0.040 | 1.011 | x | ||||||
8:2 Fluorotelomer acrylate (8:2 FTAC) | Surfactants, lubricants, repellents, consumer products | 0.27 | x | |||||||
Fosamine (FOSA) | In protective coatings for fabrics and carpet, paper coatings, insecticide formulations, and surfactants | 0.0044 | x | x | x | |||||
N-Methylperfluorooctanesulfonamidoethanol (MeFOSE) | Surfactants, lubricants, repellents, consumer products | 0.033 | 0.090 | x | ||||||
Perfluorodecanoic acid (PFDA) | Surfactants, lubricants, repellents, consumer products | 0.0012 | x | x | x | |||||
Perfluorododecanoic acid (PFDoA) | Surfactants, lubricants, repellents, consumer products | 0.0016 | x | |||||||
Perfluorohexanesulfonic acid (PFHxS) | Previously used in firefighting foam, carpet treatment solutions and as a stain and water repellent | 0.0034 | x | x | x | |||||
Perfluorononanoic acid (PFNA) | Used as a surfactant, lubricant, textile finishing agent, and in liquid crystal display panels | 0.00063 | x | x | x | x | ||||
Perfluorooctanoic acid (PFOA) | Used to produce fire-fighting applications, cosmetics, greases, lubricants, paints, polishes, and adhesives | 0.0061 | x | x | x | x | x | x | ||
Perfluorooctanesulfonic acid (PFOS) | Surfactant in fire-fighting foams, alkaline cleaners, floor polishes, active ingredient for ant bait traps, protective surface coatings (i.e., carpets, fabrics, and food packaging), and consumer products | 0.0037 | x | x | x | x | x | x | ||
Perfluoropentanoate (PFPA) | Surfactants, lubricants, repellents, consumer products | 0.006 | x | |||||||
Bisphenol | ||||||||||
Bisphenol-A (BPA) | Vinyl flooring, thermal paper, toys, medical devices, printer paper, coating in food storage containers | 0.31 | 0.54 | x | x | |||||
Bisphenol F (BPF) | Epoxy resins, lacquers, varnishes, liners, adhesives, plastics, water pipes, dental sealants, and food packaging | 0.052 | x | |||||||
4-n-nonylphenol (4-NP) | Children’s art supplies and toys, blankets, games, baby bottles and pacifiers, dolls, electronics, dishwasher detergents | 0.018 | 0.0029 | x | ||||||
4-n-octylphenol (OP) | Non-ionic surfactants, resins, fungicides, bactericides, dyestuffs, adhesives, rubber chemicals, plasticizers and antioxidants | 0.068 | x | x | ||||||
4-tert-butylphenol | Dishwasher detergents and stain-related products | 0.0062 | x | x | ||||||
4-tert-octylphenol | Used as an intermediate for surfactants, resins, rubber additives, antioxidants, adhesives, dyestuffs, fungicides, and bactericides | 0.0069 | x | |||||||
Musk | ||||||||||
Triclosan | cosmetics and toilet soaps | 0.22 | 0.082 | x |
Chemical | Group | Study or Reference | Category | Matrix | Emission Factor | Emission Rate * | Unit |
---|---|---|---|---|---|---|---|
Benzo[a]anthracene | PAH | Manoukian et al. [88] TC | Incense (reports min and max) | Particles | Nd, 938 3 | µg/g | |
Benzo[a]anthracene | PAH | Petry et al. [89] TC | Scented candles | Particles and gas phase | <0.21 1 | µg/h | |
Unscented candles | Particles and gas phase | <0.21 1 | µg/h | ||||
Benzo[a]anthracene | PAH | Derudi et al. [90] TC | Scented candles | Particles and gas phase | 0.03 1 | ng/g | |
Benzo[a]anthracene | PAH | Derudi et al. [91] TC | Unscented Candles | <0.01 1 | ng/g | ||
Benzo[a]pyrene | PAH | Manoukian et al. [88] TC | Incense | Particles | Nd, 766 3 | µg/g | |
Benzo[a]pyrene | PAH | Petry et al. [89] TC | Scented candles | Particles and gas phase | <0.21 1 | µg/h | |
Unscented candles | Particles and gas phase | <0.21 1 | µg/h | ||||
Benzo[a]pyrene | PAH | Derudi et al. [90] TC | Scented candles | Particles and gas phase | 0.33 1 | ng/g | |
Benzo[a]pyrene | PAH | Derudi et al. [91] TC | Unscented Candles | Particles and gas phase | 1.41 ± 1.00 (<0.01, 3.44 ± 3.40) 2 | ng/g | |
Benzo[b]fluoranthene | PAH | Derudi et al. [91] TC | Unscented Candles | Particles and gas phase | <0.01 (<0.01, 3.46 ± 3.45) 2 | ng/g | |
Chrysene | PAH | Manoukian et al. [88] TC | Unscented candles | Particles | <0.21 1 | µg/h | |
Chrysene Chrysene Chrysene | PAH PAH PAH | Derudi et al. [90] TC Manoukian et al. [88] TC Derudi et al. [91] TC | Scented candles | Particles and gas phase | 0.75 1 | ng/g | |
Unscented Candles | Particles and gas phase Particles | 0.10 ± 0.08 (<0.01, 0.53 ± 0.51) 2 | ng/g | ||||
Chrysene | PAH | Derudi et al. [90] TC | Incense | Particles and gas phase | Nd, 718 3 | µg/g | |
DEHP | Phthalates | Manoukian et al. [88] TC | Incense | Particles | 1206, 31080 3 | µg/g | |
Dibenzo[a,h]anthracene | PAH | Petry et al. [88] TC | Scented candles | Particles and gas phase | <0.21 1 | µg/h | |
Dibenzo[a,h]anthracene | PAH | Derudi et al. [91] TC | Unscented Candles | Particles and gas phase | <0.01 1 | ng/g | |
DIBP | Phthalates | Manoukian et al. [88] TC | Incense | Particles | 354, 4274 3 | µg/g |
Chemical | Group | Author | Category/Item | Matrix Measured | Area Specific Emission Rates (SERa) | Unit Specific Emission Rates (SERu) | Unit |
---|---|---|---|---|---|---|---|
BDE17 | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Printed circuit board | gas phase | 0.6 1 | ngunit−1h−1 | |
BDE28 | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Television set housing | gas phase | 0.2 1 | ng/m2h | |
Printed circuit board | gas phase | 1.9 1 | ngunit−1h−1 | ||||
BDE47 | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Television set housing | gas phase | 6.6 1 | ng/m2h | |
Printed circuit board | gas phase | 14.2 1 | ngunit−1h−1 | ||||
BDE99 | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Television set housing | gas phase | 1.7 1 | ng/m2h | |
Printed circuit board | gas phase | 2.6 1 | ngunit−1h−1 | ||||
DecaBDE (BDE209) | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Television set housing | gas phase | 0.3 1 | ng/m2h | |
NonaBDE (BDE-206, BDE-207) | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Television set housing | gas phase | 0.8 1 | ng/m2h | |
OctaBDE (BDE-196, BDE-197, BDE-203) | Flame retardant (brominated) | Kemmlein, Hahn and Jann [92] GD | Television set housing | gas phase | 1.5 1 | ng/m2h |
Chemical | Group | Author | Building Materials | Matrix Measured | Emission Rate | Area Specific Emission Rates (SERa) * | Duration | Unit |
---|---|---|---|---|---|---|---|---|
DnBP | phthalate | Schripp et al. [93] TC/EC | Paint—latex F2 (doped) | Gas phase | 238 6 | 5 days | µg/m2h | |
Paint—latex F1 (doped) | Gas phase | 303 6 | 5 days | µg/m2h | ||||
Paint—latex F1 LC (doped) | Gas phase | 186 6 | 1 week | µg/m2h | ||||
Paint—latex F1 LC (doped) | Gas phase | 384 6 | 1 week | µg/m2h | ||||
Paint—latex F1 LC (doped) | Gas phase | 448 6 | Not stated | µg/m2h | ||||
HBCD | Flame retardant (organophosphate) | Kemmlein, Hahn and Jann [92] GC/GD | EPS 1 (0.02 m3) | Gas phase | 4 6 | µg/m2h | ||
EPS 1 (0.001 m3) | Gas phase | 1 6 | µg/m2h | |||||
XPS 2 (0.02 m3) | Gas phase | 29 6 | µg/m2h | |||||
XPS 2 (0.001 m3) | Gas phase | 0.1 6 | µg/m2h | |||||
Permethrin | insecticide | Yu, Crump and Brown [94] MC | Scots pine pretreated with solvent-based wood preservative | Particles and gas phase | 18 6 | 3–10 days | ng/m2h | |
Scots pine pretreated with solvent-based wood preservative | Particles and gas phase | 18 6 | 28–34 days | ng/m2h | ||||
Scots pine pretreated with solvent-based wood preservative | Particles and gas phase | 27 6 | 56–61 days | ng/m2h | ||||
Scots pine pretreated with solvent-based wood preservative | Particles and gas phase | 27 6 | 79–90 days | ng/m2h | ||||
Scots pine pretreated with water-based wood preservative | Particles and gas phase | 20 6 | 3–10 days | ng/m2h | ||||
Scots pine pretreated with water-based wood preservative | Particles and gas phase | 27 6 | 28–34 days | ng/m2h | ||||
Scots pine pretreated with water-based wood preservative | Particles and gas phase | 33 6 | 56–61 days | ng/m2h | ||||
Scots pine pretreated with water-based wood preservative | Particles and gas phase | 27 6 | 79–90 days | ng/m2h | ||||
Spruce pretreated with solvent-based wood preservative | Particles and gas phase | 27 6 | 3–10 days | ng/m2h | ||||
Spruce pretreated with solvent-based wood preservative | Particles and gas phase | 32 6 | 28–34 days | ng/m2h | ||||
Spruce pretreated with solvent-based wood preservative | Particles and gas phase | 27 6 | 56–61 days | ng/m2h | ||||
Spruce pretreated with solvent-based wood preservative | Particles and gas phase | 27 6 | 79–90 days | ng/m2h | ||||
Spruce pretreated with water-based wood preservative | Particles and gas phase | <18 6 | 3–10 days | ng/m2h | ||||
Spruce pretreated with water-based wood preservative | Particles and gas phase | 18 6 | 28–34 days | ng/m2h | ||||
Spruce pretreated with water-based wood preservative | Particles and gas phase | 20 6 | 56–61 days | ng/m2h | ||||
Spruce pretreated with water-based wood preservative | Particles and gas phase | <18 6 | 79–90 days | ng/m2h | ||||
Untreated Scots pine | Particles and gas phase | <18 6 | 3–10 days | ng/m2h | ||||
Untreated Scots pine | Particles and gas phase | <15 6 | 28–34 days | ng/m2h | ||||
Untreated Scots pine | Particles and gas phase | <18 6 | 56–61 days | ng/m2h | ||||
Untreated Scots pine | Particles and gas phase | <18 6 | 79–90 days | ng/m2h | ||||
Untreated spruce | Particles and gas phase | <17 6 | 3–10 days | ng/m2h | ||||
Untreated spruce | Particles and gas phase | <15 6 | 28–34 days | ng/m2h | ||||
Untreated spruce | Particles and gas phase | <18 6 | 56–61 days | ng/m2h | ||||
Untreated spruce | Particles and gas phase | <18 6 | 79–90 days | ng/m2h | ||||
Pine coated with acypetacs zinc and permethrin | Particles and gas phase | <18 6 | 3–10 days | ng/m2h | ||||
Pine coated with acypetacs zinc and permethrin | Particles and gas phase | <18 6 | 28–34 days | ng/m2h | ||||
Pine coated with acypetacs zinc and permethrin | Particles and gas phase | <18 6 | 56–61 days | ng/m2h | ||||
Pine coated with acypetacs zinc and permethrin | Particles and gas phase | <18 6 | 79–90 days | ng/m2h | ||||
Permethrin | Horn, Jann and Wilke [95] | Wood preservative | Particles and gas phase | 0.003 C,6 | µg/m2h | |||
Fibre, leather, rubber, and polyermisd material preservatives (carpet) | Particles and gas phase | 0.006 C,6 | µg/m2h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Landeg-Cox, C.; Middleton, A.; Halios, C.; Marczylo, T.; Dimitroulopoulou, S. Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs). Environments 2025, 12, 40. https://doi.org/10.3390/environments12020040
Landeg-Cox C, Middleton A, Halios C, Marczylo T, Dimitroulopoulou S. Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs). Environments. 2025; 12(2):40. https://doi.org/10.3390/environments12020040
Chicago/Turabian StyleLandeg-Cox, Charlotte, Alice Middleton, Christos Halios, Tim Marczylo, and Sani Dimitroulopoulou. 2025. "Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs)" Environments 12, no. 2: 40. https://doi.org/10.3390/environments12020040
APA StyleLandeg-Cox, C., Middleton, A., Halios, C., Marczylo, T., & Dimitroulopoulou, S. (2025). Chemicals in European Residences—Part II: A Review of Emissions, Concentrations, and Health Effects of Semi-Volatile Organic Compounds (SVOCs). Environments, 12(2), 40. https://doi.org/10.3390/environments12020040